US3625078A - Elevating table - Google Patents

Elevating table Download PDF

Info

Publication number
US3625078A
US3625078A US871275A US3625078DA US3625078A US 3625078 A US3625078 A US 3625078A US 871275 A US871275 A US 871275A US 3625078D A US3625078D A US 3625078DA US 3625078 A US3625078 A US 3625078A
Authority
US
United States
Prior art keywords
core
conveyor
lever
link
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US871275A
Inventor
Hugh A Bourassa
Arthur H Emser
Edward J Ptak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROBERTS Corp A MI CORP
Roberts Corp
Original Assignee
Acme Cleveland Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acme Cleveland Corp filed Critical Acme Cleveland Corp
Application granted granted Critical
Publication of US3625078A publication Critical patent/US3625078A/en
Assigned to ROBERTS CORPORATION, A MI CORP. reassignment ROBERTS CORPORATION, A MI CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ACME-CLEVELAND CORPORATION
Assigned to ROBERTS CORPORATION reassignment ROBERTS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ACME-CLEVELAND CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/06Core boxes
    • B22C7/067Ejector elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/06Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported by levers for vertical movement
    • B66F7/0625Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported by levers for vertical movement with wheels for moving around the floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/06Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported by levers for vertical movement
    • B66F7/0633Mechanical arrangements not covered by the following subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/06Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported by levers for vertical movement
    • B66F7/08Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported by levers for vertical movement hydraulically or pneumatically operated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18992Reciprocating to reciprocating

Definitions

  • the disclosure relates to an assembly to receive a core or mold from a foundry machine and to move it gently onto a conveyor.
  • the core may be dropped by gravity onto a series of fingers held in a core receiving table and then this table drops downwardly to gently place the core on a ribbon type conveyor.
  • the table moves downwardly about twice as far as the conveyor to achieve this gentle transfer and to get both the conveyor and the table with its fingers out of the way of the foundry machine and its succeeding cycles of operation.
  • Both the core receiving table and the conveyor move along a vertical path with a common motive means for the two.
  • core will be used to mean either a core or mold in the strict foundry sense.
  • more automatic machinery is preferred because of the increasingly higher labor costs, it is increasingly desirable to automatically remove the cores from the vicinity of the foundry machine and to convey them to other machines in the foundry.
  • the cores are generally fragile just after being formed because fast cycle times are desired and a minimum of time for the core to set or otherwise become hard enough to handle is provided. If a longer time were provided this would not be an economical use of the automated machinery and production floor space.
  • an object of the present invention is to provide a core receiver assembly to gently receive a core.
  • Another object of the invention is to provide a core "ice receiver assembly to receive a core on fingers held in a table with these fingers moved downwardly to smoothly transfer the core to a more slowly descending ribbon conveyor.
  • Another object of the invention is to provide a core receiver assembly wherein a core receiver table is moved upwardly and then downwardly a given distance to receive and then transfer the core to a conveyor which is moved upwardly and downwardly about half said given distance.
  • Another object of the invention is to provide a core receiver assembly having a single motive means to move both a core. receiver table and a conveyor which subsequently receives the core.
  • Another object of the invention is to provide a core receiver assembly wherein fingers first receive a core and are above a conveyor and then subsequently move downwardly to a position below the conveyor to transfer the core onto the conveyor.
  • Another object of the invention is to provide a core receiver assembly which moves in a vertical plane without having any vertical guides.
  • the invention may be incorporated in a core receiver assembly comprising, in combination, a frame, a core receiving table, first and second linkage assemblies, each said first and second linkage assembly including, a leverlink having first and second ends and a midpoint, means to move said midpoint of said lever-link through an arc, guide in a first plane on said frame, a rolling and sliding pivot on said first end of said lever-link pivotally and slidably moving along said guide, and a pivotal connection between the second end of said lever-link and said core receiving table whereby as said lever-link midpoint is moved in one direction in said arc said core receiving table is moved a given distance in a second plane generally perpendicular to said first plane.
  • FIG. 1 is an end elevational view of a machine incorporating the invention.
  • FIG. 2 is a top view of the machine of FIG. 1 with the conveyor mostly cutaway;
  • FIG. 3 is a side view of FIG. 1, partly in section.
  • the figures of the. drawing show a preferred embodiment of the invention but such disclosure is merely by way of example and is not to be taken as limiting, the invention being defined only by the appended claims.
  • the figures of the drawing show a core receiver assembly 10 which includes generally a conveyor 11, a core receiver table 12, first and second linkage assemblies 13 and 14, respectively, and a frame 15.
  • the first linkage assembly 13 includes generally a first lever 17, a first lever-link 18 and a first support 19.
  • Similarily the second linkage assembly 14 includes a second lever 21, a second leverlink 22 and a second support 23.
  • the frame 15 may generally be considered as a fixed frame although in this preferred embodiment it is mounted on wheels 25 which may run on tracks 26 so that the entire core receiver assembly 10 may be removed from beneath a foundry machine 28, shown in phantom, which makes the cores or molds 27.
  • core will be used to mean either a core or mold in the strict foundry practice sense.
  • the foundry machine may be designed to eject vertically downwardly the core. or cores 27 with the cores receivable on fingers 29 of the core receiver table 12 and to subsequently transfer such core onto the conveyor 11 as both the conveyor 11 and table 12 descend.
  • first and second linkage assemblies 13 and 14 provide for a vertical movement of the core receive-r table 12 a given distance and provide for vertical movement of the conveyor 11 about half this given distance.
  • the conveyor 11 and receiver table 12 are shown in full lines in the lower limit positions thereof and phantom line positions 11' and 12', respectively, show these two parts in the upper limit positions thereof.
  • a motive means is provided in the form of a fluid piston and cylinder 31.
  • Two such cylinders 31 may be provided for symmetry, see FIG. 2.
  • the first and second linkage assemblies 13 and 14 are identical with the second being a mirror image of the first for ease of operation by the fluid cylinder 31 and for compactness of the assembly. Accordingly only the first linkage assembly 13 will be described in detail.
  • the lever 17 is a bell crank lever having an intermediate point 34 pivoted on the frame 15. This bell crank lever 17 has a first end 35 pivoted to the midpoint of the lever-link 18 at a pivot point 36.
  • the lever 17 also has a second end pivoted at 37 to one end of the piston and cylinder 31.
  • the lever-link 18 has first and second ends 38 and 39, respectively, and the first end 38 carries a roller 40 which is a rolling and sliding pivot between guides 41. These guides 41 are established in a first plane which is horizontal in this preferred embodiment.
  • the second end 39 of the lever-link 18 is pivoted at 42 to the core receiver table 12.
  • the support 19 has first and second ends 45 and 46, respectively, with the first end 45 connected to be moved by the arcuate movement of the lever 17. To achieve this the first end 45 is pivoted at the same pivot 36 which is the pivotal interconnection of lever 17 and lever-link 18.
  • the second end 46 of the support 19 extends generally vertically which is also generally parallel to a second plane perpendicular to the first plane.
  • the conveyor 11 has two sides each of which is pivotally connected to the respective support 19 and 23. This pivotal connection on the support 19 is at a pivot point 47 near the second end 46, and at pivot 48 to the support 23.
  • a stabilizer bar 50 is provided between the first and second linkage assemblies 13 and 14. One end is connected to the lever 17 at a point midway between the pivots 34 and 37 and the other end is connected to an extension 51 of the second lever 21 to assure that the two levers 17 and 21 may move concurrently at the same rate and thus establish movement of the core receiver table directly along the second plane. This is a vertical plane and hence the pivot point 42 moves vertically.
  • the lever 17 first end 35 moves in an arc with a lower limit position shown in solid lines in FIG. 1 and shown in phantom lines for the second limit position. This is a 90 degree arcuate movement as established by a lower limit stop 52 and an upper limit stop 53.
  • the lever 17 first end 35 travels from a lower limit position of about 45 degrees below the horizontal through a horizontal position to an upper limit position of about 45 degrees above the horizontal.
  • the arc of movement 55 is generally parallel to the second plane and hence generally parallel to the path of movement of the pivot 42.
  • this are 55 is the mirror image of the are 56 of the pivot 57 which intercomnects the lever 21 lever-link 22 and support 23.
  • These arcs 55 and 56 have their concave sides facing each other.
  • These arcs S and 56 are generally parallel to the second plane which in this case is vertical.
  • the support 19 has an extension 60.
  • a cross stabilizer 59 is attached to the extension 60 of the support 19 at a pivot point 61 and its other end is attached at a pivot point 62 to the support 23.
  • FIG. 1 shows the core receiver assembly in the first or lower limit position and in phantom shows the assembly 10 in the second or upper limit position.
  • the motive means or fluid cylinder and piston 31 is moved from its closed position shown to an extended position of the piston.
  • This motive means 31 is free floating with both the right end of the cylinder and the piston rod on the left being movable.
  • the extension of the piston rod acts on pivot 37 to swing it through a degree arc which motion will be limited by the upper limit stop 53.
  • the bell crank lever 17 is accordingly pivoted 90 degrees so that the first end pivot point 36 swings through the are 55 of approximately 90 degrees. This establishes a motive means to move the midpoint 36 of the lever-link 18 through this same are 55.
  • the second linkage assemby 14 has an identical and mirror image operation so that the core receiver table 12 moves vertically to the upper limit position shown in phantom lines 12 in FIG. 1.
  • the stabilizer 50 assures concurrent and equal arc movements of the two bell crank level 17 and 21 to assure that the core receiver table 12 stays horizontal as it is moved vertically. This core receiver table 12 moves a given distance from the lower to the upper limit position.
  • the conveyor 11 is composed of a series of ribbons or separated belts so that the core receiving fingers 29 may pass upwardly and downwardly between these ribbons to receive the core 27.
  • the conveyor 11 moves approximately half said given distance by being connected to the linkage assemblies 13 and 14 at the lever-link midpoints 36 and 57. Because the lever-link first end 40 remains in a horizontal plane while the second end pivot 42 moves through said given distance, the midpoint pivot 36 will move only one-half said given distance.
  • the supports 19 are moved upwardly and downwardly directly in accordance with the arcuate movement of the bell crank levers 17 and 21. Again considering only the first linkage assembly 13, the first support 19 is generally parallel to the second or vertical plane, but is not quite vertical in the lower limit position shown in solid lines.
  • the width of the conveyor 11 between the pivotal connections 47 and 48 thereof to the supports 19 and 23 is such as to establish this support 19 at a small angle B relative to the vertical.
  • the bell crank lever 17 has swung through its are 55 to the upper limit position, the new position of the pivot point 36 will be vertically above its former position and accordingly the phantom line position 19' of the support 19 shows that it will be disposed at the same angular attitude as in the lower limit position.
  • the pivot point 36 will have swung to the farthest left position, as viewed in FIG. 1.
  • the support 19 will be disposed at an angle equal to the small given angle B but disposed on the opposite side of the vertical plane.
  • the stabilizer 59 is attached to the support 19 at pivot point 61 and its other end is attached to the pivot point 62 of the support 23.
  • the spacing between the pivots 61 and 47 is equal to the spacing between pivots 62 and 48, with pivot 62 being below the pivot 48 on the support 23.
  • This stabilizer 59 thus maintains the two supports 19 and 23 generally parallel to the vertical plane even though these supports 19 and 23 do change slightly in angular attitude during the arcuate movement of the bell crank levers 17 and 21. Without this stabilizer 59 the pivot points 36, 47, 48, and 57 could act like a parallelogram linkage which would not be stable and could tend to collapse to one side. The stabilizer 59 prevents this and maintains the conveyor 11 horizontal as it moves directly vertically.
  • FIG. 1 shows the angular relationship wherein the first end of the lever 17 is disposed approximately perpendicular to the lever-link 18 in each of the upper and lower limit positions of the core receiver assembly. Also the lever-link 18 is established at approximately a 45 degree angle relative to each of the first and second planes in each of these upper and lower limit positions of the core receiver assembly 10.
  • the preferred embodiment of the invention provides a core receiver assembly which gently receives and moves a core 27 as it is ejected downwardly and transfers this core onto the conveyor 11 in a gentle and smooth action manner as both the conveyor 11 and the table 12 are descending so that fragile portions of the core 27 are not broken and this will increase the total effective productivity of the foundry machine 28.
  • a core receiver assembly comprising, in combination, a frame, a core receiving table, first and second linkage assemblies, each said first and second linkage assembly including, a lever-link having first and second ends and a midpoint, a guide in afirst plane on said frame, a rolling and sliding pivot on said first end of said liver-link pivotally and slidably moving along said guide, a pivotal connection betwen the second end of said lever-link and said core receiving table, and means to move said lever-link midpoint in one direction in an arc to move said core receiving table a given distance in a second plane generally perpendicular to said first plane.
  • a core receiver assembly as set forth in claim 1 wherein said means to move said midpoint of said leverlink includes a lever having a first end pivotally connected to said lever-link midpoint and having another part of said lever pivoted on said frame.
  • a core receiver assembly as set forth in claim 8 including a bell crank lever as part of said means to move said lever-link midpoint through an arc, and said bell crank lever having a first end pivotally connected to said midpoint and with said first end generally perpendicular to said lever link in each of said first and second limit positions of saidcore receiving table.
  • Claim 1 line 51, delete "liver” and insert lever-.
  • Claim 1 line 52, delete "betwen” and insert -between.
  • Ru'rr r. was wrnmr; PARKER Ark-sling (lflirvr Aur'ng ('omnlixsioner of Parents and Trademarks

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Casting Devices For Molds (AREA)

Abstract

THE DISCLOSURE RELATES TO AN ASSEMBLY TO RECEIVE A CORE OR MOLD FROM A FOUNDRY MACHINE AND TO MOVE IT GENTLY ONTO A CONVEYOR. THE CORE MAY BE DROPPED BY GRAVITY ONTO A SERIES OF FINGERS HELD IN A CORE RECEIVING TABLE AND THEN THIS TABLE DROPS DOWNWARDLY TO GENTLY PLACE THE CORE ON A RIBBON TYPE CONVEYOR. THE TABLE MOVES DOWNWARDLY ABOUT TWICE AS FAR AS THE CONVEYOR TO ACHIEVE THIS GENTLE TRANSFER AND TO GET BOTH THE CONVEYOR AND THE TABLE WITH ITS FINGERS OUT OF THE WAY OF THE FOUNDRY MACHINE AND ITS SUCCEEDING CYCLES OF OPERATION. BOTH THE CORE RECEIVING TABLE AND THE CONVEYOR MOVE ALONG A VERTICAL PATH WITH A COMMON MOTIVE MEANS FOR THE TWO. THE FOREGOING ABSTRACT IS MERELY A RESUME OF ONE GENERAL APPLICATION AND IS NOT A COMPLETE DISCUSSION OF ALL PRINCIPLES OF OPERATION, APPLICATIONS OR METHODS AND IS NOT TO BE CONSTRUED AS A LIMITATION ON THE SCOPE OF THE CLAIMED SUBJECT MATTER.

Description

Dec. 7, 1971 Bou ss EI'AL 3,625,078
ELEVATING TABLE Original Filed June 10, 1968 2 Sheets-Sheet 1 iiiii L'H'FFFT M -b k INVENTORS HUGH A. Bode/155A ARTHUR H. emsez 6 BY EDWARD J. PTA/c.
Dec. 7, 1971 H. A. BOURASSA ETAL 3,625,078
ELEVATING TABLE 2 Sheets-Sheet 8 Original Filed June 10, 1968 a Y m A I WSRK W NM M 2 51 m U E T No MA 6H A E WAM M W .0 WME J B 3 .m F
United States Patent 3,625,078 ELEVATING TABLE Hugh A. Bourassa, University Heights, Arthur H. Emser, Mentor, and Edward J. Ptak, Cleveland, Ohio, assignors to Acme-Cleveland Corporation Original application June 10, 1968, Ser. No. 735,867. Divided and this application Nov. 21, 1969, Ser. No. 871,275
Int. Cl. F16h 21/44 US. Cl. 74110 9 Claims ABSTRACT OF THE DISCLOSURE The disclosure relates to an assembly to receive a core or mold from a foundry machine and to move it gently onto a conveyor. The core may be dropped by gravity onto a series of fingers held in a core receiving table and then this table drops downwardly to gently place the core on a ribbon type conveyor. The table moves downwardly about twice as far as the conveyor to achieve this gentle transfer and to get both the conveyor and the table with its fingers out of the way of the foundry machine and its succeeding cycles of operation. Both the core receiving table and the conveyor move along a vertical path with a common motive means for the two. The foregoing abstract is merely a resume of one general application and is not a complete discussion of all principles of operation, applications or methods and is not to be construed as a limitation on the scope of the claimed subject matter.
This is a division of application Ser. No. 735,867, filed June 10', 1968.
BACKGROUND OF THE INVENTION Many different types of foundry machines for making cores or molds have been utilized in the past. In this specification the term core will be used to mean either a core or mold in the strict foundry sense. As more automatic machinery is preferred because of the increasingly higher labor costs, it is increasingly desirable to automatically remove the cores from the vicinity of the foundry machine and to convey them to other machines in the foundry. The cores are generally fragile just after being formed because fast cycle times are desired and a minimum of time for the core to set or otherwise become hard enough to handle is provided. If a longer time were provided this would not be an economical use of the automated machinery and production floor space.
In the past when a worker manually removed the core he used heat insulating gloves and could grasp the core and use human intelligence to gently pull the core loose or to receive it as it dropped into his hands and would grasp it on the less delicate portions of the mold so that the chance of breakage was minimized. In previous attempts to discharge the core automatically such core often had to drop, sometimes falling over on its side or sometimes dropping a considerable vertical distance onto a relatively hard surface and this greatly increased the chance for breakage of fragile projections on the core.
In many previous foundry machines where automatic discharge of the core was attempted it was required that the core drop a considerable distance because the receiving device such as a conveyor could not be put close to the foundry machines else it would interfere with the proper operation or subsequent movement of parts of the foundry machine.
Accordingly an object of the present invention is to provide a core receiver assembly to gently receive a core.
Another object of the invention is to provide a core "ice receiver assembly to receive a core on fingers held in a table with these fingers moved downwardly to smoothly transfer the core to a more slowly descending ribbon conveyor.
Another object of the invention is to provide a core receiver assembly wherein a core receiver table is moved upwardly and then downwardly a given distance to receive and then transfer the core to a conveyor which is moved upwardly and downwardly about half said given distance.
Another object of the invention is to provide a core receiver assembly having a single motive means to move both a core. receiver table and a conveyor which subsequently receives the core.
Another object of the invention is to provide a core receiver assembly wherein fingers first receive a core and are above a conveyor and then subsequently move downwardly to a position below the conveyor to transfer the core onto the conveyor.
Another object of the invention is to provide a core receiver assembly which moves in a vertical plane without having any vertical guides.
The invention may be incorporated in a core receiver assembly comprising, in combination, a frame, a core receiving table, first and second linkage assemblies, each said first and second linkage assembly including, a leverlink having first and second ends and a midpoint, means to move said midpoint of said lever-link through an arc, guide in a first plane on said frame, a rolling and sliding pivot on said first end of said lever-link pivotally and slidably moving along said guide, and a pivotal connection between the second end of said lever-link and said core receiving table whereby as said lever-link midpoint is moved in one direction in said arc said core receiving table is moved a given distance in a second plane generally perpendicular to said first plane.
Other objects and a fuller understanding of the invention may be had by referring to the following description and claims, taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is an end elevational view of a machine incorporating the invention.
FIG. 2 is a top view of the machine of FIG. 1 with the conveyor mostly cutaway; and
FIG. 3 is a side view of FIG. 1, partly in section.
DESCRIPTION OF THE PREFERRED EMBODIMENT The figures of the. drawing show a preferred embodiment of the invention but such disclosure is merely by way of example and is not to be taken as limiting, the invention being defined only by the appended claims. The figures of the drawing show a core receiver assembly 10 which includes generally a conveyor 11, a core receiver table 12, first and second linkage assemblies 13 and 14, respectively, and a frame 15. The first linkage assembly 13 includes generally a first lever 17, a first lever-link 18 and a first support 19. Similarily the second linkage assembly 14 includes a second lever 21, a second leverlink 22 and a second support 23. The frame 15 may generally be considered as a fixed frame although in this preferred embodiment it is mounted on wheels 25 which may run on tracks 26 so that the entire core receiver assembly 10 may be removed from beneath a foundry machine 28, shown in phantom, which makes the cores or molds 27. In this specification the word core will be used to mean either a core or mold in the strict foundry practice sense. The foundry machine may be designed to eject vertically downwardly the core. or cores 27 with the cores receivable on fingers 29 of the core receiver table 12 and to subsequently transfer such core onto the conveyor 11 as both the conveyor 11 and table 12 descend. To accomplish this transfer the first and second linkage assemblies 13 and 14 provide for a vertical movement of the core receive-r table 12 a given distance and provide for vertical movement of the conveyor 11 about half this given distance. The conveyor 11 and receiver table 12 are shown in full lines in the lower limit positions thereof and phantom line positions 11' and 12', respectively, show these two parts in the upper limit positions thereof.
To accomplish this movement of the core receiver table 12 and the conveyor 11, a motive means is provided in the form of a fluid piston and cylinder 31. Two such cylinders 31 may be provided for symmetry, see FIG. 2.
The first and second linkage assemblies 13 and 14 are identical with the second being a mirror image of the first for ease of operation by the fluid cylinder 31 and for compactness of the assembly. Accordingly only the first linkage assembly 13 will be described in detail. The lever 17 is a bell crank lever having an intermediate point 34 pivoted on the frame 15. This bell crank lever 17 has a first end 35 pivoted to the midpoint of the lever-link 18 at a pivot point 36. The lever 17 also has a second end pivoted at 37 to one end of the piston and cylinder 31. The lever-link 18 has first and second ends 38 and 39, respectively, and the first end 38 carries a roller 40 which is a rolling and sliding pivot between guides 41. These guides 41 are established in a first plane which is horizontal in this preferred embodiment. The second end 39 of the lever-link 18 is pivoted at 42 to the core receiver table 12. The support 19 has first and second ends 45 and 46, respectively, with the first end 45 connected to be moved by the arcuate movement of the lever 17. To achieve this the first end 45 is pivoted at the same pivot 36 which is the pivotal interconnection of lever 17 and lever-link 18. The second end 46 of the support 19 extends generally vertically which is also generally parallel to a second plane perpendicular to the first plane. The conveyor 11 has two sides each of which is pivotally connected to the respective support 19 and 23. This pivotal connection on the support 19 is at a pivot point 47 near the second end 46, and at pivot 48 to the support 23.
A stabilizer bar 50 is provided between the first and second linkage assemblies 13 and 14. One end is connected to the lever 17 at a point midway between the pivots 34 and 37 and the other end is connected to an extension 51 of the second lever 21 to assure that the two levers 17 and 21 may move concurrently at the same rate and thus establish movement of the core receiver table directly along the second plane. This is a vertical plane and hence the pivot point 42 moves vertically. The lever 17 first end 35 moves in an arc with a lower limit position shown in solid lines in FIG. 1 and shown in phantom lines for the second limit position. This is a 90 degree arcuate movement as established by a lower limit stop 52 and an upper limit stop 53. The lever 17 first end 35 travels from a lower limit position of about 45 degrees below the horizontal through a horizontal position to an upper limit position of about 45 degrees above the horizontal. Accordingly the arc of movement 55 is generally parallel to the second plane and hence generally parallel to the path of movement of the pivot 42. Also this are 55 is the mirror image of the are 56 of the pivot 57 which intercomnects the lever 21 lever-link 22 and support 23. These arcs 55 and 56 have their concave sides facing each other. These arcs S and 56 are generally parallel to the second plane which in this case is vertical. The support 19 has an extension 60. A cross stabilizer 59 is attached to the extension 60 of the support 19 at a pivot point 61 and its other end is attached at a pivot point 62 to the support 23.
OPERATION The FIG. 1 shows the core receiver assembly in the first or lower limit position and in phantom shows the assembly 10 in the second or upper limit position. To accomplish this movement the motive means or fluid cylinder and piston 31 is moved from its closed position shown to an extended position of the piston. This motive means 31 is free floating with both the right end of the cylinder and the piston rod on the left being movable. Considering only the first linkage assembly 13, the extension of the piston rod acts on pivot 37 to swing it through a degree arc which motion will be limited by the upper limit stop 53. The bell crank lever 17 is accordingly pivoted 90 degrees so that the first end pivot point 36 swings through the are 55 of approximately 90 degrees. This establishes a motive means to move the midpoint 36 of the lever-link 18 through this same are 55. Because the first end 38 of the lever-link 18 is guided by the roller 40 and horizontal guides 41 to have a rolling and sliding pivot in a first or horizontal plane, the second end pivot point 42 of the lever-link 18 moves in a second plane perpendicular to the first plane, namely a vertical plane. The second linkage assemby 14 has an identical and mirror image operation so that the core receiver table 12 moves vertically to the upper limit position shown in phantom lines 12 in FIG. 1. The stabilizer 50 assures concurrent and equal arc movements of the two bell crank level 17 and 21 to assure that the core receiver table 12 stays horizontal as it is moved vertically. This core receiver table 12 moves a given distance from the lower to the upper limit position.
The conveyor 11 is composed of a series of ribbons or separated belts so that the core receiving fingers 29 may pass upwardly and downwardly between these ribbons to receive the core 27. The conveyor 11 moves approximately half said given distance by being connected to the linkage assemblies 13 and 14 at the lever- link midpoints 36 and 57. Because the lever-link first end 40 remains in a horizontal plane while the second end pivot 42 moves through said given distance, the midpoint pivot 36 will move only one-half said given distance. The supports 19 are moved upwardly and downwardly directly in accordance with the arcuate movement of the bell crank levers 17 and 21. Again considering only the first linkage assembly 13, the first support 19 is generally parallel to the second or vertical plane, but is not quite vertical in the lower limit position shown in solid lines. The width of the conveyor 11 between the pivotal connections 47 and 48 thereof to the supports 19 and 23 is such as to establish this support 19 at a small angle B relative to the vertical. When the bell crank lever 17 has swung through its are 55 to the upper limit position, the new position of the pivot point 36 will be vertically above its former position and accordingly the phantom line position 19' of the support 19 shows that it will be disposed at the same angular attitude as in the lower limit position. However, at the midpoint of movement of the are 55, the pivot point 36 will have swung to the farthest left position, as viewed in FIG. 1. At this time the support 19 will be disposed at an angle equal to the small given angle B but disposed on the opposite side of the vertical plane. The stabilizer 59 is attached to the support 19 at pivot point 61 and its other end is attached to the pivot point 62 of the support 23. The spacing between the pivots 61 and 47 is equal to the spacing between pivots 62 and 48, with pivot 62 being below the pivot 48 on the support 23. This stabilizer 59 thus maintains the two supports 19 and 23 generally parallel to the vertical plane even though these supports 19 and 23 do change slightly in angular attitude during the arcuate movement of the bell crank levers 17 and 21. Without this stabilizer 59 the pivot points 36, 47, 48, and 57 could act like a parallelogram linkage which would not be stable and could tend to collapse to one side. The stabilizer 59 prevents this and maintains the conveyor 11 horizontal as it moves directly vertically.
The FIG. 1 shows the angular relationship wherein the first end of the lever 17 is disposed approximately perpendicular to the lever-link 18 in each of the upper and lower limit positions of the core receiver assembly. Also the lever-link 18 is established at approximately a 45 degree angle relative to each of the first and second planes in each of these upper and lower limit positions of the core receiver assembly 10.
The retraction of the motive means 31 from its expanded position to the solid line position shown in FIG. 1 will lower the core receiver table 12 said given distance and will also lower the conveyor 11 at approximately half the rate of speed of the table 12 and approximately half said given distance. During this lowering, the core 27, which is still somewhat fragile from just having been made in the foundry machine 28, will be gently transferred onto the ribbon conveyor 11. This is because the tops of the fingers 29 in the upper limit position are above the conveyor 11 and descend to a position below the upper run of the conveyor 11 during this descent of both the conveyor 11 and table 12. This descending movement moves the entire core receiver assembly and especially the fingers 29 out of the way of the foundry machine 28 so that it has suflicient room to perform its next cycle of operation which may include a roll-over movement, for example. Such roll-over movement could be used to present the core box facing downwardly just above the tops of the fingers 29 in the upper position so that this core 27 is gently ejected onto and supported by these fingers 29 in such upper limit position.
It will be seen that the preferred embodiment of the invention provides a core receiver assembly which gently receives and moves a core 27 as it is ejected downwardly and transfers this core onto the conveyor 11 in a gentle and smooth action manner as both the conveyor 11 and the table 12 are descending so that fragile portions of the core 27 are not broken and this will increase the total effective productivity of the foundry machine 28.
Although this invention has been described in its preferred form with a certain degree of particularity, it is understood that the present disclosure of the preferred form has been made only by way of example and that numeous changes in the details of construction and the combination and arrangement of parts may be resorted to without departing from the spirit and the scope of the invention as hereinafter claimed.
What is claimed is:
1. A core receiver assembly comprising, in combination, a frame, a core receiving table, first and second linkage assemblies, each said first and second linkage assembly including, a lever-link having first and second ends and a midpoint, a guide in afirst plane on said frame, a rolling and sliding pivot on said first end of said liver-link pivotally and slidably moving along said guide, a pivotal connection betwen the second end of said lever-link and said core receiving table, and means to move said lever-link midpoint in one direction in an arc to move said core receiving table a given distance in a second plane generally perpendicular to said first plane.
2. A core receiver assembly as set forth in claim 1 wherein said first plane is horizontal and said second plane is generally vertical.
3. A core receiver assembly as set forth in claim 1 wherein said are is approximately a degree are of a circle.
4. A core receiver assembly as set forth in claim 1 wherein said midpoint on said lever-link is equidistant the pivots on said first and second ends.
5. A core receiver assembly as set forth in claim 1 wherein said means to move said midpoint of said leverlink includes a lever having a first end pivotally connected to said lever-link midpoint and having another part of said lever pivoted on said frame.
6. A core receiver assembly as set forth in claim 5 wherein said lever is a bell crank lever having a second end and an intermediate point, said intermediate point being pivoted to said frame, and a fluid piston and cylinder connected to said second end of said bell crank lever.
7. A core receiver assembly as set forth in claini 6 wherein said fluid piston and cylinder is one having both ends movable relative to said frame and with the two ends of said fluid piston and cylinder connected to the second ends of said bell crank levers of said first and second linkage assemblies, respectively.
8. A core receiver assembly as set forth in claim 1 wherein said core receiving table has first and second limit positions of movement, and said lever-link being established at approximately a 45 degree angle relative to said first and second planes in each of said first and second limit positions of said core receiving table.
9. A core receiver assembly as set forth in claim 8 including a bell crank lever as part of said means to move said lever-link midpoint through an arc, and said bell crank lever having a first end pivotally connected to said midpoint and with said first end generally perpendicular to said lever link in each of said first and second limit positions of saidcore receiving table.
References Cited UNITED STATES PATENTS 3,388,417 6/1968 Upchurch 16128.1
WILLIAM F. ODEA, Primary Examiner W. S. RATLIFF, JR., Assistant Examiner U.S. Cl. X.R. 254--124 UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT N0. 3 25 073 DATED December 7, 1971 INVENTOR(S) H. A. Bourassa, et a1.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the Claims:
Claim 1, line 51, delete "liver" and insert lever-. Claim 1, line 52, delete "betwen" and insert -between.
Claim 9, line 40, add between "lever" and "link". Add Claim 10 as follows:
10. A core receiver assembly as set forth in claim 1 wherein said first and second linkage assemblies are mirror images of each other such that said midpoints of said leverlinks move in arcs which have the concave sides facing each other.
On the cover sheet, column 1, line 10, "9 Claims" should read 10 Claims Signed and Scaled this Thirtr'eth D2) or y 1978 sr.,-\|.
:llh'fl.
Ru'rr r. was wrnmr; PARKER Ark-sling (lflirvr Aur'ng ('omnlixsioner of Parents and Trademarks
US871275A 1969-11-21 1969-11-21 Elevating table Expired - Lifetime US3625078A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87127569A 1969-11-21 1969-11-21

Publications (1)

Publication Number Publication Date
US3625078A true US3625078A (en) 1971-12-07

Family

ID=25357087

Family Applications (1)

Application Number Title Priority Date Filing Date
US871275A Expired - Lifetime US3625078A (en) 1969-11-21 1969-11-21 Elevating table

Country Status (1)

Country Link
US (1) US3625078A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844209A (en) * 1973-08-24 1974-10-29 W Allbritton Hydraulic crushing machine
WO1980002241A1 (en) * 1979-04-20 1980-10-30 Inst Liteinogo Mash Mechanism for receipt of finished cores and moulds from the machine and their subsequent delivering
EP0284841A1 (en) * 1987-04-02 1988-10-05 ROBERTS SINTO CORPORATION (a Michigan Corporation) Method and apparatus for loading and unloading tooling from a foundry machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844209A (en) * 1973-08-24 1974-10-29 W Allbritton Hydraulic crushing machine
WO1980002241A1 (en) * 1979-04-20 1980-10-30 Inst Liteinogo Mash Mechanism for receipt of finished cores and moulds from the machine and their subsequent delivering
DE2953633C2 (en) * 1979-04-20 1985-01-17 Vsesojuznyj naučno-issledovatel'skij institut litejnogo mašinostroenija, litejnoj technologii i avtomatizacii litejnogo proizvodstva, Moskva Device for taking over finished cores and molded parts
EP0284841A1 (en) * 1987-04-02 1988-10-05 ROBERTS SINTO CORPORATION (a Michigan Corporation) Method and apparatus for loading and unloading tooling from a foundry machine

Similar Documents

Publication Publication Date Title
US2980265A (en) Transfer crane
US3743004A (en) Automatic molding plant operation method
US3570647A (en) Loading apparatus
US3625078A (en) Elevating table
US2332058A (en) Bottle handling machine
US2286994A (en) Molding apparatus
US3540608A (en) Core receiver assembly
GB1571051A (en) Tray stacking and unstacking apparatus
US3123871A (en) Smd mxlds and castings
SE437368B (en) GLASBLASNINGSMASKIN
US3599778A (en) Core receiver assembly
US3083421A (en) Automatic installation for the continuous fabrication of sand molds and castings
US3301375A (en) Cigarette feeding arrangements
US1842912A (en) Leer loader
US2226588A (en) Blank feeding mechanism
US1490076A (en) Pallet-car loading and unloading
US2591682A (en) Work-immersion machine with vertically and laterally movable rail section
US2959267A (en) Transfer machines
CN107336873A (en) A kind of bottle automatic bag sheathing device
US2893534A (en) Panner for twisted bread
CN109051559A (en) It is a kind of for carrying the conveying device of express mail
US3113682A (en) Apparatus for adjusting the spacing of spaced rows of articles upon a support
USRE24072E (en) davis r
US1907971A (en) Circuitous elevator
US1519844A (en) Mold conveyer

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERTS CORPORATION, 3001 WEST MAIN ST., LANSING,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ACME-CLEVELAND CORPORATION;REEL/FRAME:004402/0613

Effective date: 19850426

AS Assignment

Owner name: ROBERTS CORPORATION, 3001 WEST MAIN STREET, LANSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ACME-CLEVELAND CORPORATION;REEL/FRAME:004410/0921

Effective date: 19850426