US3627293A - Apparatus for purifying metals by pouring through slag - Google Patents
Apparatus for purifying metals by pouring through slag Download PDFInfo
- Publication number
- US3627293A US3627293A US7121A US3627293DA US3627293A US 3627293 A US3627293 A US 3627293A US 7121 A US7121 A US 7121A US 3627293D A US3627293D A US 3627293DA US 3627293 A US3627293 A US 3627293A
- Authority
- US
- United States
- Prior art keywords
- slag
- metal
- electrode
- arrangement
- pouring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/10—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
- C22B9/106—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents the refining being obtained by intimately mixing the molten metal with a molten salt or slag
Definitions
- This invention relates to an apparatus for purifying metals, particularly copper, upon underslag castings or by pouring a metal fused outside the slag layer through the slag layer.
- a vacuum electric-arc melting apparatus suitable for continuous operation has become known from German Pat. No. 1,046,212. This device, however, does not avoid the disadvantage inherent in the repeated supply and removal of large amounts of energy in the individual stages of the melting process.
- a suitable ignition material such as steel wool or a mixture of the same with slag powder is deposited beneath the electrode. Also, the ignition material is surrounded by granular slag. This, being in contact with an electrode, is ignited, whereupon the resultant heat melts the slag and metal.
- At least one hollow electrode constituting a collection vessel is arranged above the puddle of molten slag, and its bottom portion is provided with apertures for the discharge of the melt, the bottom portion dipping into the slag layer which is provided above the block of remelted metal which serves as the counterelectrode.
- the apparatus of the invention combines several advantageous features. It is not necessary to prepare consumable electrodes of any specific configuration.
- the metal to be purified may be used as a starting material in any available form, for example, as scrap, and there is no need to solidify the metal after it is molten and prior to purification. Because the stream of molten metal is divided into partial streams which enter the slag layer, there is intimate contact between the metal to be purified and the slag layer, with a high purification effect. Preferably, the metal passes through the slag layer while in the form of drops. Because the molten metal is divided into partial streams only at the slag surface, the kinetic ene gy f th metal entering the slag layer is low.
- the velocity of the metal in the slag is therefore low, and the dwell time is relatively long. Because the collection vessel is used as one electrode, and the lower block of remelted metal is used as the counterelectrode, the entire slag layer, which extends between the two electrodes, constitutes a resistance heater which is heated to a high temperature. It is in this zone in which the drops of molten metal pass so that the thermal energy is supplied where it is most advantageously used for the metallurgical requirements of the process.
- the actual pouring process can be made continuous even if the molten metal is received intermittently from a preliminary melting vessel.
- the apparatus of the invention is thus particularly useful for the continuous casting of metal.
- a premelting furnace 1 may be a so-called "Asarco furnace if copper is to be melted. Electrolytic copper is melted in the furnace in a slightly reducing atmosphere. The mode of operation of such a furnace is usually quasi-continuous. The premelted metal is discharged from the spout or nipple 2 into an intermediate ladle or collecting unit 3. This ladle may be dispensed with, however, even when a discontinuously operated premelting furnace is used. However, its use facilitates the control of the purification process. The intermediate ladle also'permits addition agents to be added and mixed intimately with the molten metal.
- the metal melt 5 enters the hollow electrode 6 which constitutes a collecting vessel, from a nipple or spout 4 of ladle 3.
- Electrode 6 may consist of graphite or a similar, electrically conductive material. It is possible to make the hollow electrode double-walled, and to provide liquid cooling.
- the hollow electrode illustrated consists of a substantially cylindrical upright wall 7 and a bottom 8 which is provided with several apertures 9. The apertures are uniformly distributed over the area of the bottom wall 8, but as few as two apertures may be adequate. It is also conceivable to place the apertures 9 in the lower end of the upright wall 7, and to immerse the hollow electrode 6 in the slag layer 10 somewhat deeper than is shown in the drawing. As is evident from the drawing, the internal capacity of the hollow electrode is sufficient to permit continuous formation of the block 13 of remelted metal even without the intermediate ladle 3 and with a premelting furnace l which operates batchwise.
- Necessary energy is supplied to the hollow electrode 6 by means of a conductor 11 connected to a current source 12.
- the block 13 made from the molten metal is located below the hollow electrode 6 and is a continuously cast body of uniform cross section in the instant case. At the upper end of the block 13, there is located a puddle 14 of molten metal in which the partial streams of molten metal are consolidated.
- the block 13 of remolten metal constitutes the counterelectrode for the hollow electrode 6, and is therefore connected with the same current source 12 by means of contact rollers 15 and a conductor l6.
- Block 13 with the puddle of melt 14 as well as hollow electrode 6 and slag layer 10 between the electrodes are enveloped by a liquid-cooled mold 17 as is conventional in this art.
- Said mold contains water 18 as a cooling medium.
- the drawing shows that the molten metal 5 is discharged through apertures 9 in bottom 8 of the hollow electrode 6 in fine streams which disintegrate into individual drops. The drops travel through slag layer 10 because of their greater specific gravity at a relatively low velocity, thereby permitting intensive interaction and thus effective purification by the slag.
- the hollow electrode 6 When copper is to be treated, it is most advantageous to make the hollow electrode 6 of graphite because copper does not tend to form carbides, and copper oxide is reduced to copper by the graphite at the prevailing temperature. it is therefore particularly advantageous for this reason to use a graphite-bearing slag.
- the metal to be remelted for example, scrap
- the metal to be remelted is entered directly into the hollow electrode 6 and fused there.
- a combination of the feed methods indicated above is also contemplated.
- only a portion of the metal to be remelted, for example, alloying constituents is fed directly to the hollow electrode in solid form, whereas the remainder of the metal is drawn from a premelting furnace. Fusion of the scrap in the hollow electrode is facilitated when the electrode has a high-electrical resistivity and thus contributes to the development of thermal energy.
- Graphite is a suitable electrode material in this case as well.
- the apparatus of the invention can be readily modified to provide the same advantages when operated with polyphase alternating current.
- threephase current is used, the single illustrated hollow electrode is merely replaced by three electrodes of the same type which dip into a common slag layer.
- An arrangement for the continuous purification of metal comprising, in combination, a substantially hollow electrode with bottom wall and sidewalls, said bottom wall having at least two perforations therethrough; means for containing molten slag in proximity of said bottom wall. said perforations discharging into said slag; means for discharging metal into the hollow interior of said electrode; a metal member beneath said slag and in substantially close proximity therewith; and a source of electrical energy connected between said electrode and said member for generating heat within said slag.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Continuous Casting (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19691912935 DE1912935A1 (de) | 1969-03-14 | 1969-03-14 | Vorrichtung zum Reinigen von Metallen durch Unterschlackegiessen |
Publications (1)
Publication Number | Publication Date |
---|---|
US3627293A true US3627293A (en) | 1971-12-14 |
Family
ID=5728092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US7121A Expired - Lifetime US3627293A (en) | 1969-03-14 | 1970-01-30 | Apparatus for purifying metals by pouring through slag |
Country Status (5)
Country | Link |
---|---|
US (1) | US3627293A (fr) |
JP (1) | JPS4840533B1 (fr) |
DE (1) | DE1912935A1 (fr) |
FR (1) | FR2034930A7 (fr) |
GB (1) | GB1242351A (fr) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3752215A (en) * | 1970-11-12 | 1973-08-14 | Mitsubishi Heavy Ind Ltd | Continuous casting apparatus for shaped metal bodies |
US3788381A (en) * | 1971-06-08 | 1974-01-29 | British Iron Steel Research | Metal refining process |
US3807485A (en) * | 1971-06-16 | 1974-04-30 | B Paton | Method of producing multi-layer metal ingots |
US4133967A (en) * | 1977-06-24 | 1979-01-09 | The United States Of America As Represented By The Secretary Of The Interior | Two-stage electric arc - electroslag process and apparatus for continuous steelmaking |
US4533388A (en) * | 1984-04-11 | 1985-08-06 | Olin Corporation | Technique for removing iron-rich components from a copper melt |
US7154932B2 (en) * | 2000-11-15 | 2006-12-26 | Ati Properties, Inc. | Refining and casting apparatus |
US20070062332A1 (en) * | 2005-09-22 | 2007-03-22 | Jones Robin M F | Apparatus and method for clean, rapidly solidified alloys |
US20090139682A1 (en) * | 2007-12-04 | 2009-06-04 | Ati Properties, Inc. | Casting Apparatus and Method |
US7803212B2 (en) | 2005-09-22 | 2010-09-28 | Ati Properties, Inc. | Apparatus and method for clean, rapidly solidified alloys |
US7803211B2 (en) | 2005-09-22 | 2010-09-28 | Ati Properties, Inc. | Method and apparatus for producing large diameter superalloy ingots |
CN101941062A (zh) * | 2010-10-08 | 2011-01-12 | 阎瑞河 | 一种立式连续浇铸大型环状铸坯的方法及装置 |
CN102605189A (zh) * | 2012-03-22 | 2012-07-25 | 金川集团有限公司 | 一种电渣精炼技术制备铜及铜合金铸锭的方法 |
US8642916B2 (en) | 2007-03-30 | 2014-02-04 | Ati Properties, Inc. | Melting furnace including wire-discharge ion plasma electron emitter |
US8748773B2 (en) | 2007-03-30 | 2014-06-10 | Ati Properties, Inc. | Ion plasma electron emitters for a melting furnace |
US8747956B2 (en) | 2011-08-11 | 2014-06-10 | Ati Properties, Inc. | Processes, systems, and apparatus for forming products from atomized metals and alloys |
US8891583B2 (en) | 2000-11-15 | 2014-11-18 | Ati Properties, Inc. | Refining and casting apparatus and method |
EP2940155A4 (fr) * | 2012-12-26 | 2016-08-03 | Posco | Appareil et procédé de traitement de fonte liquide |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2010146A6 (es) * | 1989-03-02 | 1989-10-16 | Tecnigest Sa | Procedimiento perfeccionado para la obtencion de alambron de cobre partiendo de chatarra. |
CN110180817B (zh) * | 2019-05-29 | 2023-09-08 | 西安热工研究院有限公司 | 一种化学仪表中固态电极的多相流清洗装置及清洗方法 |
CN114178492A (zh) * | 2021-12-13 | 2022-03-15 | 昆明理工大学 | 一种将废弃材料放入连铸中间包再利用的方法 |
-
1969
- 1969-03-14 DE DE19691912935 patent/DE1912935A1/de active Pending
-
1970
- 1970-01-15 GB GB2117/70A patent/GB1242351A/en not_active Expired
- 1970-01-30 US US7121A patent/US3627293A/en not_active Expired - Lifetime
- 1970-03-03 FR FR7007812A patent/FR2034930A7/fr not_active Expired
- 1970-03-09 JP JP45020045A patent/JPS4840533B1/ja active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3752215A (en) * | 1970-11-12 | 1973-08-14 | Mitsubishi Heavy Ind Ltd | Continuous casting apparatus for shaped metal bodies |
US3788381A (en) * | 1971-06-08 | 1974-01-29 | British Iron Steel Research | Metal refining process |
US3807485A (en) * | 1971-06-16 | 1974-04-30 | B Paton | Method of producing multi-layer metal ingots |
US4133967A (en) * | 1977-06-24 | 1979-01-09 | The United States Of America As Represented By The Secretary Of The Interior | Two-stage electric arc - electroslag process and apparatus for continuous steelmaking |
US4533388A (en) * | 1984-04-11 | 1985-08-06 | Olin Corporation | Technique for removing iron-rich components from a copper melt |
US10232434B2 (en) | 2000-11-15 | 2019-03-19 | Ati Properties Llc | Refining and casting apparatus and method |
US7154932B2 (en) * | 2000-11-15 | 2006-12-26 | Ati Properties, Inc. | Refining and casting apparatus |
US8891583B2 (en) | 2000-11-15 | 2014-11-18 | Ati Properties, Inc. | Refining and casting apparatus and method |
US9008148B2 (en) | 2000-11-15 | 2015-04-14 | Ati Properties, Inc. | Refining and casting apparatus and method |
US7578960B2 (en) | 2005-09-22 | 2009-08-25 | Ati Properties, Inc. | Apparatus and method for clean, rapidly solidified alloys |
US7803212B2 (en) | 2005-09-22 | 2010-09-28 | Ati Properties, Inc. | Apparatus and method for clean, rapidly solidified alloys |
US7803211B2 (en) | 2005-09-22 | 2010-09-28 | Ati Properties, Inc. | Method and apparatus for producing large diameter superalloy ingots |
US20070062332A1 (en) * | 2005-09-22 | 2007-03-22 | Jones Robin M F | Apparatus and method for clean, rapidly solidified alloys |
US8216339B2 (en) | 2005-09-22 | 2012-07-10 | Ati Properties, Inc. | Apparatus and method for clean, rapidly solidified alloys |
US8221676B2 (en) | 2005-09-22 | 2012-07-17 | Ati Properties, Inc. | Apparatus and method for clean, rapidly solidified alloys |
US8226884B2 (en) | 2005-09-22 | 2012-07-24 | Ati Properties, Inc. | Method and apparatus for producing large diameter superalloy ingots |
US9453681B2 (en) | 2007-03-30 | 2016-09-27 | Ati Properties Llc | Melting furnace including wire-discharge ion plasma electron emitter |
US8642916B2 (en) | 2007-03-30 | 2014-02-04 | Ati Properties, Inc. | Melting furnace including wire-discharge ion plasma electron emitter |
US8748773B2 (en) | 2007-03-30 | 2014-06-10 | Ati Properties, Inc. | Ion plasma electron emitters for a melting furnace |
US20090139682A1 (en) * | 2007-12-04 | 2009-06-04 | Ati Properties, Inc. | Casting Apparatus and Method |
US8302661B2 (en) | 2007-12-04 | 2012-11-06 | Ati Properties, Inc. | Casting apparatus and method |
US8156996B2 (en) | 2007-12-04 | 2012-04-17 | Ati Properties, Inc. | Casting apparatus and method |
US7963314B2 (en) | 2007-12-04 | 2011-06-21 | Ati Properties, Inc. | Casting apparatus and method |
US7798199B2 (en) | 2007-12-04 | 2010-09-21 | Ati Properties, Inc. | Casting apparatus and method |
CN101941062B (zh) * | 2010-10-08 | 2013-03-13 | 阎瑞河 | 一种立式连续浇铸大型环状铸坯的方法 |
CN101941062A (zh) * | 2010-10-08 | 2011-01-12 | 阎瑞河 | 一种立式连续浇铸大型环状铸坯的方法及装置 |
US8747956B2 (en) | 2011-08-11 | 2014-06-10 | Ati Properties, Inc. | Processes, systems, and apparatus for forming products from atomized metals and alloys |
CN102605189A (zh) * | 2012-03-22 | 2012-07-25 | 金川集团有限公司 | 一种电渣精炼技术制备铜及铜合金铸锭的方法 |
EP2940155A4 (fr) * | 2012-12-26 | 2016-08-03 | Posco | Appareil et procédé de traitement de fonte liquide |
Also Published As
Publication number | Publication date |
---|---|
DE1912935A1 (de) | 1970-09-24 |
JPS4840533B1 (fr) | 1973-12-01 |
GB1242351A (en) | 1971-08-11 |
FR2034930A7 (fr) | 1970-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3627293A (en) | Apparatus for purifying metals by pouring through slag | |
US3234608A (en) | Continuous-casting method of melting metals in a slag medium by using consumable electrodes | |
US2060134A (en) | Apparatus for refining metals | |
US2375107A (en) | Method and apparatus for the continuous production of metal | |
US3768543A (en) | Electro-slag furnace for producing continuous ingot | |
US3843352A (en) | Method for melting sponge metal using gas plasma in a cooled metal crucible | |
US3723630A (en) | Method for the plasma-ac remelting of a consumable metal bar in a controlled atmosphere | |
US3669178A (en) | Direct reduction process and simultaneous continuous casting of metallic materials in a crucible to form rods | |
US3776294A (en) | Method of electroslag remelting | |
US5963579A (en) | Method of heating a molten metal in a continuous casting tundish using a plasma torch, and tundish for its implementation | |
US4132545A (en) | Method of electroslag remelting processes using a preheated electrode shield | |
US3820587A (en) | Apparatus for making metal ingots | |
US4167963A (en) | Method and apparatus for feeding molten metal to an ingot during solidification | |
US3271828A (en) | Consumable electrode production of metal ingots | |
US4036278A (en) | Process for the production of large steel ingots | |
US4604135A (en) | Apparatus and process for the metallurgical aftertreatment of premelted metals | |
US4192370A (en) | Device for effecting electroslag remelting processes | |
US5500870A (en) | Process and device for the extraction of valuable substances | |
SU341323A1 (ru) | Способ электрошлаковой отливки слитков | |
US3905804A (en) | Method of decarburization of slag in the electroslag remelting process | |
US4184869A (en) | Method for using flux and slag deoxidizer in ESR process | |
US1894657A (en) | Method and apparatus for refining metals | |
US3804150A (en) | Apparatus for electroslag remelting | |
JP2568076B2 (ja) | 冶金容器の壁上への付着物の形成を防止する方法及びこの方法を実施するのに適した冶金容器 | |
US2070186A (en) | Metal alloys and processes of making the same |