US3622536A - Exothermic hot tops - Google Patents

Exothermic hot tops Download PDF

Info

Publication number
US3622536A
US3622536A US768554A US3622536DA US3622536A US 3622536 A US3622536 A US 3622536A US 768554 A US768554 A US 768554A US 3622536D A US3622536D A US 3622536DA US 3622536 A US3622536 A US 3622536A
Authority
US
United States
Prior art keywords
asbestos
percent
dust
ballmill
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US768554A
Inventor
Ronald W Ruddle
Michael Yendrek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foseco International Ltd
Original Assignee
Foseco International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foseco International Ltd filed Critical Foseco International Ltd
Application granted granted Critical
Publication of US3622536A publication Critical patent/US3622536A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns

Definitions

  • ABSTRACT A composition for lining the inner surface of a casting mould for casting metal or of a hot top for such a mould which comprises ballmill dust, a fluoride, a binder resin and a specific combination of inorganic fibers.
  • This invention relates to the provision of linings for moulds used to make ingots or castings from molten metal, and for hot tops, risers and the like used with such moulds. It further relates to the new compositions which are employed in the production of such linings.
  • molten metal may feed to the body of the ingot or casting to compensate for the shrinkage which occurs on cooling since otherwise the ingot or casting may be formed with internal cavities or fissures.
  • the usual method is to provide that the solidification of the head metal in an ingot mould or in a hot top provided thereon, or in the risers and feeder heads of a casting mould is delayed, so providing a reservoir of molten metal which may feed to the ingot or casting proper.
  • This delay may be achieved by setting up a barrier to the loss of heat from the head metal by lining the head of the ingot mould or the hot top, risers, feeder heads and the like with a refractory heat-insulating composition, or by using a composition of which the ingredients are ignited by the heat of the molten metal to react exothermically.
  • shaped bodies or linings made of compositions which contain predominantly a refractory filler material, usually with minor amounts of an organic fibrous material and of a binding medium.
  • the organic fibrous material is usually a paper pulp, e.g. repulped old newsprint.
  • the binding medium may be based on any of a wide variety of materials, e.g. a natural or synthetic resin or glue, e.g. a silicone resin, ureaor phenyl-fonnaldehyde resin, a cellulose glue, sulfite lye, or sodium-silicate.
  • the refractory material used in the said compositions is generally a siliceous material such as sand, quartz, quartzite, inorganic silicate, or may be a material such as dolomite.
  • the refractory material may also include a fibrous refractory, e.g. asbestos, glass fiber, or rock wool.
  • Ballmill dust is obtained from the skimming and drosses formed during the melting of aluminum and aluminum alloys in an oxygen-containing atmosphere. Usually the skimmings and drosses pass to the secondary melters for pulverizing by ballmilling or grinding. In some cases the dross may need to be reduced in size in a jawcrusher but generally it is sufficiently fine for ballmilling without any pretreatment. After ballmilling it is usual to screen the residue. The coarse material (normally or +16 mesh) contains most of the metallic aluminum and is removed for remelting. The fine material, which is called ballmill dust, may be washed by the producer in order to remove water-soluble salts.
  • the dross usually is composed mainly of aluminum oxide (resulting from the oxidation of the molten metal) and particles of aluminum or aluminum alloy, together with a few percent each of metallic contaminants such as copper, silicon, iron, zinc, magnesium, and/or their compounds.
  • Some silica is generally present as are fluorides and chlorides of sodium, potassium, and/or other metals (from fluxing ingredients and their various reaction products).
  • Aluminum nitride is also usually present, resulting from the reaction between aluminum and atmospheric nitrogen.
  • the fluxes used with aluminum or mixtures contain one or more of the following components: sodium fluoride, sodium chloride, sodium sulfate, potassium chloride and cryolite.
  • the ballmill dust may contain up to 50 percent sodium chloride and values of 10 to percent total fluorides (watersoluble and water-insoluble) have been noted.
  • the residual aluminum content of ballmilling dust depends therefore on the source and on the type of processing it receives but normally is between 10 and 30 percent. It may however contain as little as 5 or as much as 60 or 70 percent metallic aluminum. For optimal exothermic performance when pouring ferrous metals, it is preferred that the ballmill dust contain from about 5 to about 45 weight percent aluminum metal (e.g. about 10 to 25 percent), and accordingly it may in some instances be desirable to fortify aluminum-lean dust with blown or ground aluminum metal. With nonferrous metal casting, a higher aluminum content may be desirable.
  • ballmill dust used herein means a product as thus defined.
  • a composition which has been proposed for lining the inner surface of a casting mould for casting metal or of a hot top for such a mould comprises a predominant amount (i.e., at least about 50 percent) of ballmill dust, advantageously together with about 2 to 30 percent by weight of organic fibrous material, about I to 10 percent by weight of a binding medium and optionally from about 1 percent up to 10 percent fibrous refractory material.
  • Preferred compositions are those containing 78 to 94 percent ballmill dust, 3 to 9 percent of organic fibrous material and l to 8 percent of binding agent.
  • the organic material and the binding agent may be any of those referred to above or mixtures thereof.
  • a suitable product of the type may be formulated as follows:
  • composition so formulated does however suffer from occasional deficiencies in the form of boiling when contacted by molten metal. In extreme cases, this may cause porosity in the riser and even in the casting and result in the scrapping of the casting.
  • the boiling appears to be caused by the combination in the product of moderate permeability (12 to 20 AFS units) and a moderately high-volatile content of the order of 10 percent.
  • a composition suitable for lining the inner surface of a casting mould for casting metal or of a hot top for such a mould which comprises, by weight, 1.5 to 10 percent of an amosite asbestos I of average fiber length not exceeding 2 inches, 1.5 to 10 percent of a chrysotile asbestos II or slag wool, or both, of average fiber length equal to or greater than asbestos 1, -5 percent a chrysotile asbestos III which is of average fiber length less than that of the Asbestos l, a binder resin in a proportion not exceeding percent, 0 to 10 percent of a fluoride and the balance, being more than 50 percent, of ballmill dust, the total inorganic fiber content of this composition being at most percent by weight.
  • an essential characteristic of the present invention is the combination of inorganic fibers as set forth. It will be observed that the inorganic fiber content essentially includes Amosite asbestos l and either slag wool or a Chrysotile Asbestos II. It is to be observed that satisfactory results are not obtained by using for the second (longer fiber) ingredient, a long fiber amosite asbestos. These may be as follows:
  • ASBESTOS I Amosite Asbestos Composition: 5.5 FeO, l.5 MgO, 8 SiO,, H 0
  • Grade 8-33 Fiber length-not greater than 2 inches. Open enough to eliminate clumps. Grades AW, A10 or S33 of North American Asbestos Corporation are satisfactory. Grade 8-33 has the following grading:
  • Fiber lengths may vary from one-eighth to 1% inches.
  • ASBESTOS ll Chrysotile Asbestos Composition: 3MgO, 2SiO,, 2H,O
  • Grade 4T of Carey-Canadian Mining Ltd. is very satisfactory. It has an average fiber length greater than 2 inches. It has a grading of:
  • ASBESTOS lll Chrysotile Asbestos The variety known as chrysotile asbestos shorts e.g. that sold as Grade 7D of Carey Canadian Mining Ltd., is very suitable. It has an average fiber length less than 2 inches and is graded:
  • the fluoride used is preferably calcium fluoride but any other fluoride may alternatively be employed.
  • composition of the ballmill dust preferably used in the practice of the invention may vary widely, e.g. within the ranges shown below:
  • the composition contains approximately 15-45 percent aluminum, about 1 percent chloride and not much more than 0.1 percent each of zinc and lead.
  • a minimum aluminum content of 15 percent seems to provide a sufficiently intensive reaction to make feeding of steel castings efficient in riser sizes down to about a 3-inch diameter.
  • improved efficiency can be obtained by using higher aluminum contents in the feeding of both ferrous and nonferrous alloy castings.
  • the advantage of higher aluminum contents is most marked with the smaller diameter risers, but advantage is to be expected with all sizes.
  • Impurities such as zinc, chloride, and lead are detrimental in that they cause the evolution of excessive or toxic fumes during combustion of the product. They do not effect the resultant castings however.
  • the presence of some fluoride is beneficial since it increases the sensitivity of the mixture; for example, the addition of 2 percent sodium fluoride (one-half percent in the finished product) results in improved burning especially on small diameter risers.
  • the ballmill dust should preferably not contain large particles of dross since, if included, these tend to increase the density of the final product, and reduce the efficiency of the aluminum combustion.
  • the slabs or sleeves may conveniently be formed by a slurry technique as follows:
  • the ingredients of the composition are made up to an aqueous slurry.
  • a small quantity of a surfactant known per se is included in the composition to facilitate this.
  • the slurry is charged into a vessel having a perforate wall or walls and pressure or vacuum is applied to cause the slurry to be urged against the perforate walls.
  • the liquid medium of the slurry passes through the perforate walls as effluent and the solid constituents are compacted against the perforate walls as layers of desired thickness.
  • the mode of action is that of a normal domestic spin-dryer.
  • the internal diameter of the sleeve formed may only be controlled by the amount of slurry added to the mould, and the solids content thereof.
  • the solids content of the slurry is preferably 10 to 50 percent, most preferably 30 to 35 percent.
  • Typical spinning times and speeds are 1,200 to 1,400 r.p.m. for 1.5 to 3 minutes.
  • the compacted sleeves may be withdrawn from the mould, and are fairly easily handleable.
  • the porous former connected to a suction tube is introduced into a tank of the slurry, and liquid medium sucked through the former, and out through the tube, the solids of the slurry thus depositing on the outside of the former.
  • economic considerations usually limit the use of this method to small slabs or sleeves. Water extraction times tend to be longer than with spin-forming. It is preferred to use a slurry of 15 to 20 percent solids content, lower concentrations of solids requiring longer water extraction times. This method is of great value where, for example, the internal diameter of a sleeve must be formed to close dimensional tolerances.
  • the slabs or sleeves Before use the slabs or sleeves must be dried. This is generally effected by drying on vented core plates in normal ovens through which air is passed.
  • any binder which is soluble in the liquid medium will be largely lost in the effluent (from which if desired it may be recovered) and it is therefore necessary to employ sufficient binder to ensure that enough is present in the liquid, which is retained by the compacted solid constituents to provide the necessary composition as earlier described.
  • a water-insoluble, thermoscreening binder may be employed in solid binder form (e.g. phenolic resins in a suitable state of polymerization). In such case losses with the effluent will be negligible.
  • a mixture of insoluble and soluble binders may be employed.
  • the ballmill dust used contain not more than 50 to 60 percent of material of particle size 200 mesh (Tyler) since slurries made using dust with these or even higher fine dust contents tend to be nonporous and tend to require longer spinning or compacting to extract the water. Where long water extraction times are acceptable, however, materials containing up to 85 percent, or over, of 200 mesh particles may be used.
  • a composition suitable for lining the inner surface of a casting mould for casting metal or a hot top for such a mould which comprises 1.5 to 10 percent of an amosite asbestos I of average fiber length not exceeding 2 inches, 1.5 to 10 percent of a fibrous material selected from the class consisting of a chrysotile asbestos II slag wool and mixtures thereof, of average fiber length equal to or greater than amosite asbestos l, 0 to 5 percent of a chrysotile asbestos III which is of average fiber length less than that of the amosite asbestos I, a binder Ballmill dust 780% Urea-formaldehyde resin 20% Phenol-formaldehyde resin 30% Amosite asbestos of average fiber length not exceeding 2 inches 43% Slag wool 4.9% Chrysotile asbestos of average fiber length 2 inches or more 4.2% Calcium fluoride 3.0%
  • a composition according to claim 1 having substantially the following composition Ballmill Dust 8l% Phenol-formaldehyde Resin 3% Urea-formaldehyde Resin 2% Fluorspar 3% Amosite asbestos l 6% Slag wool 5% 4.
  • a composition according to claim 1 having substantially the following composition Ballrnill Dust 78% Phenol-fonnaldehyde Resin 3% Urea-formaldehyde Resin 2% Amosite asbestos l 6% Fluorspar 3% Slag wool 5% Chrysotile short fiber asbestos lll IF I

Abstract

A composition for lining the inner surface of a casting mould for casting metal or of a hot top for such a mould which comprises ballmill dust, a fluoride, a binder resin and a specific combination of inorganic fibers.

Description

United States Patent Inventors Ronald W. Ruddle Rocky River; Michael Yendrzek, Cleveland, both of Ohio Appl. No. 768,554 Filed Oct. 17, 1968 Patented Nov. 23, 1971 Assignee Foseco International Limited Birmingham, England EXOTHERMIC HOT TOPS 4 Claims, No Drawings U.S. Cl 260/38, 164/53, 249/197, 249/199, 260/39 R Int. Cl C08g 51/10, C08k 1/14 Field of Search 249/197,
OTHER REFERENCES Rose, The Condensed Chemical Dictionary (1966), pages 62, 86, 87, & 632.
Primary Examiner-Morris Liebman Assistam Examiner-S. M. Person Attorney-Wolfe, Hubbard, Leydig, Voit & Osann, Ltd.
ABSTRACT: A composition for lining the inner surface of a casting mould for casting metal or of a hot top for such a mould which comprises ballmill dust, a fluoride, a binder resin and a specific combination of inorganic fibers.
EXOTHERMIC nor TOPS This invention relates to the provision of linings for moulds used to make ingots or castings from molten metal, and for hot tops, risers and the like used with such moulds. It further relates to the new compositions which are employed in the production of such linings.
In the production of ingots and castings from molten metal it is necessary to provide that molten metal may feed to the body of the ingot or casting to compensate for the shrinkage which occurs on cooling since otherwise the ingot or casting may be formed with internal cavities or fissures. The usual method is to provide that the solidification of the head metal in an ingot mould or in a hot top provided thereon, or in the risers and feeder heads of a casting mould is delayed, so providing a reservoir of molten metal which may feed to the ingot or casting proper. This delay may be achieved by setting up a barrier to the loss of heat from the head metal by lining the head of the ingot mould or the hot top, risers, feeder heads and the like with a refractory heat-insulating composition, or by using a composition of which the ingredients are ignited by the heat of the molten metal to react exothermically.
In recent years there have come into use, for the production of linings for the inner molten-metal-contacting surfaces of metal casting moulds, or of a hot top for such a mould, shaped bodies or linings made of compositions which contain predominantly a refractory filler material, usually with minor amounts of an organic fibrous material and of a binding medium. The organic fibrous material is usually a paper pulp, e.g. repulped old newsprint. The binding medium may be based on any of a wide variety of materials, e.g. a natural or synthetic resin or glue, e.g. a silicone resin, ureaor phenyl-fonnaldehyde resin, a cellulose glue, sulfite lye, or sodium-silicate.
The refractory material used in the said compositions is generally a siliceous material such as sand, quartz, quartzite, inorganic silicate, or may be a material such as dolomite. The refractory material may also include a fibrous refractory, e.g. asbestos, glass fiber, or rock wool.
It has also been proposed to modify such compositions by the inclusion of ball mill dust.
Ballmill dust is obtained from the skimming and drosses formed during the melting of aluminum and aluminum alloys in an oxygen-containing atmosphere. Usually the skimmings and drosses pass to the secondary melters for pulverizing by ballmilling or grinding. In some cases the dross may need to be reduced in size in a jawcrusher but generally it is sufficiently fine for ballmilling without any pretreatment. After ballmilling it is usual to screen the residue. The coarse material (normally or +16 mesh) contains most of the metallic aluminum and is removed for remelting. The fine material, which is called ballmill dust, may be washed by the producer in order to remove water-soluble salts.
The dross usually is composed mainly of aluminum oxide (resulting from the oxidation of the molten metal) and particles of aluminum or aluminum alloy, together with a few percent each of metallic contaminants such as copper, silicon, iron, zinc, magnesium, and/or their compounds. Some silica is generally present as are fluorides and chlorides of sodium, potassium, and/or other metals (from fluxing ingredients and their various reaction products). Aluminum nitride is also usually present, resulting from the reaction between aluminum and atmospheric nitrogen.
Generally the fluxes used with aluminum or mixtures contain one or more of the following components: sodium fluoride, sodium chloride, sodium sulfate, potassium chloride and cryolite.
The ballmill dust may contain up to 50 percent sodium chloride and values of 10 to percent total fluorides (watersoluble and water-insoluble) have been noted.
Sodium aluminate, sodium carbonate and the oxides of the alloying elements are also often found.
;Generally speaking the less developed the aluminum industry in a particular country, the higher quality the ballmill dust available in it, e.g. there is a considerable quantity of ballmill dust containing up to 40 percent aluminum available in Spain. This is due to both the limited use of fluxes, leading to higher aluminum contents and low chloride and fluoride content of the dusts, and to restricted refining capacity. In the United Kingdom any ballmill dust is refined to extract aluminum metal if its metal content exceeds 30 percent. By comparison, ballmill dusts containing over 60 percent metallic aluminum are by no means uncommon in other European countries.
The residual aluminum content of ballmilling dust depends therefore on the source and on the type of processing it receives but normally is between 10 and 30 percent. It may however contain as little as 5 or as much as 60 or 70 percent metallic aluminum. For optimal exothermic performance when pouring ferrous metals, it is preferred that the ballmill dust contain from about 5 to about 45 weight percent aluminum metal (e.g. about 10 to 25 percent), and accordingly it may in some instances be desirable to fortify aluminum-lean dust with blown or ground aluminum metal. With nonferrous metal casting, a higher aluminum content may be desirable.
It is to be understood that the term ballmill dust used herein means a product as thus defined.
Thus, a composition which has been proposed for lining the inner surface of a casting mould for casting metal or of a hot top for such a mould comprises a predominant amount (i.e., at least about 50 percent) of ballmill dust, advantageously together with about 2 to 30 percent by weight of organic fibrous material, about I to 10 percent by weight of a binding medium and optionally from about 1 percent up to 10 percent fibrous refractory material. Preferred compositions are those containing 78 to 94 percent ballmill dust, 3 to 9 percent of organic fibrous material and l to 8 percent of binding agent. The organic material and the binding agent may be any of those referred to above or mixtures thereof.
A suitable product of the type may be formulated as follows:
Ballrnill dust 85.00% Urea/formaldehyde resin [15% Phenolformaldehyde resin 2.50% Arnosite asbestos 1.75% Paper pulp 650% Calcium fluoride 3.00%
(Amosite asbestos used in this composition is of average fiber length now exceeding 2 inches).
It is found however that a composition so formulated does however suffer from occasional deficiencies in the form of boiling when contacted by molten metal. In extreme cases, this may cause porosity in the riser and even in the casting and result in the scrapping of the casting.
The boiling appears to be caused by the combination in the product of moderate permeability (12 to 20 AFS units) and a moderately high-volatile content of the order of 10 percent.
In addition the aforesaid product also suffers from another drawback. If sleeves made from the composition set out above are rammed up in a sand mould which is later subjected to drying for up to 24 hours at temperatures ranging up to 700 F., the paper in the product tends to char, thus weakening the sleeve to the point where virtually all strength is lost and the sleeve rendered unusable.
It has now been found that the foregoing disadvantages can be overcome by the use of a composition in which the paper pulp is omitted but the inorganic fiber content is increased and is made up of both short and long fiber materials. Since different types of asbestos fiber may be used in this invention the various forms are hereinafter referred to as Asbestos I, Asbestos II and Asbestos III and the characteristics of these are hereinafter set forth.
According to the present invention therefore there is provided a composition suitable for lining the inner surface of a casting mould for casting metal or of a hot top for such a mould, which comprises, by weight, 1.5 to 10 percent of an amosite asbestos I of average fiber length not exceeding 2 inches, 1.5 to 10 percent of a chrysotile asbestos II or slag wool, or both, of average fiber length equal to or greater than asbestos 1, -5 percent a chrysotile asbestos III which is of average fiber length less than that of the Asbestos l, a binder resin in a proportion not exceeding percent, 0 to 10 percent of a fluoride and the balance, being more than 50 percent, of ballmill dust, the total inorganic fiber content of this composition being at most percent by weight.
An essential characteristic of the present invention is the combination of inorganic fibers as set forth. It will be observed that the inorganic fiber content essentially includes Amosite asbestos l and either slag wool or a Chrysotile Asbestos II. It is to be observed that satisfactory results are not obtained by using for the second (longer fiber) ingredient, a long fiber amosite asbestos. These may be as follows:
ASBESTOS I Amosite Asbestos: Composition: 5.5 FeO, l.5 MgO, 8 SiO,, H 0
Fiber length-not greater than 2 inches. Open enough to eliminate clumps. Grades AW, A10 or S33 of North American Asbestos Corporation are satisfactory. Grade 8-33 has the following grading:
+4 mesh 10 oz./lb.
+10 mesh 3 oz./lb.
l0 mesh 3 oz./lb. Fiber lengths may vary from one-eighth to 1% inches.
ASBESTOS ll Chrysotile Asbestos: Composition: 3MgO, 2SiO,, 2H,O
Grade 4T of Carey-Canadian Mining Ltd. is very satisfactory. It has an average fiber length greater than 2 inches. It has a grading of:
+4 mesh 2 oz./lb. +10 mesh 10 oz./lb. l0 mesh 4 oz./lb.
ASBESTOS lll Chrysotile Asbestos: The variety known as chrysotile asbestos shorts e.g. that sold as Grade 7D of Carey Canadian Mining Ltd., is very suitable. It has an average fiber length less than 2 inches and is graded:
+10 mesh 5 oz./lb. l0 mesh 11 oz./lb. Slag Wool: (optional ingredient) Most grades of pelletized wool satisfactory. Thermofiber packing wool of U.S. Gypsum Corporation, Federal Specification: HH-l-521C, Type 3 is very satisfacto- The fluoride used is preferably calcium fluoride but any other fluoride may alternatively be employed.
The following is an example of a specific composition according to the invention:
Ballmill dust 78.0% Urea-formaldehyde resin 2.0% Phenol-formaldehyde resin 3.0% Amosite asbestos l 4.9% Slag wool 4.9% Chrysotile Asbestos ll 4.2% Calcium fluoride 3.0%
The composition of the ballmill dust preferably used in the practice of the invention may vary widely, e.g. within the ranges shown below:
Percent Aluminum 5 to 70 Aluminum oxide 15 to 60 line 0 to 5 Chloride 0 to 30 Lead 0 to l Most preferably, however, the composition contains approximately 15-45 percent aluminum, about 1 percent chloride and not much more than 0.1 percent each of zinc and lead. A minimum aluminum content of 15 percent seems to provide a sufficiently intensive reaction to make feeding of steel castings efficient in riser sizes down to about a 3-inch diameter. However, improved efficiency can be obtained by using higher aluminum contents in the feeding of both ferrous and nonferrous alloy castings. Generally speaking, the advantage of higher aluminum contents is most marked with the smaller diameter risers, but advantage is to be expected with all sizes.
Impurities such as zinc, chloride, and lead are detrimental in that they cause the evolution of excessive or toxic fumes during combustion of the product. They do not effect the resultant castings however. The presence of some fluoride is beneficial since it increases the sensitivity of the mixture; for example, the addition of 2 percent sodium fluoride (one-half percent in the finished product) results in improved burning especially on small diameter risers.
The ballmill dust should preferably not contain large particles of dross since, if included, these tend to increase the density of the final product, and reduce the efficiency of the aluminum combustion.
The slabs or sleeves may conveniently be formed by a slurry technique as follows: The ingredients of the composition are made up to an aqueous slurry. Advantageously, a small quantity of a surfactant known per se is included in the composition to facilitate this. The slurry is charged into a vessel having a perforate wall or walls and pressure or vacuum is applied to cause the slurry to be urged against the perforate walls. The liquid medium of the slurry passes through the perforate walls as effluent and the solid constituents are compacted against the perforate walls as layers of desired thickness.
One of the most convenient methods of effecting this process when making sleeves is to spin a porous mould containing the slurry at high speed, thereby to drive the water from the slurry; the mode of action is that of a normal domestic spin-dryer. By this method, the internal diameter of the sleeve formed may only be controlled by the amount of slurry added to the mould, and the solids content thereof. In this connection the solids content of the slurry is preferably 10 to 50 percent, most preferably 30 to 35 percent. Typical spinning times and speeds are 1,200 to 1,400 r.p.m. for 1.5 to 3 minutes. The compacted sleeves may be withdrawn from the mould, and are fairly easily handleable.
In another method the porous former connected to a suction tube is introduced into a tank of the slurry, and liquid medium sucked through the former, and out through the tube, the solids of the slurry thus depositing on the outside of the former. However, economic considerations usually limit the use of this method to small slabs or sleeves. Water extraction times tend to be longer than with spin-forming. It is preferred to use a slurry of 15 to 20 percent solids content, lower concentrations of solids requiring longer water extraction times. This method is of great value where, for example, the internal diameter of a sleeve must be formed to close dimensional tolerances.
Before use the slabs or sleeves must be dried. This is generally effected by drying on vented core plates in normal ovens through which air is passed.
It must be appreciated that where the foregoing technique is employed any binder which is soluble in the liquid medium will be largely lost in the effluent (from which if desired it may be recovered) and it is therefore necessary to employ sufficient binder to ensure that enough is present in the liquid, which is retained by the compacted solid constituents to provide the necessary composition as earlier described. However, a water-insoluble, thermoscreening binder may be employed in solid binder form (e.g. phenolic resins in a suitable state of polymerization). In such case losses with the effluent will be negligible. A mixture of insoluble and soluble binders may be employed.
Further, it is desirable that the ballmill dust used contain not more than 50 to 60 percent of material of particle size 200 mesh (Tyler) since slurries made using dust with these or even higher fine dust contents tend to be nonporous and tend to require longer spinning or compacting to extract the water. Where long water extraction times are acceptable, however, materials containing up to 85 percent, or over, of 200 mesh particles may be used.
The following are examples of suitable recipes especially suitable for use in forming lining slabs according to the rotary vacuum-forming technique described above:
EXAMPLE I BallmillDust 8l% Phenol-formaldehyde Resin 3% Urea-formaldehyde Resin 2% Fluorspar 3% Arnosite asbestos l 6% Slag W] 5% EXAMPLE ll Ballmill Dust 78% Phenol-formaldehyde Resin 3% U reaformaldehyde Resin 2% Amosite asbestos l 6% Flunrspar 3% Slag wool 5% Chrysotile short fiber asbestos Ill 3% We claim as our invention:
1. A composition suitable for lining the inner surface of a casting mould for casting metal or a hot top for such a mould, which comprises 1.5 to 10 percent of an amosite asbestos I of average fiber length not exceeding 2 inches, 1.5 to 10 percent of a fibrous material selected from the class consisting of a chrysotile asbestos II slag wool and mixtures thereof, of average fiber length equal to or greater than amosite asbestos l, 0 to 5 percent of a chrysotile asbestos III which is of average fiber length less than that of the amosite asbestos I, a binder Ballmill dust 780% Urea-formaldehyde resin 20% Phenol-formaldehyde resin 30% Amosite asbestos of average fiber length not exceeding 2 inches 43% Slag wool 4.9% Chrysotile asbestos of average fiber length 2 inches or more 4.2% Calcium fluoride 3.0%
3. A composition according to claim 1 having substantially the following composition Ballmill Dust 8l% Phenol-formaldehyde Resin 3% Urea-formaldehyde Resin 2% Fluorspar 3% Amosite asbestos l 6% Slag wool 5% 4. A composition according to claim 1 having substantially the following composition Ballrnill Dust 78% Phenol-fonnaldehyde Resin 3% Urea-formaldehyde Resin 2% Amosite asbestos l 6% Fluorspar 3% Slag wool 5% Chrysotile short fiber asbestos lll IF I

Claims (3)

  1. 2. A composition according to claim 1 having substantially the following composition Ballmill dust 78.0% Urea-formaldehyde resin 2.0% Phenol-formaldehyde resin 3.0% Amosite asbestos of average fiber length not exceeding 2 inches 4.9% Slag wool 4.9% Chrysotile asbestos of average fiber length 2 inches or more 4.2% Calcium fluoride 3.0%
  2. 3. A composition according to claim 1 having substantially the following composition Ballmill Dust 81% Phenol-formaldehyde Resin 3% Urea-formaldehyde Resin 2% Fluorspar 3% Amosite asbestos I 6% Slag wool 5%
  3. 4. A composition according to claim 1 having substantially the following composition Ballmill Dust 78% Phenol-formaldehyde Resin 3% Urea-formaldehyde Resin 2% Amosite asbestos I 6% Fluorspar 3% Slag wool 5% Chrysotile short fiber asbestos III 3%
US768554A 1968-10-17 1968-10-17 Exothermic hot tops Expired - Lifetime US3622536A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76855468A 1968-10-17 1968-10-17

Publications (1)

Publication Number Publication Date
US3622536A true US3622536A (en) 1971-11-23

Family

ID=25082831

Family Applications (1)

Application Number Title Priority Date Filing Date
US768554A Expired - Lifetime US3622536A (en) 1968-10-17 1968-10-17 Exothermic hot tops

Country Status (1)

Country Link
US (1) US3622536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955721A (en) * 1974-09-12 1976-05-11 Bate Micheal Donald Expendable tundish liner
US4088624A (en) * 1975-12-26 1978-05-09 Societe D'applications De Procedes Industriels Et Chimiques S.A.P.I.C. Self-hardening molding compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297296A (en) * 1962-10-29 1967-01-10 Sandvikens Jernverks Ab Hot top composition for casting molds
US3326273A (en) * 1965-12-28 1967-06-20 Foseco Int Exothermic hot top

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297296A (en) * 1962-10-29 1967-01-10 Sandvikens Jernverks Ab Hot top composition for casting molds
US3326273A (en) * 1965-12-28 1967-06-20 Foseco Int Exothermic hot top

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Rose, The Condensed Chemical Dictionary (1966), pages 62, 86, 87, & 632. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955721A (en) * 1974-09-12 1976-05-11 Bate Micheal Donald Expendable tundish liner
US4088624A (en) * 1975-12-26 1978-05-09 Societe D'applications De Procedes Industriels Et Chimiques S.A.P.I.C. Self-hardening molding compositions

Similar Documents

Publication Publication Date Title
US3326273A (en) Exothermic hot top
US4041199A (en) Refractory heat-insulating materials
AU677312B2 (en) A mould and a method for the casting of metals and refractory compositions for use therein
Burns The Foseco foundryman's handbook: facts, figures and formulae
EP0244133A2 (en) Exothermic compositions
US3567667A (en) Mould linings composition comprising ball mill dust and calcium silicate,aluminum silicate or calcium alumino silicate fibrous refractory material
US3347721A (en) Dry exothermic composition containing fibrous material having oxidizer salt absorbedtherein
EP0507463B1 (en) Filters for light metals
US3934637A (en) Casting of molten metals
US3810506A (en) Molding for use in steel ingot making by bottom pouring and method of making steel ingot
US3622536A (en) Exothermic hot tops
US4869468A (en) Alumina and MgO preheatable insulating refractory liners and methods of using
EP0030940B1 (en) Production of metal castings
US3770466A (en) Heat-insulating shaped compositions
US4696455A (en) Zircon and MgO preheatable insulating refractory liners and methods of use thereof
US3848655A (en) Method of making a steel ingot
US2802732A (en) Slag producing material and metallurgical method employing same to recover metal values from steel
US4040469A (en) Casting of molten metals
US3344838A (en) Method for producing an exothermic lining for ingot and foundry molds and hot tops
US3732177A (en) Exothermic insulating compositions comprising glass polishing residue
EP0119676B1 (en) Refractory, heat-insulating articles
CN111848144A (en) Titanium-containing taphole repairing stemming and preparation method thereof
US4168736A (en) A method of repairing ferrous metal bodies
US3706682A (en) Hot tops and mixture of materials therefor
JPH02267234A (en) Filter medium for light metal