US3620869A - Method of making tubes - Google Patents

Method of making tubes Download PDF

Info

Publication number
US3620869A
US3620869A US842298A US3620869DA US3620869A US 3620869 A US3620869 A US 3620869A US 842298 A US842298 A US 842298A US 3620869D A US3620869D A US 3620869DA US 3620869 A US3620869 A US 3620869A
Authority
US
United States
Prior art keywords
tube
ply
strip
mandrel
liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US842298A
Inventor
Paul W Stump
North Olmsted
James A Huber
John M Lipinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Specialty Packaging Group Inc
Original Assignee
Clevepak Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clevepak Corp filed Critical Clevepak Corp
Application granted granted Critical
Publication of US3620869A publication Critical patent/US3620869A/en
Assigned to CITIBANK, N.A. AS AGENT FOR CITIBANK, N.A., THE BANK OF NEW YORK BANK OF MONTREAL, AND FIRST WISCONSIN NATIONAL BANK OF MILWAUKEE reassignment CITIBANK, N.A. AS AGENT FOR CITIBANK, N.A., THE BANK OF NEW YORK BANK OF MONTREAL, AND FIRST WISCONSIN NATIONAL BANK OF MILWAUKEE MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: CLEVEPAK CORPORATION A DE CORP.
Assigned to CITIBANK, N.A., AS AGENT FOR ITSELF; BANK OF NEW YORK, THE; BANK OF MONTREAL AND FIRST WISCONSIN NATIONAL BANK OF MILWAUKEE reassignment CITIBANK, N.A., AS AGENT FOR ITSELF; BANK OF NEW YORK, THE; BANK OF MONTREAL AND FIRST WISCONSIN NATIONAL BANK OF MILWAUKEE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLEVEPAK CORPORATION, A CORP.OF DE
Assigned to SPECIALTY PACKAGING GROUP, INC., reassignment SPECIALTY PACKAGING GROUP, INC., ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CLEVEPAK CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D3/00Rigid or semi-rigid containers having bodies or peripheral walls of curved or partially-curved cross-section made by winding or bending paper without folding along defined lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/581Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/16Rigid pipes wound from sheets or strips, with or without reinforcement

Definitions

  • the tube is continuous] formed and an interior rotective coating is concur- [56] Rehmnm Cited rentl y applied to the tube as an :irless spray of coating materi- 1 UNITED STATES PATENTS a1 comprising 100 percent solids in a liquid state, which 2,554,722 5/1951 Waters 229/4.5 X hardens substantially on contact with the tube.
  • SHEET 1 or 2 IMVENTOES PAUL w. s'rump JAMEfi A. HUGE/2 JOHN M. L/P/N5K/ ATTORNEYS PATENTEDunv 16 I9 WHOMI 10.1.
  • SHEET 2 [IF 2 WBW MW u p o W UWwT MMM BYQVWI a.
  • the present invention relates to helically wound tubelike articles, such as containers, and methods of and apparatus for forming such articles and coating the interiors thereof.
  • Tubes formed by helically wound sheetlike plies have a wide variety of uses. If suitably sealed against leakage, such tubes are particularly useful as containers for various products, including liquids and the like, and especially foodstuffs.
  • such tubes are formed of paper plies, or like material, which individually lack high inherent strength. Adequate strength for specific purposes is obtained by the use of multiple plies of appropriate quality and thickness, and by the manner in which the tube is wound to produce a particular joint construction at adjacent ply edges. For example, skived joints and overlap joints are relatively strong, while butt joints are weak. However, paper with skived edges is expensive and overlapped joints are troublesome if covers must be seamed on the end of a tube, because of the double thickness of the tube wall at the overlap. Butt joints permit the use of less expensive paper and produce a uniform wall thickness, but in addition to being weaker can also be expected to leak if in direct contaet'with liquids or with products of high moisture content.
  • the present invention embodies a novel tube and manner of winding the same, providing an inherently tighter and stronger joint at the inner surface of the tube, and further embodies a novel method of applying a protective coating and sealant to the inner ply concurrently with the continuous formation of the tube.
  • the tube of this invention includes a plurality of plies, including a relatively thin inner ply or liner.
  • the tube is comprised of a thin inner ply, three thicker body plies and a thin cover ply, typically a label.
  • an inner ply is wound in a manner that interweaves an edge of the inner ply or liner between an otherwise typical butt joint of a surrounding ply, and which laps the opposite edge of the inner ply across the joint, within the tube.
  • the interwoven edge extends beyond the joint on the external surface of the surrounding ply and is adhered thereto, providing a second overlap.
  • a manufacturer can produce a helically wound tube of equal wall thickness to that of a convolutely wound tube, and which will be of essentially equal strength, but which can be manufactured by a continuous process and at a higher production rate.
  • Tubes of the type described are continuously formed by helically winding plies in strip form on a mandrel, and the formed portion is progressively advanced axially from the mandrel during winding.
  • an internal coating is applied to the tube downstream from the mandrel as an airless spray.
  • the coating material is a liquified material that will quickly solidify upon contact with the tube to form a substantially moisture impermeable coating that protects the inner ply and the joint thereof against leakage.
  • a wax or waxlike material or a blend of materials consisting entirely of solids, i.e., containing no vehicle or solvent and liquifiable at elevated temperatures, is especially suitable as a coating material.
  • the tube is formed on equipment constructed to insure that the coating material is maintained in a heated liquid state prior to spraying, and to insure that the tube is maintained sufficiently cool for the material to solidify quickly upon contact.
  • conduit portions supplying coating material to a spray head are locally heated and are thennally insulated from the forming mandrel and tube.
  • a principal object of the present invention is the provision of a new and improved tube of high strength and low cost and the provision of methods and apparatus for forming the tube and for applying an internal coating to a continuously formed tube.
  • FIG. I is a top plan view of apparatus for winding a tube embodying the present invention and for coating the interior of a tube as it is fonned;
  • FIG. 2 is a partial side elevational view, with parts removed, on an enlarged scale, of the apparatus of FIG. 1, showing a winding mandrel and spraying apparatus;
  • FIG. 3 is a diagrammatic elevational view of an intermediate stage of the winding of a tube embodying the present invention
  • FIG. 4 is a diagrammatic view similar to FIG 3 illustrating the manner in which a preferred embodiment of a tube is completely wound;
  • FIG. 5 is a transverse sectional view of a tube embodying the present invention, illustrating the construction and arrangement of the plies and helical joints between adjacent ply edges;
  • FIG. 6 is an enlarged fragmentary view of FIG. 5, showing constructional features.
  • FIGS. 1 and 2 A tube-forming apparatus 10 is illustrated in FIGS. 1 and 2.
  • the apparatus 10 includes a framelike base I] having parallel floor or bench engaging support members l2, l3 and lateral supporting frame structures l4, 15, shown diagrammatically.
  • the apparatus 10 also includes a tube winder head 16, a tube winder l7, and coating apparatus 20 for providing a coating on the inside of the tube formed by the apparatus 10.
  • the winder head 16 includes a support frame 21 (FIG. 2), extending upwardly from the base 11, and a stationary mandrel 22.
  • the mandrel 22 is a rigid, smooth-walled, tubular member about which a tube T is continuously formed.
  • the support frame 21 includes vertically extending frame members 23, 24 and a lateral platelike member 25 extending between the upper ends of the frame members 23, 24.
  • the winder head additionally includes a support surface 26 for the mandrel 22.
  • the mandrel 22 extends from the frame 21 and is secured at one end by set screws 30, 31 which are received in threaded openings in the lateral member 25 and extend into engagement with the mandrel, clamping it against a support surface 26.
  • the coating apparatus 20 is constructed to spray a protective coating material and sealant, e.g., a moisture barrier, upon the inside of a formed portion of a tube T adjacent the end of the mandrel 22.
  • Coating apparatus 20 includes a reservoir 33 for material to be sprayed, a valvelike control gun 34 communicating with the reservoir 33 through a conduit 35, and a spray nozzle 36 disposed at the projecting end of the mandrel 22 and connected to the control gun 34 by a nozzle extension tube 37. Material in the reservoir is either maintained under pressure or is pumped to the spray nozzle.
  • a preferred nozzle is stationary and produces a cone-shaped, 360 spray pattern, which, because the tube is continuously rotated and advanced at a constant speed during formation, thoroughly and uniformly coats the entire inside surface of the tube as the formed tube advances from the mandrel end.
  • the nozzle extension tube 37 is highly thermally conductive (e.g., in a preferred embodiment, it is constructed of copper and is supported within the mandrel 22 by end plugs 40, 41 attached at opposite ends of the mandrel 22, so that the mandrel 22 fonns a closed cylindrical chamber through which the tube 37 extends, as shown in FIG. 2.
  • Heat tape 38 e.g., electrical re sistance heating elements imbedded in a carrier strip, is wound about the extension tube 37 within the mandrel 22. Both the tube 37 and the tape 38 are encased in an asbestos tube 39 within the mandrel to insulate the mandrel from heat from the tube 37 and tape 38. The dead air space between the tube 39 and the mandrel also serve to insulate the mandrel from the hotter tube 37 and tape 38.
  • the tape 38 is connected to a source of electric current by leads, not shown. The method of coating the inside of a tube formed on the apparatus is described subsequently.
  • the tube winder 17 is schematically illustrated, is of conventional construction, and includes pulleys 45, 46 on opposite sides of the mandrel, around which a belt 47 is trained.
  • a continuous tube T is shown extending from the mandrel, being formed from a plurality of webs L, P1, P2, P3, and C that form plies, which, in helically wound form, constitute the tube.
  • the belt 47 includes one reach which extends directly between the pulleys and a second reach which is looped about the tube T.
  • FIGS. 1, 3 and 4 illustrate the manner in which the tube T is formed.
  • Thin webs L and C which respectively form an inner ply or liner and a label or cover ply, are supplied from one side of the mandrel 22, and thicker webs P1, P2, P3, which respectively form body plies of the tube are, for convenience, supplied from the opposite side of the mandrel.
  • thicker webs P1, P2, P3, which respectively form body plies of the tube are, for convenience, supplied from the opposite side of the mandrel.
  • specific relative dimensions and locations of the webs and adhesive areas must be established.
  • a critical relationship exists between the inner ply L and the first body ply Pl.
  • the remaining body plies or webs P2 and P3 are identical to ply P1 in size and shape.
  • the liner or first ply L is substantially thinner than the body ply P1 to minimize thickness variations of the tube where the inner ply overlaps at the helical joint J 1 formed at adjacent edges of the helically wound first ply. See FIGS. 3 and 6.
  • the first ply L is also substantially wider than the ply P1 and the two are supplied to the mandrel so that ply Pl centrally overlies liner L, establishing extending marginal portions L and L,,.
  • the outer surface of the liner L and both surfaces of the ply P1 are coated with adhesive.
  • the outer surface of ply Pl can be coated only adjacent the marginal portion L, of the liner to adhere the marginal portion L, in overlying relationship, since the second body ply is adhered by adhesive on its inner surface.
  • the marginal portion L, and an adjacent marginal portion of ply Pl overlap the marginal portion L, of the preceding turn of the liner L (See FIG. 3).
  • the marginal portion L also overlaps a part of the preceding turn of the first ply Pl.
  • Each successive turn of the ply Pl essentially butts against the edge of the preceding turn, spaced therefrom only by the thickness of the liner ply L that extends outwardly between the edges from beneath the successive turn and overlies the preceding turn at L This will be particularly apparent from the sectional view of the article shown in FIGS. 5 and 6.
  • At least one additional body ply P2 is wound over ply Pl, overlapping the joint J] for strength and itself having a butt joint to keep the thickness of the tube wall substantially uniform.
  • a third body ply P3 is applied in the same manner as the second ply and a thin cover or label ply C is applied with an overlap joint, all suitably glued to adhere to the preceding ply.
  • the marginal portion L, of the inner ply forms a lap joint J2 on the inside of the container, and the marginal portion L of the inner ply extends radially outward beneath the lap joint between the butt joint J1 of the first body ply P1, and then overlies the body ply Pl, being secured by adhesive.
  • This establishes a relatively long and tortuous path along which moisture must travel to get beyond the inner ply.
  • the interwoven structure of the joint J l is as strong as a lap or a skived joint.
  • the second body ply P2 overlies ply P1 and marginal portion L, of the inner ply, and has a butt joint J3 displaced from joint J l.
  • the third body ply P3 overlies the ply P2 and has a butt joint J4 displaced from the joint J3.
  • the cover ply C is a label and has a lap joint J5.
  • the inner ply and cover ply are quite thin with respect to the body plies and the total thickness of the tube wall and overlapping portions create only a small irregularity in the wall which will not interfere with the seaming of an end closure when the tube is cut into lengths and capped.
  • a coating W is shown on the inside surface of the liner L in FIG. 6.
  • a preferred embodiment of a tube T is comprised of an inner liner L of 4 point" paper, i.e., having a thickness of 0.004 inch; three body plies of 12 point" paper, i.e., having a thickness of 0.012 inch, and a label forming a cover ply of 2 point" paper.
  • the inner ply is fa ls-inches wide and the body plies and cover ply are each SA-inches wide, so that the extending marginal portions L,,, L, are each 96-inch wide.
  • the entire outside surface of the liner L and both opposite surface of the first body ply P1 are coated with adhesive.
  • the inside surface of each remaining ply is coated with adhesive.
  • Each ply is adhered to the preceding ply as the plies are wound on the mandrel and the tube advanced, in a conventional manner.
  • a protective coating such as a moisture barrier is sprayed through the stationary nozzle 36 of the continuously formed tube T as the tube is advanced from the mandrel 22.
  • a critical factor for an optimum process is the use of a coating material that consists of I00 percent solids at typical ambient temperatures to which the tube will be subjected, but which will liquify at temperatures somewhat above such ambient temperatures.
  • Wax e.g., wax systems, e.g., blends of waxes or wax and modifying agents such as resins have been found particularly suitable, and the material is heated in the reservoir 33 of thespray unit to a temperature above that at which it liquifies.
  • the elevated temperature is substantially maintained along the extension tube 37 of the spray unit by the heat tape 38 to assure that the material is liquid at the time it is emitted from the nozzle 36.
  • the coating material is supplied from the reservoir 33 at a high enough pressure to produce a relatively fine spray at the nozzle. without introducing or relying upon a flow of air in which to entrain the material. Such an airless spray reduces the tendency of the disbursed material to lose heat and solidify before it coats the tube. Even a flow of air that might be aspirated into the spray through an open mandrel is undesirable and the end plug 40 prevents air from being drawn into the tube.
  • a suitable coating material is a wax blend consisting of 50 percent by weight paraffin wax and 50 percent by weight microcrystalline wax.
  • the softness of this material is disadvantageous, in that it may transfer to the mandrel or cutters of the machinery.
  • This problem can be largely overcome by using 100 percent solids blends of waxes and compatible resins or polymers that can be liquified by heating to temperatures of 275 F. to 350 F., that solidify into tough, hard coatings.
  • a suitable blend of this type consists of 25 percent by weight ethylene/vinyl acetate resin, such as Elvax 250 manufactured and sold by E. l. du Pont de Nemours & Company and 75 percent by weight fully refined, l55 F. melting point, paraffin.
  • Ambient temperatures of the apparatus 10, especially the mandrel 22, and the tube T being formed, are kept below the temperature at which the coating material solidifies, in part by the insulating tube 39 and dead air space that surrounds both the extension tube 37 and heat tape 38.
  • the tube can be cut into lengths a very short distance from the spray nozzle, eliminating any need for intermediate curing or evaporating steps that might be necessary for other types of coating materials and their accompanying requirements of time, space and equipment.
  • the above process and the apparatus described provide both a new and improved tube construction and a new and improved manner of applying an internal coating to a continuously formed helically wound tube.
  • the tube itself has improved strength characteristics by virtue of the joint construction provided by the interwoven liner and first body ply, and the inner ply or liner is essentially impervious to liquid, not only because of the improved joint structure provided but also because of the internal wax coating. Because the coating material is 100 percent solids and is applied in liquid form as a hot airless spray, proper wetting and good coverage is assured. Maintenance of the tube at a lower temperature than that at which the coating material solidifies assures rapid hardening upon contact, facilitating a short processing line. This results in both an economical process and an improved product.
  • a method as defined in claim 1 further including the step of directing an airless spray of coating material consisting of percent solids in a liquid state onto the interior of a formed portion of said tube while the tube is advanced from said mandrel and maintaining said mandrel and formed portion of said tube at a temperature, lower than that of said coating material, at which the coating material will solidify.
  • a method as defined in claim 1 including the step of helically winding a third strip of substantially greater thickness than said first strip over both said second strip and said overlying marginal portion of said first strip, and forming a butt joint at adjacent side edges of said third strip.

Abstract

A helically wound tube comprised of sheetlike plies including a liner and a plurality of body plies. The liner and a first surrounding body ply are interwoven along a helical butt joint defined by adjacent edges of the surrounding body ply, and the liner forms a helical lap joint. The tube is continuously formed and an interior protective coating is concurrently applied to the tube as an airless spray of coating material comprising 100 percent solids in a liquid state, which hardens substantially on contact with the tube.

Description

United States Patent [72] Inventors Paul W. Stump 3,156,401 7 1 H1964 Krause 229/4.5 North Olmsted; 3,247,869 4/1966 Boeyershausen et al. 229/45 X James A. Huber, Strongsville; John M. 3,327,596 6/1967 Lee et a1. 156/195 X Lipinski, Cleveland, all of Ohio 3,399,095 8/1968 l-lyland 156/195 X [21] Appl. No. 842,298 3,400,029 9/1968 Mesrobian et a1. 156/195 X [22] Filed July 16, 1969 3,468,733 9/1969 Dunlap et a1. [56/195 X [45] Patented Nov. 16, 1971 3,452,506 7/1969 Broerman 156/195 X [73] Assignee Clevepak Corporation 3,457,130 7/1969 Morrison.... 156/195 X Cleveland, Ohio 3,494,812 2/1970 Cvacho 156/ 195 Primary Examiner Benjamin R. Padgett Assistant ExaminerGary G. Solyst 3 [54] METHOD OF MAKING TUBES AttameyWatts, Hoffmann, Fisher & l-leinke 4 Claims, 6 Drawing Figs.
| [52] US. Cl 156/190, ABSTRACT: A helically wound tube comprised f h flik 156,191 156/195 plies including a liner and a plurality of body plies. The liner [51] Int. Cl B6511 81/04 and a first surrounding body ply are imerwoven k a h li l I [50] Field of Search 156/184, butt joint defined by adjacent edges f h Surrounding b d 185, 187, 188, 190, 191, 195, 392; 229/93, 4.5 ply, and the liner forms a helical lap joint. The tube is continuous] formed and an interior rotective coating is concur- [56] Rehmnm Cited rentl y applied to the tube as an :irless spray of coating materi- 1 UNITED STATES PATENTS a1 comprising 100 percent solids in a liquid state, which 2,554,722 5/1951 Waters 229/4.5 X hardens substantially on contact with the tube.
W Lfi PATENTEDuuv 16 I97! 3. 620.869
SHEET 1 or 2 IMVENTOES PAUL w. s'rump JAMEfi A. HUGE/2 JOHN M. L/P/N5K/ ATTORNEYS PATENTEDunv 16 I9?! SHEET 2 [IF 2 WBW MW u p o W UWwT MMM BYQVWI a.
METHOD OF MAKING TUBES The present invention relates to helically wound tubelike articles, such as containers, and methods of and apparatus for forming such articles and coating the interiors thereof.
Tubes formed by helically wound sheetlike plies have a wide variety of uses. If suitably sealed against leakage, such tubes are particularly useful as containers for various products, including liquids and the like, and especially foodstuffs. Typically, such tubes are formed of paper plies, or like material, which individually lack high inherent strength. Adequate strength for specific purposes is obtained by the use of multiple plies of appropriate quality and thickness, and by the manner in which the tube is wound to produce a particular joint construction at adjacent ply edges. For example, skived joints and overlap joints are relatively strong, while butt joints are weak. However, paper with skived edges is expensive and overlapped joints are troublesome if covers must be seamed on the end of a tube, because of the double thickness of the tube wall at the overlap. Butt joints permit the use of less expensive paper and produce a uniform wall thickness, but in addition to being weaker can also be expected to leak if in direct contaet'with liquids or with products of high moisture content.
The present invention embodies a novel tube and manner of winding the same, providing an inherently tighter and stronger joint at the inner surface of the tube, and further embodies a novel method of applying a protective coating and sealant to the inner ply concurrently with the continuous formation of the tube.
The tube of this invention includes a plurality of plies, including a relatively thin inner ply or liner. In a preferred embodiment, the tube is comprised of a thin inner ply, three thicker body plies and a thin cover ply, typically a label. In accordance with this invention, an inner ply is wound in a manner that interweaves an edge of the inner ply or liner between an otherwise typical butt joint of a surrounding ply, and which laps the opposite edge of the inner ply across the joint, within the tube. The interwoven edge extends beyond the joint on the external surface of the surrounding ply and is adhered thereto, providing a second overlap. This double overlap at the joint, on both sides of the surrounding ply, adds substantial strength to the surrounding ply over and above that which is due merely to the combined thickness of the two plies, and in addition establishes an effective seal because of the tortuous path and successive adhered surfaces past which moisture or liquid must travel to permeate the joints of the plies. In a preferred embodiment, subsequent body plies are wound, preferably with butt joints and a cover ply is typically applied, with an overlapped joint. The inner ply and cover ply are both kept very thin, relative to the body plies. As a result, the overall wall thickness of the tube is substantially uniform, notwithstanding the overlap at the joints of the inner and cover plies. The added strength attained through this construction permits the manufacturer several attractive options. For example, less expensive paper of somewhat reduced strength can be used while attaining ultimate tube strength equivalent to more expensive, stronger paper with conventional butted joints; a thinner wall thickness can be used in a tube, with a given strength or quality of paper, to attain the same tube strength; or a higher strength tube can be constructed using a given quality and thickness of plies. By virtue of the strength of the tubes embodying the present invention, a manufacturer can produce a helically wound tube of equal wall thickness to that of a convolutely wound tube, and which will be of essentially equal strength, but which can be manufactured by a continuous process and at a higher production rate.
Tubes of the type described are continuously formed by helically winding plies in strip form on a mandrel, and the formed portion is progressively advanced axially from the mandrel during winding. In accordance with the presentinvention, an internal coating is applied to the tube downstream from the mandrel as an airless spray. The coating material is a liquified material that will quickly solidify upon contact with the tube to form a substantially moisture impermeable coating that protects the inner ply and the joint thereof against leakage. A wax or waxlike material or a blend of materials consisting entirely of solids, i.e., containing no vehicle or solvent and liquifiable at elevated temperatures, is especially suitable as a coating material. It is applied as an airless spray at a temperature at which it is liquid. The tube is maintained at a temperature, lower than that of the liquid, at which the material will quickly solidify. By using an airless spray, heat dissipation during application is minimized, assuring that the material remains in a liquid state until it contacts the tube so that it will wet the tube wall and form a continuous, strongly adhered, moisture barrier. By utilizing percent solids,
evaporating or curing of a solvent or vehicle for the coating I material is avoided, along with the accompanying fumes, time requirements and application of heat typically involved. As a result, equipment requirements, processing line length and production costs can be minimized.
The tube is formed on equipment constructed to insure that the coating material is maintained in a heated liquid state prior to spraying, and to insure that the tube is maintained sufficiently cool for the material to solidify quickly upon contact. To this end, conduit portions supplying coating material to a spray head are locally heated and are thennally insulated from the forming mandrel and tube.
From the foregoing it will be apparent that a principal object of the present invention is the provision of a new and improved tube of high strength and low cost and the provision of methods and apparatus for forming the tube and for applying an internal coating to a continuously formed tube.
Other objects, features and advantages of the present invention will be apparent from the following detailed description made with reference to the accompanying drawings which form a part of the specification, and in which:
FIG. I is a top plan view of apparatus for winding a tube embodying the present invention and for coating the interior of a tube as it is fonned;
FIG. 2 is a partial side elevational view, with parts removed, on an enlarged scale, of the apparatus of FIG. 1, showing a winding mandrel and spraying apparatus;
FIG. 3 is a diagrammatic elevational view of an intermediate stage of the winding of a tube embodying the present invention;
FIG. 4 is a diagrammatic view similar to FIG 3 illustrating the manner in which a preferred embodiment of a tube is completely wound;
FIG. 5 is a transverse sectional view of a tube embodying the present invention, illustrating the construction and arrangement of the plies and helical joints between adjacent ply edges; and
FIG. 6 is an enlarged fragmentary view of FIG. 5, showing constructional features.
A tube-forming apparatus 10 is illustrated in FIGS. 1 and 2. The apparatus 10 includes a framelike base I] having parallel floor or bench engaging support members l2, l3 and lateral supporting frame structures l4, 15, shown diagrammatically. The apparatus 10 also includes a tube winder head 16, a tube winder l7, and coating apparatus 20 for providing a coating on the inside of the tube formed by the apparatus 10. The winder head 16 includes a support frame 21 (FIG. 2), extending upwardly from the base 11, and a stationary mandrel 22. The mandrel 22 is a rigid, smooth-walled, tubular member about which a tube T is continuously formed. The support frame 21 includes vertically extending frame members 23, 24 and a lateral platelike member 25 extending between the upper ends of the frame members 23, 24. The winder head additionally includes a support surface 26 for the mandrel 22. The mandrel 22 extends from the frame 21 and is secured at one end by set screws 30, 31 which are received in threaded openings in the lateral member 25 and extend into engagement with the mandrel, clamping it against a support surface 26.
The coating apparatus 20 is constructed to spray a protective coating material and sealant, e.g., a moisture barrier, upon the inside of a formed portion of a tube T adjacent the end of the mandrel 22. Coating apparatus 20 includes a reservoir 33 for material to be sprayed, a valvelike control gun 34 communicating with the reservoir 33 through a conduit 35, and a spray nozzle 36 disposed at the projecting end of the mandrel 22 and connected to the control gun 34 by a nozzle extension tube 37. Material in the reservoir is either maintained under pressure or is pumped to the spray nozzle. A preferred nozzle is stationary and produces a cone-shaped, 360 spray pattern, which, because the tube is continuously rotated and advanced at a constant speed during formation, thoroughly and uniformly coats the entire inside surface of the tube as the formed tube advances from the mandrel end. The nozzle extension tube 37 is highly thermally conductive (e.g., in a preferred embodiment, it is constructed of copper and is supported within the mandrel 22 by end plugs 40, 41 attached at opposite ends of the mandrel 22, so that the mandrel 22 fonns a closed cylindrical chamber through which the tube 37 extends, as shown in FIG. 2. Heat tape 38, e.g., electrical re sistance heating elements imbedded in a carrier strip, is wound about the extension tube 37 within the mandrel 22. Both the tube 37 and the tape 38 are encased in an asbestos tube 39 within the mandrel to insulate the mandrel from heat from the tube 37 and tape 38. The dead air space between the tube 39 and the mandrel also serve to insulate the mandrel from the hotter tube 37 and tape 38. The tape 38 is connected to a source of electric current by leads, not shown. The method of coating the inside of a tube formed on the apparatus is described subsequently.
The tube winder 17 is schematically illustrated, is of conventional construction, and includes pulleys 45, 46 on opposite sides of the mandrel, around which a belt 47 is trained. A continuous tube T is shown extending from the mandrel, being formed from a plurality of webs L, P1, P2, P3, and C that form plies, which, in helically wound form, constitute the tube. The belt 47 includes one reach which extends directly between the pulleys and a second reach which is looped about the tube T. When the pulleys are driven to drive the belt in the direction of the arrows in FIG. I, the tube T is rotated about the longitudinal axis of the mandrel 22 and advanced axially of the mandrel 22, away from the support frame 21. The belt 47 is angularly disposed relative to the mandrel 22 to advance the tube T at a rate that properly positions the turns of the plies in proper adjacent relationship.
FIGS. 1, 3 and 4 illustrate the manner in which the tube T is formed. Thin webs L and C, which respectively form an inner ply or liner and a label or cover ply, are supplied from one side of the mandrel 22, and thicker webs P1, P2, P3, which respectively form body plies of the tube are, for convenience, supplied from the opposite side of the mandrel. In order to produce a tube with the particular structural form shown in FIGS. and 6, specific relative dimensions and locations of the webs and adhesive areas must be established. A critical relationship exists between the inner ply L and the first body ply Pl. For convenience, the remaining body plies or webs P2 and P3 are identical to ply P1 in size and shape. The liner or first ply L is substantially thinner than the body ply P1 to minimize thickness variations of the tube where the inner ply overlaps at the helical joint J 1 formed at adjacent edges of the helically wound first ply. See FIGS. 3 and 6. The first ply L is also substantially wider than the ply P1 and the two are supplied to the mandrel so that ply Pl centrally overlies liner L, establishing extending marginal portions L and L,,. The outer surface of the liner L and both surfaces of the ply P1 are coated with adhesive. Alternatively, the outer surface of ply Pl can be coated only adjacent the marginal portion L, of the liner to adhere the marginal portion L, in overlying relationship, since the second body ply is adhered by adhesive on its inner surface.
As the tube T is wound, the marginal portion L,, and an adjacent marginal portion of ply Pl overlap the marginal portion L, of the preceding turn of the liner L (See FIG. 3). The marginal portion L also overlaps a part of the preceding turn of the first ply Pl. Each successive turn of the ply Pl essentially butts against the edge of the preceding turn, spaced therefrom only by the thickness of the liner ply L that extends outwardly between the edges from beneath the successive turn and overlies the preceding turn at L This will be particularly apparent from the sectional view of the article shown in FIGS. 5 and 6. At least one additional body ply P2 is wound over ply Pl, overlapping the joint J] for strength and itself having a butt joint to keep the thickness of the tube wall substantially uniform. In the preferred embodiment, a third body ply P3 is applied in the same manner as the second ply and a thin cover or label ply C is applied with an overlap joint, all suitably glued to adhere to the preceding ply.
With more particular reference to the finished tube, as shown in section of FIGS. 5 and 6, the marginal portion L, of the inner ply forms a lap joint J2 on the inside of the container, and the marginal portion L of the inner ply extends radially outward beneath the lap joint between the butt joint J1 of the first body ply P1, and then overlies the body ply Pl, being secured by adhesive. This establishes a relatively long and tortuous path along which moisture must travel to get beyond the inner ply. In addition, the interwoven structure of the joint J l is as strong as a lap or a skived joint. The second body ply P2 overlies ply P1 and marginal portion L, of the inner ply, and has a butt joint J3 displaced from joint J l. The third body ply P3 overlies the ply P2 and has a butt joint J4 displaced from the joint J3. The cover ply C is a label and has a lap joint J5. The inner ply and cover ply are quite thin with respect to the body plies and the total thickness of the tube wall and overlapping portions create only a small irregularity in the wall which will not interfere with the seaming of an end closure when the tube is cut into lengths and capped. A coating W is shown on the inside surface of the liner L in FIG. 6.
By way of example, a preferred embodiment of a tube T is comprised of an inner liner L of 4 point" paper, i.e., having a thickness of 0.004 inch; three body plies of 12 point" paper, i.e., having a thickness of 0.012 inch, and a label forming a cover ply of 2 point" paper. The inner ply is fa ls-inches wide and the body plies and cover ply are each SA-inches wide, so that the extending marginal portions L,,, L, are each 96-inch wide. The entire outside surface of the liner L and both opposite surface of the first body ply P1 are coated with adhesive. The inside surface of each remaining ply is coated with adhesive. Each ply is adhered to the preceding ply as the plies are wound on the mandrel and the tube advanced, in a conventional manner.
In accordance with this invention, a protective coating such as a moisture barrier is sprayed through the stationary nozzle 36 of the continuously formed tube T as the tube is advanced from the mandrel 22. A critical factor for an optimum process is the use of a coating material that consists of I00 percent solids at typical ambient temperatures to which the tube will be subjected, but which will liquify at temperatures somewhat above such ambient temperatures. Wax e.g., wax systems, e.g., blends of waxes or wax and modifying agents such as resins have been found particularly suitable, and the material is heated in the reservoir 33 of thespray unit to a temperature above that at which it liquifies. The elevated temperature is substantially maintained along the extension tube 37 of the spray unit by the heat tape 38 to assure that the material is liquid at the time it is emitted from the nozzle 36. The coating material is supplied from the reservoir 33 at a high enough pressure to produce a relatively fine spray at the nozzle. without introducing or relying upon a flow of air in which to entrain the material. Such an airless spray reduces the tendency of the disbursed material to lose heat and solidify before it coats the tube. Even a flow of air that might be aspirated into the spray through an open mandrel is undesirable and the end plug 40 prevents air from being drawn into the tube.
One example of a suitable coating material is a wax blend consisting of 50 percent by weight paraffin wax and 50 percent by weight microcrystalline wax. In some instances the softness of this material is disadvantageous, in that it may transfer to the mandrel or cutters of the machinery. This problem can be largely overcome by using 100 percent solids blends of waxes and compatible resins or polymers that can be liquified by heating to temperatures of 275 F. to 350 F., that solidify into tough, hard coatings. A suitable blend of this type consists of 25 percent by weight ethylene/vinyl acetate resin, such as Elvax 250 manufactured and sold by E. l. du Pont de Nemours & Company and 75 percent by weight fully refined, l55 F. melting point, paraffin.
Ambient temperatures of the apparatus 10, especially the mandrel 22, and the tube T being formed, are kept below the temperature at which the coating material solidifies, in part by the insulating tube 39 and dead air space that surrounds both the extension tube 37 and heat tape 38. Thus, when the material contacts the tube it adequately wets the interior surface because of its liquid state, yet quickly solidifies because of the lower temperature of the tube. As a result, the tube can be cut into lengths a very short distance from the spray nozzle, eliminating any need for intermediate curing or evaporating steps that might be necessary for other types of coating materials and their accompanying requirements of time, space and equipment. The above process and the apparatus described provide both a new and improved tube construction and a new and improved manner of applying an internal coating to a continuously formed helically wound tube. The tube itself has improved strength characteristics by virtue of the joint construction provided by the interwoven liner and first body ply, and the inner ply or liner is essentially impervious to liquid, not only because of the improved joint structure provided but also because of the internal wax coating. Because the coating material is 100 percent solids and is applied in liquid form as a hot airless spray, proper wetting and good coverage is assured. Maintenance of the tube at a lower temperature than that at which the coating material solidifies assures rapid hardening upon contact, facilitating a short processing line. This results in both an economical process and an improved product.
While the invention has been described with particularity in its preferred form, it will be understood that various modifications or alterations can be made therein without departing from the spirit and scope of the invention.
We claim: 1. In a method of producing a tubular member from strips of material, the steps of:
a. helically winding a portion of a first strip onto a mandrel; b. helically winding a portion of a second strip narrower than the first strip onto said mandrel in overlying relationship with said first strip so that marginal portions along each side edge of said first strip extend beyond both side edges of said second strip;
overlapping a preceding convolution of said first strip with a portion of said first strip equal in width to the combined width of both said extending marginal portions, and overlapping said second strip with only the adjacent marginal portion of the first strip that extends beyond the overlying second strip, whereby the pitch of successive convolutions is substantially equal to the width of said second strip and a helical joint is formed by said first and second strips in which one marginal portion of said first strip extends between otherwise abutting edges of said second strip and overlies a marginal portion of a preceding convolution of said second strip, and the other marginal edge of said first strip underlies said otherwise abutting edges of said second strip and forms with the succeeding convolution a lap joint within the tube;
d. adhering said strips in said wound relationship; and
e. advancing wound portions of said webs along said mandrel.
2. A method as defined in claim 1 further including the step of directing an airless spray of coating material consisting of percent solids in a liquid state onto the interior of a formed portion of said tube while the tube is advanced from said mandrel and maintaining said mandrel and formed portion of said tube at a temperature, lower than that of said coating material, at which the coating material will solidify.
3. A method as defined in claim 1 and further including the step of providing adhesive material on at least an outer marginal portion of said second strip that is overlapped by said first strip.
4. A method as defined in claim 1 including the step of helically winding a third strip of substantially greater thickness than said first strip over both said second strip and said overlying marginal portion of said first strip, and forming a butt joint at adjacent side edges of said third strip.
* v a a a

Claims (3)

  1. 2. A method as defined in claim 1 further including the step of directing an airless spray of coating material consisting of 100 percent solids in a liquid state onto the interior of a formed portion of said tube while the tube is advanced from said mandrel and maintaining said mandrel and formed portion of said tube at a temperature, lower than that of said coating material, at which the coating material will solidify.
  2. 3. A method as defined in claim 1 and further including the step of providing adhesive material on at least an outer marginal portion of said second strip that is overlapped by said first strip.
  3. 4. A method as defined in claim 1 including the step of helically winding a third strip of substantially greater thickness than said first strip over both said second strip and said overlying marginal portion of said first strip, and forming a butt joint at adjacent side edges of said third strip.
US842298A 1969-07-16 1969-07-16 Method of making tubes Expired - Lifetime US3620869A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84229869A 1969-07-16 1969-07-16

Publications (1)

Publication Number Publication Date
US3620869A true US3620869A (en) 1971-11-16

Family

ID=25286994

Family Applications (1)

Application Number Title Priority Date Filing Date
US842298A Expired - Lifetime US3620869A (en) 1969-07-16 1969-07-16 Method of making tubes

Country Status (1)

Country Link
US (1) US3620869A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195242A (en) * 1989-08-15 1993-03-23 Chandra Sekar Method of making a paint roller
US5398409A (en) * 1989-08-15 1995-03-21 Chandr Sekar Method of making a paint roller
US5572790A (en) * 1989-08-15 1996-11-12 Sekar; Chandra Method of making a paint roller
US5671897A (en) * 1994-06-29 1997-09-30 The Procter & Gamble Company Core for core wound paper products having preferred seam construction
US5824383A (en) * 1996-10-25 1998-10-20 The Goodyear Tire & Rubber Company Methods of securing splices in curable rubber articles
US6036139A (en) * 1996-10-22 2000-03-14 The Procter & Gamble Company Differential ply core for core wound paper products
US6145196A (en) * 1998-03-03 2000-11-14 Ripstein; Jorge Method of making a paint roller with non-plastic base material
US6305045B1 (en) 1999-07-08 2001-10-23 Newell Operating Company Paint supply and finishing system
US6539999B2 (en) 2001-02-19 2003-04-01 Newell Operating Company Apparatus and method for making variable paint roller covers
US6615490B2 (en) 2000-01-21 2003-09-09 Newell Operating Company Method of manufacture of paint application
US20050016665A1 (en) * 2003-05-30 2005-01-27 Hudson Jeffrey A. Method for insulating electrical windings
US20050255981A1 (en) * 2002-08-09 2005-11-17 Fabio Perini Machine and method for producing cardboard tubes
US20070272334A1 (en) * 2006-05-25 2007-11-29 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of making and using same
US20080153684A1 (en) * 2004-02-24 2008-06-26 Fabio Perini Machine and Method For Producing Cardboard Tubes
US20080196821A1 (en) * 2007-02-16 2008-08-21 Linzer Products Corp. Method and apparatus for making a paint roller and product produced thereby
US20090014093A1 (en) * 2006-05-25 2009-01-15 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of making and using same
US20090101238A1 (en) * 2005-11-10 2009-04-23 Daniel James Jossick Brazing Material Containing A Flux
US20090170677A1 (en) * 2007-04-25 2009-07-02 Seamless Technologies, Llc Tubular knit fabric having alternating courses of sliver fiber pile and cut-pile for paint roller covers
US20090191390A1 (en) * 2008-01-25 2009-07-30 Linzer Products Corp. Paint roller having reinforcement layers and method for assembling the paint roller
US20090321007A1 (en) * 2008-06-26 2009-12-31 Chandra Sekar Methods for manufacturing a paint roller with perforated substrate
US20090320999A1 (en) * 2008-06-26 2009-12-31 Chandra Sekar Methods for manufacturing a paint roller with grooved substrate
US20100065549A1 (en) * 2006-12-11 2010-03-18 Alan Belohlav System and Method of Brazing Using Non-silver Metals
US7905980B2 (en) 2007-04-25 2011-03-15 Seamless Technologies, Llc Method of manufacturing paint roller covers from a tubular fabric sleeve
USRE42329E1 (en) 2002-07-24 2011-05-10 Lucas-Milhaupt, Inc. Flux cored preforms for brazing
US8882957B2 (en) 2007-04-25 2014-11-11 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US9157134B2 (en) 2009-10-26 2015-10-13 Lucas-Milhaupt, Inc. Low silver, low nickel brazing material
US9314862B2 (en) 2013-05-30 2016-04-19 Lucas-Milhaupt, Inc. Process for flux coating braze preforms and discrete parts
US9731383B2 (en) 2014-07-09 2017-08-15 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of using same
US10744601B2 (en) 2015-08-07 2020-08-18 Bellman-Melcor Development, Llc Bonded brazing ring system and method for adhering a brazing ring to a tube

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2554722A (en) * 1949-06-10 1951-05-29 Harry F Waters Method of forming cylindrical containers
US3156401A (en) * 1960-10-17 1964-11-10 Anaconda Aluminum Co Container
US3247869A (en) * 1963-04-23 1966-04-26 Reynolds Metals Co Helically wound tubular member
US3327596A (en) * 1964-05-14 1967-06-27 Reynolds Metals Co Method and apparatus for rotating and axially advancing tubular stock or the like
US3399095A (en) * 1964-05-29 1968-08-27 Owens Illinois Inc Method and apparatus for producing containers of tubular foam laminates
US3400029A (en) * 1965-01-22 1968-09-03 Continental Can Co Method of making spiral wound container bodies
US3452506A (en) * 1967-07-20 1969-07-01 Phillips Petroleum Co Containers
US3457130A (en) * 1966-07-11 1969-07-22 Owens Illinois Inc Method and apparatus for forming a tubular article of wound plies of thermoplastic strip material
US3468733A (en) * 1966-01-05 1969-09-23 Sonoco Products Co Method of producing a spirally wound tube
US3494812A (en) * 1968-06-17 1970-02-10 Reynolds Metals Co Method and apparatus for making a container having a seamless sleevelike liner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2554722A (en) * 1949-06-10 1951-05-29 Harry F Waters Method of forming cylindrical containers
US3156401A (en) * 1960-10-17 1964-11-10 Anaconda Aluminum Co Container
US3247869A (en) * 1963-04-23 1966-04-26 Reynolds Metals Co Helically wound tubular member
US3327596A (en) * 1964-05-14 1967-06-27 Reynolds Metals Co Method and apparatus for rotating and axially advancing tubular stock or the like
US3399095A (en) * 1964-05-29 1968-08-27 Owens Illinois Inc Method and apparatus for producing containers of tubular foam laminates
US3400029A (en) * 1965-01-22 1968-09-03 Continental Can Co Method of making spiral wound container bodies
US3468733A (en) * 1966-01-05 1969-09-23 Sonoco Products Co Method of producing a spirally wound tube
US3457130A (en) * 1966-07-11 1969-07-22 Owens Illinois Inc Method and apparatus for forming a tubular article of wound plies of thermoplastic strip material
US3452506A (en) * 1967-07-20 1969-07-01 Phillips Petroleum Co Containers
US3494812A (en) * 1968-06-17 1970-02-10 Reynolds Metals Co Method and apparatus for making a container having a seamless sleevelike liner

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254710B1 (en) 1989-08-15 2001-07-03 Chandra Sekar Method and apparatus for making a paint roller
US5398409A (en) * 1989-08-15 1995-03-21 Chandr Sekar Method of making a paint roller
US5572790A (en) * 1989-08-15 1996-11-12 Sekar; Chandra Method of making a paint roller
US5195242A (en) * 1989-08-15 1993-03-23 Chandra Sekar Method of making a paint roller
US5671897A (en) * 1994-06-29 1997-09-30 The Procter & Gamble Company Core for core wound paper products having preferred seam construction
US5865396A (en) * 1994-06-29 1999-02-02 The Proctor & Gamble Company Core for core wound paper products having preferred seam construction
US6036139A (en) * 1996-10-22 2000-03-14 The Procter & Gamble Company Differential ply core for core wound paper products
US5824383A (en) * 1996-10-25 1998-10-20 The Goodyear Tire & Rubber Company Methods of securing splices in curable rubber articles
US6145196A (en) * 1998-03-03 2000-11-14 Ripstein; Jorge Method of making a paint roller with non-plastic base material
US6305045B1 (en) 1999-07-08 2001-10-23 Newell Operating Company Paint supply and finishing system
US6615490B2 (en) 2000-01-21 2003-09-09 Newell Operating Company Method of manufacture of paint application
US6539999B2 (en) 2001-02-19 2003-04-01 Newell Operating Company Apparatus and method for making variable paint roller covers
USRE42329E1 (en) 2002-07-24 2011-05-10 Lucas-Milhaupt, Inc. Flux cored preforms for brazing
USRE44343E1 (en) 2002-07-24 2013-07-09 Lucas-Milhaupt, Inc. Flux cored preforms for brazing
US20050255981A1 (en) * 2002-08-09 2005-11-17 Fabio Perini Machine and method for producing cardboard tubes
US20050016665A1 (en) * 2003-05-30 2005-01-27 Hudson Jeffrey A. Method for insulating electrical windings
US20140018221A1 (en) * 2004-02-24 2014-01-16 Fabio Perini Machine and method for producing cardboard tubes
US20080153684A1 (en) * 2004-02-24 2008-06-26 Fabio Perini Machine and Method For Producing Cardboard Tubes
US8562500B2 (en) * 2004-02-24 2013-10-22 Fabio Perini Machine and method for producing cardboard tubes
US20140024511A1 (en) * 2004-02-24 2014-01-23 Fabio Perini Machine and method for producing cardboard tubes
US10525652B2 (en) * 2004-02-24 2020-01-07 Fabio Perini Machine and method for producing cardboard tubes
US20090170682A1 (en) * 2004-02-24 2009-07-02 Fabio Perini Machine and method for producing cardboard tubes
US10183459B2 (en) * 2004-02-24 2019-01-22 Fabio Perini Machine and method for producing cardboard tubes
US8753455B2 (en) 2005-11-10 2014-06-17 Handy + Harman Brazing material containing a flux
US20090101238A1 (en) * 2005-11-10 2009-04-23 Daniel James Jossick Brazing Material Containing A Flux
US9095937B2 (en) 2006-05-25 2015-08-04 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of making and using same
US10071445B2 (en) 2006-05-25 2018-09-11 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of making and using same
US20070272334A1 (en) * 2006-05-25 2007-11-29 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of making and using same
US20090014093A1 (en) * 2006-05-25 2009-01-15 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of making and using same
US7858204B2 (en) 2006-05-25 2010-12-28 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering
WO2007140236A1 (en) * 2006-05-25 2007-12-06 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of making and using same
US8274014B2 (en) 2006-05-25 2012-09-25 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of making and using same
US20110089222A1 (en) * 2006-05-25 2011-04-21 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of making and using same
US20100065549A1 (en) * 2006-12-11 2010-03-18 Alan Belohlav System and Method of Brazing Using Non-silver Metals
US8507833B2 (en) 2006-12-11 2013-08-13 Lucas-Milhaupt, Inc. System and method of brazing using non-silver metals
US8167782B2 (en) 2007-02-16 2012-05-01 Linzer Products Corp. Method and apparatus for making a paint roller and product produced thereby
US20080196821A1 (en) * 2007-02-16 2008-08-21 Linzer Products Corp. Method and apparatus for making a paint roller and product produced thereby
US8882957B2 (en) 2007-04-25 2014-11-11 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US20090170677A1 (en) * 2007-04-25 2009-07-02 Seamless Technologies, Llc Tubular knit fabric having alternating courses of sliver fiber pile and cut-pile for paint roller covers
US7905980B2 (en) 2007-04-25 2011-03-15 Seamless Technologies, Llc Method of manufacturing paint roller covers from a tubular fabric sleeve
US7596972B2 (en) 2007-04-25 2009-10-06 Seamless Technologies, Llc Tubular knit fabric having alternating courses of sliver fiber pile and cut-pile for paint roller covers
US9994069B2 (en) 2007-04-25 2018-06-12 Seamless Technologies, Llc Methods of manufacturing paint roller covers from a tubular fabric sleeve
US20090191390A1 (en) * 2008-01-25 2009-07-30 Linzer Products Corp. Paint roller having reinforcement layers and method for assembling the paint roller
US7846283B2 (en) 2008-06-26 2010-12-07 Chandra Sekar Methods for manufacturing a paint roller with perforated substrate
US20090321007A1 (en) * 2008-06-26 2009-12-31 Chandra Sekar Methods for manufacturing a paint roller with perforated substrate
USRE46070E1 (en) 2008-06-26 2016-07-19 Chandra Sekar Methods for manufacturing a paint roller with grooved substrate
US20090320999A1 (en) * 2008-06-26 2009-12-31 Chandra Sekar Methods for manufacturing a paint roller with grooved substrate
US7736455B2 (en) 2008-06-26 2010-06-15 Chandra Sekar Methods for manufacturing a paint roller with grooved substrate
US20110005664A1 (en) * 2008-06-26 2011-01-13 Chandra Sekar Methods for manufacturing a paint roller with grooved substrate
US8257534B2 (en) 2008-06-26 2012-09-04 Chandra Sekar Methods for manufacturing a paint roller with grooved substrate
US9157134B2 (en) 2009-10-26 2015-10-13 Lucas-Milhaupt, Inc. Low silver, low nickel brazing material
US9314862B2 (en) 2013-05-30 2016-04-19 Lucas-Milhaupt, Inc. Process for flux coating braze preforms and discrete parts
US9731383B2 (en) 2014-07-09 2017-08-15 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of using same
US10744601B2 (en) 2015-08-07 2020-08-18 Bellman-Melcor Development, Llc Bonded brazing ring system and method for adhering a brazing ring to a tube

Similar Documents

Publication Publication Date Title
US3620869A (en) Method of making tubes
US3524779A (en) Method of making wound tubular products
US4579617A (en) Method of manufacturing tanks, containers, pipes, etc.
US3207358A (en) Water storage tanks and methods of making the same
US3172571A (en) Collapsible dispensing tube
US3159515A (en) Method and apparatus for making composite oil containers of spirally wound strips
US3457130A (en) Method and apparatus for forming a tubular article of wound plies of thermoplastic strip material
US3823045A (en) Pipe coating method
CA1101345A (en) Method and apparatus for applying foam insulation to pipe
US5398409A (en) Method of making a paint roller
US2539450A (en) Method of producing fiber tubing
US6036042A (en) Sealed metal container
US6203648B1 (en) Method for manufacturing paint roller
US3783908A (en) Helically wound tubes
US3399095A (en) Method and apparatus for producing containers of tubular foam laminates
US2998339A (en) Production of tubes and structural shapes from metal foils
JPH03151228A (en) Manufacture of container
US3077171A (en) Method of forming the side seam of a can body
US3816206A (en) Method for protecting raw metal edge of inside lap of adhesively bonded lap side seam tubular body
US6145196A (en) Method of making a paint roller with non-plastic base material
US2124853A (en) Method of making coated cans
US5858153A (en) Method for making tubular containers
US4010703A (en) End lining with hot melt
US4226337A (en) Laminated tube for collapsible containers and method of making same
US11325767B2 (en) Packaging container with preformed sealing ring

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITIBANK, N.A. AS AGENT FOR CITIBANK, N.A., THE BA

Free format text: MORTGAGE;ASSIGNOR:CLEVEPAK CORPORATION A DE CORP.;REEL/FRAME:004153/0647

Effective date: 19830627

AS Assignment

Owner name: CITIBANK, N.A., AS AGENT FOR ITSELF; BANK OF NEW Y

Free format text: SECURITY INTEREST;ASSIGNOR:CLEVEPAK CORPORATION, A CORP.OF DE;REEL/FRAME:004201/0406

Effective date: 19831122

AS Assignment

Owner name: SPECIALTY PACKAGING GROUP, INC.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CLEVEPAK CORPORATION;REEL/FRAME:004505/0593

Effective date: 19851220