US3620747A - Photographic element including superimposed silver halide layers of different speeds - Google Patents

Photographic element including superimposed silver halide layers of different speeds Download PDF

Info

Publication number
US3620747A
US3620747A US730593A US3620747DA US3620747A US 3620747 A US3620747 A US 3620747A US 730593 A US730593 A US 730593A US 3620747D A US3620747D A US 3620747DA US 3620747 A US3620747 A US 3620747A
Authority
US
United States
Prior art keywords
photographic
group
silver halide
coupler
photographic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US730593A
Inventor
John C Marchant
Robert F Motter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of US3620747A publication Critical patent/US3620747A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/3003Materials characterised by the use of combinations of photographic compounds known as such, or by a particular location in the photographic element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/46Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein having more than one photosensitive layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/3029Materials characterised by a specific arrangement of layers, e.g. unit layers, or layers having a specific function
    • G03C2007/3034Unit layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/305Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers
    • G03C7/30541Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers characterised by the released group

Definitions

  • Photographic elements are provided which feature a support having coated thereon a first photographic silver halide emulsion layer containing image-forming coupler and development inhibitor-releasing coupler; and, a second silver halide emulsion layer containing photographic image forming coupler, the second layer having a faster effective speed sensitivity than the first layer.
  • Such elements have high contrast for faint images and an extended latitude of low contrast for bright images.
  • PI-IOTOGRAPI-IIC ELEMENT INCLUDING SUPERIMPOSED SILVER HALIDE LAYERS OF DIFFERENT SPEEDS
  • This invention relates to photographic elements, and more particularly to the photographic elements having wide exposure latitudes.
  • Photographic elements having wide exposure latitudes have previously been provided by coating fast and slow silver halide emulsion layers onto a support See, for example, Beach British Patent 774,655 (published 1957) and Millikan British Patent 1,021,564 (published 1966). While such elements are highly useful for the purposes intended, they exhibit deficiencies when utilized in certain applications. In some instances, it is desirable to provide photographic elements having a high contrast for faint images and a long latitude of low contrast for bright images. Such elements would record images of vastly different intensities without the stronger image flaring' or spreading so much that it obliterates the fainter image.
  • the prior art fails to teach how to obtain a photographic element which produces high contrast and high speed for faint images and low contrast with extended latitude for bright images.
  • Prior art films have utterly failed in satisfactorily recording the faint image produced upon initial entry of an orbiting satellite into the earth's atmosphere.
  • the image of the faint satellite upon initial reentry could not be measured because its image was obliterated by the flare produced by the stronger image of the burning satellite in the lower atmosphere.
  • the amount of flare produced by the stronger image of the burning satellite has been used to measure indirectly the path and brightness of the satellite on initial stages of reentry.
  • One object of this invention is to provide novel photo graphic elements which have wide exposure latitude.
  • Another object of this invention is to provide photographic elements which exhibit low image spread over the useful expo sure latitude.
  • a further object of this invention is to provide photographic elements which exhibit high contrast when exposed to faint images; and, low contrast and wide latitude when exposed to bright images having a dark background.
  • novel photographic elements comprising a support having coated thereon a first photographic silver halide emulsion layer containing (l) nondiffusible photographic coupler which forms image dye and (2) a development inhibitor-releasing coupler; and, a second photographic silver halide emulsion layer containing nondiffusible photographic coupler which forms image dye, said second layer having a faster effective speed sensitivity than said first layer.
  • the development inhibitor-releasing coupler in the slower image-recording layer effectively extends exposure latitude and reduces contrast.
  • Such photographic elements have wide exposure latitude, and are capable of recording images of vastly different intensity in close geometrical proximity with minimal image spread.
  • Photographic elements in accordance with this invention exhibit excellent sharpness. They produce high-contrast records of faint images and low-contrast records of bright images.
  • a photographic element is provided as described above which contains a nonimage-forming, light-diffusing silver halide emulsion layer positioned between the support and the silver halide emulsion layers. Photographic elements in accordance with this embodiment of the invention exhibit reduced image spread.
  • an antihalation layer is provided between the support and the image recording layers
  • the fast and slow silver halide emulsion image recording 0 layers utilized in the photographic elements of this invention can comprise any suitable silver halide, such as silver bromide, silver iodide, silver chloride, or mixed halides such as silver bromoiodide or silver chlorobromide.
  • the silver halide grains in the image-recording layers can be spectrally sensitized, for example when it is desired to expose the elements to radiation longer than blue radiation.
  • the silver halide grains of each image-recording layer are panchromatically sensitized. Any of the dyes suggested in the prior art for spectrally sensitizing silver halide can be used in the practice of this invention.
  • the silver halide grains used in the image recording layers are advantageously negative, developing-out silver halide grains.
  • the optimum speeds of the image-recording layers will depend upon the various uses to which the elements are put. Preferably, the speed sensitivity of the two layers overlaps. Good results are obtained when the effective speed of the slower image-recording layer is about 0.6 Log E to about 1.2 Log E slower than the fast image-recording layer. It is desirable that the faster silver halide emulsion layer have a detection capability in the region of about 5 quanta per square micron.
  • the elements exhibit an exposure latitude of about 10 over the reliable exposure latitude.
  • the effective speeds of the emulsion layers can be regulated in any convenient manner, such as by use of silver halides of different grain size, chemical sensitizcrs, concentration of photographic coupler, etc.
  • the fast and slow image-recording layers can be contiguous. Either the slow or the fast imagc-recording layers may be coated closest to the support, with the other emulsion layer coated thereover. In preferred embodiments, the slower emulsion layer is coated closest to the support, with the fast emulsion layer being coated thereover.
  • photographic image-forming coupler is used herein as a word of art and includes organic compounds which react with oxidized primary aromatic amine developing agents to form dye images.
  • the photographic image-forming couplers, as well as the development inhibitor-releasing couplers which are utilized in the practice of this invention can embody any photographic coupler radical.
  • Typical useful photographic coupler radicals include the S-pyrazolone coupler radicals, the phenolic (including a-naphthol)coupler radicals, and the open-chain ketomethylene coupler radicals.
  • 5 pyrazolone coupler radicals are customarily utilized for the formation of magenta dyes; phenolic coupler radicals are generally utilized for the formation of cyan color dyes; and, open-chain ketomethylene coupler radicals are generally utilized in the formation of yellow dyes.
  • the coupling position of such coupler radicals is also well known in the art.
  • the S-pyrazolone coupler radicals couple at the carbon atom in the 4-position thereof; the phenolic coupler radicals couple at the carbon atom in the 4-position (relative to the hydroxyl group); and, the open-chain ketomethylene coupler radicals couple at the carbon atom forming the methylene moiety (e.g.,
  • R X and Y represent substituents of the type used in open-chain ketomethylene couplers.
  • R can represent an alkyl group (which can be substituted and preferably has from about six to 22 carbon atoms); an aryl group (preferably a phenyl or naphthyl group); or, a heterocyclic group (preferably a carbon containing heterocyclic radical which contains from five to six atoms in the heterocyclic ring, which ring contains at least one hetero-oxygen sulfur or nitrogen atom);
  • X can represent'a member selected from the group consisting of cyano and carbamyl (which can be substituted); and, Y can' have a meaning given below for the image forming and development inhibitor-releasing couplers utilized herein.
  • the image forming and the development inhibitor-releasing couplers utilized in this invention can feature a S-pyrazolone coupler radical having the following general formula:
  • R R and Y represent substituents of the type used in S-pyrazolone couplers, for example, R, can represent a value given for R,;
  • R can represent a member selected from the group consisting of an alkyl group, a carbamyl group (which can be substituted), an amino group (which can be substituted with various groups such as one or two alkyl or aryl groups), an amido group, e.g., a benzamido group (which can be substituted), or an alkylamido group (which can be substituted), and, Y; can represent a value given below for the image forming and the development inhibitor-releasing couplers utilized herein.
  • the photographic image forming and development inhibitor-releasing couplers employed in the practice of this invention can utilize any suitable phenolic (including alphanaphtholic) coupler radicals, including those described in the structural formula below:
  • R R R R and Y can represent a substituent of the type used in phenolic couplers, for example, R and R each can represent a value given for R,, and in addition can represent a member selected from the group consisting of hydrogen, amino, carbonamido, sulfonamido, sulfamyl, carbamyl, halogen and alkoxy; R and R,,, when taken together, can represent the carbon atoms necessary to complete a benzo group, which benzo group can be substituted with any of the groups given for R and R and, when taken separately, R and R can each independently represent a value given for R and R and, Y represents a value given below for the image forming and development inhibitor-releasing couplers utilized herein.
  • the useful image-forming couplers include both the fourequivalent and two-equivalent nondiffusing couplers.
  • Typical useful four-equivalent yellow dye-forming couplers which can be utilized in this invention include the following:
  • N-amyl-p-benzoylacetaminobenzenesulfonate 2.
  • Typical useful two-equivalent yellow-forming opcnchain ketomethylene couplers include the following:
  • lncluded among the coupling off groups are the acyloxy group illustrated by the 4-acyloxyphenols and 4-acyloxynaphthols of Loria U.S. Pat. No. 3,31 1,476, issued Mar. 28, 1967, the cyclooxy group illustrated by the 4-cyclooxy naphthols of Loria U.S. Pat. application 483,807, filed Aug. 30, 1965, the thiocyano group illustrated by the 4-thiophenols and 4-thionaphthols of Loria U.S. Pat. No. 3,253,294, the cyclic imido groups as illustrated by the 4-cyclie imido derivatives of I-hydrogen-Z-naphthamides of Loria U.S. Pat.
  • Typical two-equivalent cyan-forming couplers which can be used in this invention include the following:
  • the photographic image-forming coupler is used at a sufficient concentration to give a dye image of suitable density. The concentration employed will depend on the characteristics of the dye formed by the coupler, and on the nature of the photographic emulsion in which it is incorporated.
  • the photographic image-forming coupler preferably is nondiffusible, and colorless.
  • It can be a coupler of the type which forms a diffusible dye image (which can be transferred to a suitable receiving sheet) or a type which forms nondiffusible dye images.
  • the invention is useful with all photographic incorporated image forming couplers which form dye images by imagewise reaction with oxidizing primary aromatic amine color-developing agent.
  • Incorporated refers to silver halide emulsion layers containing photographic image-forming couplers at the time of exposure.
  • Photographic couplers which form cyan dye images are especially useful in the practice of this invention. However, couplers which form other colored images, such as magenta or yellow dye images, can also be utilized with good results.
  • the couplers utilized in the image-recording layers can produce dyes of essentially the same color or they can have incorporated therein photographic couplers which produce different dye images.
  • development inhibitor-releasing coupler is used herein as a word of art to refer to those photographic couplers which, upon reaction with oxidized primary aromatic amine color-developing agent, form dye and release a compound which inhibits development.
  • Development inhibitor-releasing (DIR) couplers which can be utilized herein can be represented by the general formula:
  • C represents a photographic coupler radical, preferably an open-chain ketomethylene, S-pyrazolone or phenolic (including alpha-naphtholic) coupler radicals, having said Z substituted in the coupling position of the coupler radical, Z representing an organic group which does not contain a chromophore, does not couple with oxidized primary aromatic amine color developer to form dye, does not inhibit development while attached to Cp, but is released from Cp, on reaction with oxidized primary aromatic amine color-developing agent, and either is or forms a compound which inhibits development.
  • Especially useful DlR couplers have Formula I, II or lll above, wherein Y,, Y and Y: each are selected from:
  • a 2-aminoarylazoxy group e.g., 2-amino-4-methyl-phenylazoxy, 2-aminophenylazoxy, 2-amino-4-chlorphenylazoxy, etc.
  • a Z-amidoarylazoxy group e.g., 2-acetamidophenylazoxy, 2-acetamido-4-methylphenylazoxy, 2-acetamido- 4-chlorophenylazoxy, 2-palmitamidophenylazoxy, 4- methoxy-2-palmitamidophenylazoxy,4-chloro-2-palmitamidophenyl-azoxy, etc.
  • the Z group (or Y,, Y and Y in the above formulas) (1) forms a diffusible mercaptan and (2), (3) and (4) form a diffusible aryltriazole upon reaction with oxidized color developing agent.
  • DlR couplers include the following: 1 a-BenZoyl-a-( 2nitrophenylthio)-4-[ Nw -phenyll0. u-(6-Chloro-5-methoity-2-benzotriazolyl )-a-pivalyl- 2-chloro-5-[ a-( 3-pentadecyl-4-sulfophenoxy )-butyramido1acetanilide, sodium salt 1 l. l-Phenyl-3-octadecylamino-4-[ 2-phenyl-5-( 1,3 ,4)-
  • Couplers 6, 7, 28 and 41 are prepared by methods similar to those disclosed in "U.S. Pat. No. 3,148,062. Couplers 8 through 10, 29 through 32 and 42 through 45 are described by Sawdey U.S. Pat. application Ser. No. 674,090, filed Oct. [0, i967. The couplers referred to in the immediate paragraph are the DIR couplers listed above.
  • the most useful DIR couplers are those which have a monothio group in the coupling position (e.g., Formula I, ll and ill above in which Y Y and Y represent a monothio group).
  • Preferred DIR couplers have Formula I, ll or ill above wherein Y,, Y and Y each represents a heterocyclic monothio radical in which the heterocyclic ring has from five to six atoms and at least one hetero atom selected from oxygen, sulfur and nitrogen, such as a hetero ring, containing from one to four heteronitrogen atoms, e.g., a S-tetrazolylthio group.
  • a DlR coupler is selected which forms a dye of substantially the same color as the dye formed by the image forming coupler.
  • the development inhibitor-releasing coupler is used at a concentration sufficient to effectively provide the desired extended latitude low-contrast shoulder.
  • concentration of the development inhibitor-releasing coupler will depend on whether a nonimage-forming silver halide layer is utilized contiguous to the slow silver halide emulsion layer, as well as upon the characteristics of the silver halide emulsion layer, the development inhibitor-releasing coupler itself and other variables. As a general guideline, good results can be obtained when about i to 50 mg. per square foot of development inhibitor-releasing coupler are utilized.
  • the fast emulsion layer is free from DIR coupler.
  • a nonimage-forming hydrophilic colloid silver halide layer can be utilized in the elements of this invention intermediate the support and the image-recording silver halide emulsion layers.
  • the nonimage-recording silver halide emulsion layer comprises silver halide grains which have an average diameter of about 0.1 to about 1 micron.
  • This relatively fine grained emulsion can be coated at various thicknesses, as from about 10 to 40 microns, to reduce image spread. Utilization of such layers to reduce image spread is described and claimed in Millikan U.S. Pat. application Ser. No. 648,237 filed June 23, 1967, and entitled Photographic Elements and Methods.” Such layers appear to function as a light-diffusing layer.
  • the silver halide in those layers can be removed in any suitable manner, such as with a silver halide solvent, e.g., sodium thiosulfate.
  • a silver halide solvent e.g., sodium thiosulfate.
  • nonimage-forming silver halide emulsion layers are free from any light'diffusing material, such as starch, which cannot be readily removed.
  • These layers can in addition contain filter material, such as suitable dyes which absorb green and red radiation. This further reduces image spread when the elements are spectrally sensitized and are exposed to radiation longer than blue wavelength radiation.
  • filter material such as suitable dyes which absorb green and red radiation. This further reduces image spread when the elements are spectrally sensitized and are exposed to radiation longer than blue wavelength radiation.
  • an antihalation layer preferably on the same side of the support as the imagerecording emulsion layers. It is desirable to coat the antihalation layer on the same side of the support as the emulsion layers to obtain the desired reduction in image spread.
  • suitable antihalation material can be employed.
  • dyes can be used, preferably those which absorb the longest wavelengths of radiation to which the emulsion is sensitive.
  • the dyes should be decolorizable during processing, e.g., in sulfite solution.
  • a large number of dyes which can be used in antihalation layers are described in Jones et al. U.S. Pat. No. 3,282,699, issued Nov. 1, 1966.
  • Also useful as antihalation layers are colloidal silver layers such as neutral (gray) colloidal silver dispersed in a suitable colloid such as gelatin. Bleachable dyes are especially useful.
  • the emulsion can contain azaindenes as described in Knott U.S. Pat. No. 2,933,388, benzothiazolium compounds as described in Allen and Wilson U.S. Pat. No. 2,694,716 or a thioether as described In U.S. Pat. No. 3,046,132.
  • the binder for the silver halide in the layers utilized herein can be any of the usual photographic binders. Gelatin is a highly useful and preferred binder. Other binders which can be employed herein with good results are described and referred to in Column 13 of Beavers U.S. Pat. No. 3,039,873 issued June 19, 1962. In addition to such binders, also useful are binders of the type disclosed in U.S. Pat. Nos. 3,142,568; 3,193,386; 3,062,674 and 3,220,844, including the water-insoluble polymers of alkyl acrylates and methacrylates, acrylic acid, sulfoalkyl acrylates or methacrylates and the like.
  • a photographic element in accordance with this invention is prepared having the composition given below, concentration being in mg. per square foot:
  • Layer 4 contains a fast silver bromoiodide (94:6) negative emulsion that is panchromatically sensitized and contains a cyan-dye-forming coupler of the type described in U.S. Pat. No. 2,474,293 as Compound No. 1.
  • Layer 3 comprises a gelatin interlayer to prevent interlayer dye contamination resulting from oxidized developer wandering.
  • Layer 2 contains a panchromatically sensitized silver bromoiodide (97:3) negative emulsion which is about 0.6 Log E slower in speed than the silver halide emulsion used in Layer 4 and also containing a cyan-dye-forming coupler as in Layer 4 plus a mercaptan releasing compound as described in U.S. Pat. No.
  • Layer 1 comprises an unsensitized nonimage-forming silver bromoiodide (94:6) emulsion having grains less than about 1 micron in diameter, such as an emulsion of the type described in Millikan U.S. application Ser. No. 648,237, filed June 23, 1967.
  • the element is exposed for one-fifth second in a sensitometer and processed by development for 15 minutes with primary aromatic amino color-developing agent.
  • the color development process used is described in detail by Millikan in example 1 of Canadian Pat. No. 726,137 issued Jan. 18, 1966.
  • the processed film has a 5 log E exposure latitude, and exhibits low-image spread.
  • the film provides a low-contrast record of bright images and a high-contrast record of faint images It is well suited for directly recording and measuring the events which occur when a satellite in orbit reenters the earth's atmosphere and burns out.
  • this example is repeated, except that the DlR coupler is not used, there IS an undesirable increase in the contrast of the bright image; the latitude of the faster emulsion layer is too low. and, the record produced by a bright image obliterates the record produced by a faint image in close geometrical proximity to the bright image.
  • a photographic element comprising a support having coated thereon:
  • a second photographic silver halide emulsion layer containing nondiffusible photographic coupler which forms image dye said second layer having a faster effective speed sensitivity than said first layer.
  • each of said couplers has one of the following structural formulas:
  • N CRo Formula II Ri-N 1i C-C ll 0 Y3 Rr Rrn Formulalll u- Ru wherein R,, X,, R,,, R R,',,, R R, and R each represents a group of the type employed in, respectively, open-chain ketomethylene couplers, 5-pyrazolonc couplers, and phenolic couplers; and Y,, Y, and Y each represents:
  • each of said couplers has one of the following structural formulas:
  • R and R each represents a member selected from the group consisting of alkyl, aryl, and a heterocyclic group containing at least one hetero atom selected from oxygen, sulfur and nitrogen;
  • X represents a member selected from the group consisting of cyano and carbamyl;
  • R represents a member selected from the group consisting of alkyl, carbamyl, amino, amido, benzamido, and alkamido;
  • R, and R each represents a member selected from the group consisting of hydrogen, alkyl, aryl, a heterocyclic group containing at least one hetero atom selected from oxygen, sulfur and nitrogen, amino, carbonamido sulfonamido, sulfamyl.
  • R, and R when taken together, represents the atoms required to complete a benzo group, and when taken separately, each represents a value selected from those given for R and R and, said Y and Y each represents:
  • a a member selected from the group consisting of hydrogen, halogen, a thiocyano group, an acyloxy group, an aryloxy group, a cyclooxy group, and. when said R and R represent the atoms to tomplete a benzo group, Y represents any of the foregoing groups given for Y, and Y except aryloxy, and can in addition represent a cycloimido group, to complete said photographic image forming coupler", and,
  • a photographic element as defined in claim 4 wherein said Y Y and Y; each represents a member selected from the group consisting of: a 2-nitrophenylthio group; a 2- aminophenylthio group; a S-tetrazolylthm group; a 2- benzothiazolylthio group; and, a S-phenyl l,3,4-ox adiazolylthio group, to complete said development inhibitor. releasing coupler.
  • a photographic element comprising a support having coated thereon, in the order given:
  • an unsensitized, nonimagerecording layer comprising gelatin having dispersed therein silver bromoiodide grains having an average diameter of about 0.l to 1 micron;
  • a first panchromatically sensitized photographic gelatin silver bromoiodide emulsion layer containing the cyan image-forming coupler l-hydroxy-2-[8(2,4'-di-tcrtamylphenoxy)-N-butyl]-naphthamide and the development inhibitor-releasing coupler l-hydroxy-4-( I-phenyl- 5-tetrazolylthio)-2-[A-( ,4-dr-tert-amyl-phenoxy)-N-butyl]naphthamide; and,
  • a second panehromatically sensitized photographic gelatin silver bromoiodide emulsion layer containing the cyan image forming coupler l-hydroxy-Z-l 8(2,4'-di-tertamylphenoxy)-N-butyl]-naphthamide, which layer produces an effective speed of about 0.6 Log E faster than said first silver halide emulsion layer.

Abstract

Photographic elements are provided which feature a support having coated thereon a first photographic silver halide emulsion layer containing image-forming coupler and development inhibitorreleasing coupler; and, a second silver halide emulsion layer containing photographic image-forming coupler, the second layer having a faster effective speed sensitivity than the first layer. Such elements have high contrast for faint images and an extended latitude of low contrast for bright images.

Description

United States Patent [72] Inventors John C. Marchant Hamlin; Robert F. Motter, Rochester, both of N.Y.
[21] Appl. No. 730,593
[22] Filed May 20, 1968 [45] Patented Nov. 16, 1971 [73] Assignee Eastman Kodak Company Rochester, N.Y.
[54] PHOTOGRAPl-IIC ELEMENT INCLUDING SUPERIMPOSED SILVER HALIDE LAYERS OF DIFFERENT SPEEDS 10 Claims, No Drawings [52] US. Cl 96/74,
[51] Int. Cl G03c l/76,
G03c 1/40 [50] Field of Search 96/74, 100, 68
[56] References Cited UNITED STATES PATENTS 3,227,551 1/1966 Barr et a1 96/74 3,450,536 6/1969 Wyckoff 96/68 3,035,913 5/1962 Hellmig 96/68 3,050,391 8/1962 Thompson et al. 96/68 3,227,552 1/1966 Whitmore 96/100 3,243,294 3/1966 Barr 96/100 3,364,022 1/1968 Barr 96/100 3,227,550 1/1966 Whitmore 96/100 3,148,062 9/1964 Whitmore et al. 96/100 Primary ExaminerNorman G. Torchin Assistant Examiner-Edward C. Kimlin Attorneys-W. H, J. Kline, J. R. Frederick and Ogden H.
Webster ABSTRACT: Photographic elements are provided which feature a support having coated thereon a first photographic silver halide emulsion layer containing image-forming coupler and development inhibitor-releasing coupler; and, a second silver halide emulsion layer containing photographic image forming coupler, the second layer having a faster effective speed sensitivity than the first layer. Such elements have high contrast for faint images and an extended latitude of low contrast for bright images.
PI-IOTOGRAPI-IIC ELEMENT INCLUDING SUPERIMPOSED SILVER HALIDE LAYERS OF DIFFERENT SPEEDS This invention relates to photographic elements, and more particularly to the photographic elements having wide exposure latitudes.
Photographic elements having wide exposure latitudes have previously been provided by coating fast and slow silver halide emulsion layers onto a support See, for example, Beach British Patent 774,655 (published 1957) and Millikan British Patent 1,021,564 (published 1966). While such elements are highly useful for the purposes intended, they exhibit deficiencies when utilized in certain applications. In some instances, it is desirable to provide photographic elements having a high contrast for faint images and a long latitude of low contrast for bright images. Such elements would record images of vastly different intensities without the stronger image flaring' or spreading so much that it obliterates the fainter image. One specific use of elements of this type would be in recording the events which take place when a satellite in orbit (having a very faint image) reenters the earths atmosphere and burns out, producing a much stronger image. When the satellite first enters the atmosphere, the image is very faint, and a photographic element is needed which produces high contrast and exhibits high speed. This is necessary to record the low-contrast image which the satellite makes against the sky upon initial reentry. When the satellite commences to burn up in the earths atmosphere, the image of the satellite is bright and has good contrast against the black sky. This brighter image should be recorded on a photographic element which exhibits low contrast and has a long exposure latitude. The prior art fails to teach how to obtain a photographic element which produces high contrast and high speed for faint images and low contrast with extended latitude for bright images. Prior art films have utterly failed in satisfactorily recording the faint image produced upon initial entry of an orbiting satellite into the earth's atmosphere. The image of the faint satellite upon initial reentry could not be measured because its image was obliterated by the flare produced by the stronger image of the burning satellite in the lower atmosphere. Heretofore, the amount of flare produced by the stronger image of the burning satellite has been used to measure indirectly the path and brightness of the satellite on initial stages of reentry.
One object of this invention is to provide novel photo graphic elements which have wide exposure latitude.
Another object of this invention is to provide photographic elements which exhibit low image spread over the useful expo sure latitude.
A further object of this invention is to provide photographic elements which exhibit high contrast when exposed to faint images; and, low contrast and wide latitude when exposed to bright images having a dark background.
Other objects of this invention will be apparent from the disclosure herein and the appended claims.
In accordance with this invention, novel photographic elements are provided comprising a support having coated thereon a first photographic silver halide emulsion layer containing (l) nondiffusible photographic coupler which forms image dye and (2) a development inhibitor-releasing coupler; and, a second photographic silver halide emulsion layer containing nondiffusible photographic coupler which forms image dye, said second layer having a faster effective speed sensitivity than said first layer. The development inhibitor-releasing coupler in the slower image-recording layer effectively extends exposure latitude and reduces contrast. Such photographic elements have wide exposure latitude, and are capable of recording images of vastly different intensity in close geometrical proximity with minimal image spread. Photographic elements in accordance with this invention exhibit excellent sharpness. They produce high-contrast records of faint images and low-contrast records of bright images.
In accordance with another embodiment of this invention. a photographic element is provided as described above which contains a nonimage-forming, light-diffusing silver halide emulsion layer positioned between the support and the silver halide emulsion layers. Photographic elements in accordance with this embodiment of the invention exhibit reduced image spread.
In still another embodiment of this invention, an antihalation layer is provided between the support and the image recording layers The fast and slow silver halide emulsion image recording 0 layers utilized in the photographic elements of this invention can comprise any suitable silver halide, such as silver bromide, silver iodide, silver chloride, or mixed halides such as silver bromoiodide or silver chlorobromide. The silver halide grains in the image-recording layers can be spectrally sensitized, for example when it is desired to expose the elements to radiation longer than blue radiation. Preferably, the silver halide grains of each image-recording layer are panchromatically sensitized. Any of the dyes suggested in the prior art for spectrally sensitizing silver halide can be used in the practice of this invention. The silver halide grains used in the image recording layers are advantageously negative, developing-out silver halide grains.
The optimum speeds of the image-recording layers will depend upon the various uses to which the elements are put. Preferably, the speed sensitivity of the two layers overlaps. Good results are obtained when the effective speed of the slower image-recording layer is about 0.6 Log E to about 1.2 Log E slower than the fast image-recording layer. It is desirable that the faster silver halide emulsion layer have a detection capability in the region of about 5 quanta per square micron. Advantageously, the elements exhibit an exposure latitude of about 10 over the reliable exposure latitude. The effective speeds of the emulsion layers can be regulated in any convenient manner, such as by use of silver halides of different grain size, chemical sensitizcrs, concentration of photographic coupler, etc. The fast and slow image-recording layers can be contiguous. Either the slow or the fast imagc-recording layers may be coated closest to the support, with the other emulsion layer coated thereover. In preferred embodiments, the slower emulsion layer is coated closest to the support, with the fast emulsion layer being coated thereover.
The term photographic image-forming coupler is used herein as a word of art and includes organic compounds which react with oxidized primary aromatic amine developing agents to form dye images. The photographic image-forming couplers, as well as the development inhibitor-releasing couplers which are utilized in the practice of this invention can embody any photographic coupler radical. Typical useful photographic coupler radicals include the S-pyrazolone coupler radicals, the phenolic (including a-naphthol)coupler radicals, and the open-chain ketomethylene coupler radicals. As is well known in the art, 5 pyrazolone coupler radicals are customarily utilized for the formation of magenta dyes; phenolic coupler radicals are generally utilized for the formation of cyan color dyes; and, open-chain ketomethylene coupler radicals are generally utilized in the formation of yellow dyes. The coupling position of such coupler radicals is also well known in the art. The S-pyrazolone coupler radicals couple at the carbon atom in the 4-position thereof; the phenolic coupler radicals couple at the carbon atom in the 4-position (relative to the hydroxyl group); and, the open-chain ketomethylene coupler radicals couple at the carbon atom forming the methylene moiety (e.g.,
wherein denotes the coupling position).
An especially useful class of open-chain ketomethylenc coupler radicals are described in formula I below:
Formula I (I? II R.-cY|
wherein R X and Y, represent substituents of the type used in open-chain ketomethylene couplers. For example, R, can represent an alkyl group (which can be substituted and preferably has from about six to 22 carbon atoms); an aryl group (preferably a phenyl or naphthyl group); or, a heterocyclic group (preferably a carbon containing heterocyclic radical which contains from five to six atoms in the heterocyclic ring, which ring contains at least one hetero-oxygen sulfur or nitrogen atom); X can represent'a member selected from the group consisting of cyano and carbamyl (which can be substituted); and, Y can' have a meaning given below for the image forming and development inhibitor-releasing couplers utilized herein.
The image forming and the development inhibitor-releasing couplers utilized in this invention can feature a S-pyrazolone coupler radical having the following general formula:
wherein R R and Y represent substituents of the type used in S-pyrazolone couplers, for example, R, can represent a value given for R,; R can represent a member selected from the group consisting of an alkyl group, a carbamyl group (which can be substituted), an amino group (which can be substituted with various groups such as one or two alkyl or aryl groups), an amido group, e.g., a benzamido group (which can be substituted), or an alkylamido group (which can be substituted), and, Y; can represent a value given below for the image forming and the development inhibitor-releasing couplers utilized herein.
The photographic image forming and development inhibitor-releasing couplers employed in the practice of this invention can utilize any suitable phenolic (including alphanaphtholic) coupler radicals, including those described in the structural formula below:
Formula III wherein R R R R and Y;, can represent a substituent of the type used in phenolic couplers, for example, R and R each can represent a value given for R,, and in addition can represent a member selected from the group consisting of hydrogen, amino, carbonamido, sulfonamido, sulfamyl, carbamyl, halogen and alkoxy; R and R,,, when taken together, can represent the carbon atoms necessary to complete a benzo group, which benzo group can be substituted with any of the groups given for R and R and, when taken separately, R and R can each independently represent a value given for R and R and, Y represents a value given below for the image forming and development inhibitor-releasing couplers utilized herein.
The image-forming couplers which can be utilized in the practice of this invention include the nondiffusible, openchain, S-pyrazolone and phenolic couplers referred to above, such as those couplers represented by formula I, ll and Ill above wherein Y, and Y each represents a group of the type used in colorless image-forming couplers, such as hydrogen or a coupling off group, e.g., halogen, such as a chlorine or a fluorine atom; a thiocyano group; an acyloxy group, for example, an alkolyloxy group which can be substituted, or an aryloxy group which can be substituted, or a heterocycloyloxy group which can be substituted; a cyclooxy group including an aryloxy group, e.g., phenoxy, naphthoxy, or a heterocyclooxy group, such as a pyridinyloxy group, a tetrahydropyranyloxy group, a tetrahydroquinolyloxy group, etc, and, an alkoxy group; and, Y can represent any value given for Y and Y except an aryloxy group, and in addition Y can also represent a cycloimido group (e.g., a maleimido group, a succinimido group, a 1,2-dicarboximido group, a phthalimido group, etc.) when R and R are taken together to form a benzo group. The various groups which Y,, Y and Y can represent may include groups such as:
wherein R and R have a meaning given for R and X and X;
each have a meaning given for X,.
Especially good results are obtained when the image-forming coupler is colorless; it can, however, be colored if desired; It will be understood that the image-forming coupler does not release a development inhibitor.
The useful image-forming couplers include both the fourequivalent and two-equivalent nondiffusing couplers. Typical useful four-equivalent yellow dye-forming couplers which can be utilized in this invention include the following:
I. N-amyl-p-benzoylacetaminobenzenesulfonate 2. N-( 4-anisolyacetaminobenzenesulfonyl )-N-benzyl-m-.
toluidine 3. N-( 4-benzoylacetaminobenzenesulfonyl )-N-henzylaniline 4. w-(p-benzoylbenzoyl)acetaniline 5. w-benzoyl-p-sec.-amylacetaniline 6. N,N"di( w-benzoylacetyl )-p-phenylenediaminc 7v a-{3'la-t 2,4-di-tert-amylphenoxy)butyramido |-benzoyl} -2-methoxyacetaniline 8. 4,4-di-(acctoacetamino)-3,3 -dimethyldiphenyl 9. p,p-di-(acctoacetamino)diphenylmethane l0. nonyl-p-benzoylacetaminobenzenesulfonate l l. N-phenyl-N-(p-acetoacetaminophenyl)urea l2. n-propyl-p-benzoylacetaminobenzenesulfonate acetoacetpiperidide l3. N-(w-benzoylacetyl l ,2,3,S-tetrahydroquinolinc l4. N-(w-benzoylacetyl)morpholine The two-equivalent yellow dye-forming couplers can be derived from corresponding parent fourequivalent couplers by replacing one of the two hydrogens on the alpha-carbon (i.e.,
methylene) with any nonchromophoric coupling off group, including coupling off groups such as the fluorine atom, the chlorine atom, an acyloxy group, a cyclooxy group and a thiocyano groupv Typically useful twocquivalcnt couplers include the alpha-fluoro couplers of US. Pat. No. 3,277,155, the alpha-chloro couplers of US. Pat. No. 2,778,658, the alpha-thiocyano couplers of US. Pat. No. 3,253,924, the alpha-acyloxy grouplers of Loria US. Pat. application 477,353, filed July 26, 1965, the alphacyclooxy couplers of Loria US. Pat. application 469,887, filed July 6, 1965, and the alpha-alkoxy couplers of the type shown in Whitmore et al. US. Pat. No. 3,227,550. Typical useful two-equivalent yellow-forming opcnchain ketomethylene couplers include the following:
1. 4-( 01-2'-methoxybenzoyl-a-chloroacetamido )-3 (4 "-tert.-amylphenoxy)benzanilide 1 I 2. a-o-methoxybenzoyl-a-chloro-4-[ a-( 2,4-di-tc rt amylphenoxy )-n-butyramido]-acetanilide 3 a-( 3-[a-( 2,4-di-tert-amylphenoxy )butyramido lben zoyl -a-fluoro-2-methoxyacetanilide 4. a-fluoro-a-pivalyl-S-[ 2,4-di-tert-amylphenoxy )bu tyramidol-2-chloroacetanilide 28. 2-chloro-5-(4-bromodiphenyl-4-sulfonamido l naphthol Any of the two-equivalent cyan-forming phenolic couplers can be used in the practice of this invention. The twoequivalent couplers can be derived from the corresponding four-equivalent phenolic couplers by substituting a nonchromophoric coupling off group on the carbon in the 4- position of the phenolic or naphthoic ring. lncluded among the coupling off groups are the acyloxy group illustrated by the 4-acyloxyphenols and 4-acyloxynaphthols of Loria U.S. Pat. No. 3,31 1,476, issued Mar. 28, 1967, the cyclooxy group illustrated by the 4-cyclooxy naphthols of Loria U.S. Pat. application 483,807, filed Aug. 30, 1965, the thiocyano group illustrated by the 4-thiophenols and 4-thionaphthols of Loria U.S. Pat. No. 3,253,294, the cyclic imido groups as illustrated by the 4-cyclie imido derivatives of I-hydrogen-Z-naphthamides of Loria U.S. Pat. application 504,994, the chlorine atom as illustrated in the 4-chlorophenols of Weissberger U.S. Pat. No. 2,423,730, the alkoxy group as illustrated by the 4-alkoxynaphthols (and naphthols) of Whitmore et al. U.S. Pat. No. 3,227,550, the sulfo group as in 4-sulfophenols and 4-sulfonaphthols, etc.
Typical two-equivalent cyan-forming couplers which can be used in this invention include the following:
1. l-hydroxy-4-decyloxy-2-naphthamide 2. l-hydroxy-4acetoxy-N-[a-(2,4-di-tert-amylphenoxy)butyl]-2-naphthamide 3. l-hydroxy-4-methoxy-N-octadecyl-3 ',5 '-dicarboxy-2- naphthanilide 4. l-hydroxy-4-thiocyano-N-[ 01-2,4-di-tert-amylphenoxy)-butyl]-2-naphthamide 5. l-hydroxy-4-(pentafluorophenoxy )-N- [i- {4-[ a-( 2,4-
di-tert-amylphenoxy )acetamido lphenyl ethyl -2- naphthamide 6. 1-hydroxy-4-(4-nitrophenoxy)-N-[a-2,4-di-tertamylphenoxy)butyl]-2-naphthamide 7. l-hydroxy-4-(4-chlorophenoxy)-2'-tetradecyloxy-2- naphthanilide The photographic image-forming coupler is used at a sufficient concentration to give a dye image of suitable density. The concentration employed will depend on the characteristics of the dye formed by the coupler, and on the nature of the photographic emulsion in which it is incorporated. The photographic image-forming coupler preferably is nondiffusible, and colorless. It can be a coupler of the type which forms a diffusible dye image (which can be transferred to a suitable receiving sheet) or a type which forms nondiffusible dye images. The invention is useful with all photographic incorporated image forming couplers which form dye images by imagewise reaction with oxidizing primary aromatic amine color-developing agent. Incorporated refers to silver halide emulsion layers containing photographic image-forming couplers at the time of exposure.
Photographic couplers which form cyan dye images are especially useful in the practice of this invention. However, couplers which form other colored images, such as magenta or yellow dye images, can also be utilized with good results. The couplers utilized in the image-recording layers can produce dyes of essentially the same color or they can have incorporated therein photographic couplers which produce different dye images.
The term development inhibitor-releasing coupler is used herein as a word of art to refer to those photographic couplers which, upon reaction with oxidized primary aromatic amine color-developing agent, form dye and release a compound which inhibits development. Development inhibitor-releasing (DIR) couplers which can be utilized herein can be represented by the general formula:
ZC wherein C, represents a photographic coupler radical, preferably an open-chain ketomethylene, S-pyrazolone or phenolic (including alpha-naphtholic) coupler radicals, having said Z substituted in the coupling position of the coupler radical, Z representing an organic group which does not contain a chromophore, does not couple with oxidized primary aromatic amine color developer to form dye, does not inhibit development while attached to Cp, but is released from Cp, on reaction with oxidized primary aromatic amine color-developing agent, and either is or forms a compound which inhibits development. Especially useful DlR couplers have Formula I, II or lll above, wherein Y,, Y and Y: each are selected from:
1. a monothio group, such as, ortho-nitro or ortho-amino substituted arylmonothio groups (such as, 2-nitrophenyl and Z-aminophenyl), a carbon containing heterocyclic monothio group (generally having a flveto six-membered ring containing at least one hetcronitrogen, oxygen or sulfur atom and preferably one to four heteronitrogcn atoms) including heterocyclic radicals, such as tetrazolyls, triazinyls, triazolyls, oxazolyls, oxadiazolyls, diazolyls, thiazyls, thiadiazolyls, benzoxazolyls, benzothiazolyls, pyrimidyls, pyridinyl, quinolinyls, etc., and in which the aryl-, heterocyclic-moieties of the monothio group are either unsubstituted or substituted with various groups, such as nitro, halogen (chlorine, bromine, iodine, fluorine), lower alkyl, lower alkylamido, lower alkoxy, lower alkylsulfonamido, achloroacetylthio, lower alkylcarbamyl amino, etc., typical monothio groups representing the above include 2- aminophenyl, 2-nitrophenyl and a heterocyclic group (e.g., 2-benzothiazolylthio, l-phenyl-5-tetrazolylthio, l (4-carbomethoxyphenyl)-5-tetrazolylthio, S-phenyll,3,4-oxadiazolyl-2-thio, 2-phenyl-5-( l,3,4)-oxadiazolythio, 2-benzoxazolylthio, etc);
2. a 2-aminoarylazoxy group (e.g., 2-amino-4-methyl-phenylazoxy, 2-aminophenylazoxy, 2-amino-4-chlorphenylazoxy, etc.
3. a Z-amidoarylazoxy group (e.g., 2-acetamidophenylazoxy, 2-acetamido-4-methylphenylazoxy, 2-acetamido- 4-chlorophenylazoxy, 2-palmitamidophenylazoxy, 4- methoxy-2-palmitamidophenylazoxy,4-chloro-2-palmitamidophenyl-azoxy, etc.
4. a 2-aryltriazolyl group (e.g., 2-benzotriazolyl, 5-chloro-2- benzotriazolyl, 5-hydroxy-2-benzotriazolyl, 4,7'-dinitro-2- benzotriazolyl, 5-methyl-2-benzotriazolyl, 6-methoxy-2- benzotriazolyl-4-carboxyethyl-2benzotriazolyl, 4-sulfoethyl-2-benzotriazolyl, Z-naphthotriazolyl, 4-methyl- Znaphthotriazolyl, 5-chloro-2-napthotriazolyl S-hydroxy- 2-naphthotriazolyl, 5-nitro-Z-naphthotriazolyl, S-sulfoethyl-Z-naphthotriazolyl, 4-amino-2-naphthotriazolyl, benzo[ l ,2-d:4,5-d']-bistriazolyl, etc.).
The Z group (or Y,, Y and Y in the above formulas) (1) forms a diffusible mercaptan and (2), (3) and (4) form a diffusible aryltriazole upon reaction with oxidized color developing agent.
Representative DlR couplers include the following: 1 a-BenZoyl-a-( 2nitrophenylthio)-4-[ Nw -phenyll0. u-(6-Chloro-5-methoity-2-benzotriazolyl )-a-pivalyl- 2-chloro-5-[ a-( 3-pentadecyl-4-sulfophenoxy )-butyramido1acetanilide, sodium salt 1 l. l-Phenyl-3-octadecylamino-4-[ 2-phenyl-5-( 1,3 ,4)-
oxadiazolylthio -py razolone 12. l-{ 4-[ y-( 2 ,4-di-tert-amylphenoxy )butyramido phenyli -3-ethoxy-4-( l-phenyl-5-tetrazolylthio)-5- pyrazolone 13. l-{ 4-[ a-( 3-pentadecylphenoxy )butyramido phenyl 3-ethoxy-4-( l-phenyl-5-tetrazolylthio )-5-pyrazolone i4. l-(2,4,6-trichlorophenyl)-3 (4-[ a-( 2,4-di-tertamylphenoxy)butyramido]anilino} -4-( l-phenyl-5' tetrazolylthio )-5-pyrazolone l5. l-Phenyl-3-octadecylamino-4-( l -phenyl-5- tetrazolythio-S-pyrazolone l6. l-[4-(4-tert-butylphenoxy)phenyl]-3-phenyl-4-( lphenyl-S -tetrazolylthio)-5-pyrazolone 17. l-[ 4-(4-tert-butylphenoxy )phenyl] -3-[ a-(4-tert-butylphenoxy)propionamido1-4-(5-phenyl-l ,3 ,4-oxadiazolyl-Z-thio )-5-pyrazolone 18. l-[ 4-(4-tertbutylphenoxy )phenyl ]-3-[ a-(4-tert-butylphenoxy )propionamido] -4-( 2-nitrophenylthio )-5- pyrazolone 19. l-[ 4-( 4-tert-butylphenoxy )phenyl -3-[ oz-(4-tert-bu' tylphenoxy)propionamido]-4-[1-(4-methoxyphenyl)-5- tetrazolylthio]-S-pyrazolone 20. 1-[4-(4-tert-butylphenoxy)phenyl1-3-[a-(4-tert-butylphenoxy)propionamido] -4-( 2benzo-thiazolylthio)-5- pyrazolone 2 l 1-[4-(4-tert-butylphenoxy)phenyl]-3-[a-(4-tert-butylphenoxy )propionamido ]-4-( 2-nitrophenylthio )-5- pyrazolone 22 l-[4-( 4-tert-butylphenoxy)phenyl1-3-[ a-(tert-butylphenoxy )propionamido ]-4-( Z-benzoxazolylthio )-5- pyrazolone 23. l-( 2,4-dichloro-6-methoxyphenyl )-3-[ a-( 3-pentadecylphenoxy)acetamido]-4-( l -phenyl-5- tetrazolylthio)-S-pyrazolone 24. l -Phenyl-3-octadecyl-4-( l-phenyl-5-tetrazolylthio )-5 -pyrazolone 25. l-Phenyl-3-[ a-(2,4-di-tert-amylphenoxy )acetamido1- "4-( l-phenyl-S -tetrazolylthio )-5-pyrazolone 26. l-Phenyl-3-[y-( 2,4-di-tert-amylphenoxy )butyramido ]-4-( l -phenyl-5-tetrazolylthio )-5 -pyrazolone 27. l-Phenyl-3-( 3 ,S-didodecyloxybenzamido )-4-( 2-nitrophenylthio )-5 -pyrazolone 28. 1-Phenyl-3-[ a-( 2,4-di-tert-amylphenoxy )acetamido]- 4-( 2-aminophenylazoxy )-5-pyrazolone 29. 4Benzotriazolyl-3-pentadecyl- 1 -phenyl-5-pyrazolone 30. 4-Benzotriazolyl-l -(2,4 ,6-trichlorophenyl )-3-[ 3- i a- 2,4-di-t-amylphenoxy)acetamido} benzamido1-5- pyrazolone 3 l. 4-( 5-Methoxy-2-benzotriazolyl )-3-pentadecyll phenyl-S-pyrazolone 32. 4-( 4-Carboxy-2-benzotriazolyl)- l -(2,4,6-trichlorophenyl )-3 -pentadecyl-5-pyrazolone 33. l-Hydroxy-4-( 2-nitrophenylthio )-N-[ 8-( 2,4-di-tertamylphenoxy)butyl ]-2-naphthamide 34. l-Hydroxy-4-( 2-benzothiazolylthio)-N-[8-( 2,4-di-tertamylphenoxy)bu tyl -2 -naphthamide 35. l-Hydroxy-4-( l-phenyl-5-tetrazolylthio)-N-[ 8-( 2,4-
di-tert-amylphenoxy )butyl ]-2-naphthamide 36. l-Hydroxy-4-( 2-benzothiazolylthio )-N-octadecyl- 3 ,5 '2-naphthanilide 37. l-Hydroxy-4-( l-phenyl-5-tetrazolylthio )-2 tetradecyloxy-Z-naphthanilide 38. 1-Hydroxy-4-[ l-(4-methoxyphenyl )-5 -tetrazolylthio]-N-[ 8-( 2,4-di-tert-amylphenoxy )butyl -2 -naphthamide 39. l-Hydroxy-4-( 5-phenyll ,3 ,4-oxadiazolyl-2-thio )-N-[ 8-( 2 ,4-di-tert-amylphenoxy )butyl]-2-n aphthamide 40. 5-Methoxy-2-[a-( 3-n-pentadecylphenoxy)butyramido]-4-( l-phenyl-5-tetrazolylthio)phenol 10 41. i-Hydroxy-4-( 2-arnino-4-methylphenylazoxy-N-l6-( 2,4-di-tert-amylphenoxy)butyH-Z-naphthamide 42. 4-(2-Benzotriazolyl)-2-[8-(2,4-diamylphenoxybutyl)l-l-hydroxynaphthamide 43. l-Hydroxy-4-(6-nitro-2-benzotriazolyl)N-[5-(2,4-dit-amylphenoxy)butyl]-2-naphthamide 44. 5-Methoxy-2-[a-(3-pentadecylphenoxy)butyramido] -4-(5-chloro-2-benzotriazolyl)phenol 45. 5-Methoxy-2-[a-(3-pentadecylphenoxy)butyramido] -4-(6chloro-5-methoxy2-benzotriazolyl)phenol Couplers 1 through 5, ll through 27, 33 through 40 are described in Barr U.S. Pat. No. 3,227,554. Couplers 6, 7, 28 and 41 are prepared by methods similar to those disclosed in "U.S. Pat. No. 3,148,062. Couplers 8 through 10, 29 through 32 and 42 through 45 are described by Sawdey U.S. Pat. application Ser. No. 674,090, filed Oct. [0, i967. The couplers referred to in the immediate paragraph are the DIR couplers listed above.
The most useful DIR couplers are those which have a monothio group in the coupling position (e.g., Formula I, ll and ill above in which Y Y and Y represent a monothio group). Preferred DIR couplers have Formula I, ll or ill above wherein Y,, Y and Y each represents a heterocyclic monothio radical in which the heterocyclic ring has from five to six atoms and at least one hetero atom selected from oxygen, sulfur and nitrogen, such as a hetero ring, containing from one to four heteronitrogen atoms, e.g., a S-tetrazolylthio group. Preferably, a DlR coupler is selected which forms a dye of substantially the same color as the dye formed by the image forming coupler.
The development inhibitor-releasing coupler is used at a concentration sufficient to effectively provide the desired extended latitude low-contrast shoulder. The optimum concentration of the development inhibitor-releasing coupler will depend on whether a nonimage-forming silver halide layer is utilized contiguous to the slow silver halide emulsion layer, as well as upon the characteristics of the silver halide emulsion layer, the development inhibitor-releasing coupler itself and other variables. As a general guideline, good results can be obtained when about i to 50 mg. per square foot of development inhibitor-releasing coupler are utilized. Preferably, the fast emulsion layer is free from DIR coupler.
A nonimage-forming hydrophilic colloid silver halide layer can be utilized in the elements of this invention intermediate the support and the image-recording silver halide emulsion layers. Advantageously, the nonimage-recording silver halide emulsion layer comprises silver halide grains which have an average diameter of about 0.1 to about 1 micron. This relatively fine grained emulsion can be coated at various thicknesses, as from about 10 to 40 microns, to reduce image spread. Utilization of such layers to reduce image spread is described and claimed in Millikan U.S. Pat. application Ser. No. 648,237 filed June 23, 1967, and entitled Photographic Elements and Methods." Such layers appear to function as a light-diffusing layer. During processing, the silver halide in those layers can be removed in any suitable manner, such as with a silver halide solvent, e.g., sodium thiosulfate. Advantageously, such nonimage-forming silver halide emulsion layers are free from any light'diffusing material, such as starch, which cannot be readily removed. These layers can in addition contain filter material, such as suitable dyes which absorb green and red radiation. This further reduces image spread when the elements are spectrally sensitized and are exposed to radiation longer than blue wavelength radiation. Such techniques are described and claimed in Millikan U.S. Pat. application Ser. No. 729,432 filed May 15, 1968, and now U.S. Pat. 3,591,382, allowed July 6, 1971, which is a continuation-in-part of the Millikan application referred to above.
it is also useful in some instances to employ an antihalation layer, preferably on the same side of the support as the imagerecording emulsion layers. It is desirable to coat the antihalation layer on the same side of the support as the emulsion layers to obtain the desired reduction in image spread. Any
suitable antihalation material can be employed. For example, dyes can be used, preferably those which absorb the longest wavelengths of radiation to which the emulsion is sensitive. The dyes should be decolorizable during processing, e.g., in sulfite solution. A large number of dyes which can be used in antihalation layers are described in Jones et al. U.S. Pat. No. 3,282,699, issued Nov. 1, 1966. Also useful as antihalation layers are colloidal silver layers such as neutral (gray) colloidal silver dispersed in a suitable colloid such as gelatin. Bleachable dyes are especially useful. The emulsion can contain azaindenes as described in Knott U.S. Pat. No. 2,933,388, benzothiazolium compounds as described in Allen and Wilson U.S. Pat. No. 2,694,716 or a thioether as described In U.S. Pat. No. 3,046,132.
The binder for the silver halide in the layers utilized herein can be any of the usual photographic binders. Gelatin is a highly useful and preferred binder. Other binders which can be employed herein with good results are described and referred to in Column 13 of Beavers U.S. Pat. No. 3,039,873 issued June 19, 1962. In addition to such binders, also useful are binders of the type disclosed in U.S. Pat. Nos. 3,142,568; 3,193,386; 3,062,674 and 3,220,844, including the water-insoluble polymers of alkyl acrylates and methacrylates, acrylic acid, sulfoalkyl acrylates or methacrylates and the like.
The following example is included for a further understanding of this invention.
EXAMPLE A photographic element in accordance with this invention is prepared having the composition given below, concentration being in mg. per square foot:
(Support) l 1-hydroxy-2-I8(2,4-di-tert-amylphenoxy)-N-butyll-naphthamidc. 2 1-hydroxy-4-(1-phenyl-5-tetrazolylthio)-2[A-2,4-di-tcrtamylphenoxy)- N-butyl] naphtliamide.
Layer 4 contains a fast silver bromoiodide (94:6) negative emulsion that is panchromatically sensitized and contains a cyan-dye-forming coupler of the type described in U.S. Pat. No. 2,474,293 as Compound No. 1. Layer 3 comprises a gelatin interlayer to prevent interlayer dye contamination resulting from oxidized developer wandering. Layer 2 contains a panchromatically sensitized silver bromoiodide (97:3) negative emulsion which is about 0.6 Log E slower in speed than the silver halide emulsion used in Layer 4 and also containing a cyan-dye-forming coupler as in Layer 4 plus a mercaptan releasing compound as described in U.S. Pat. No. 3,227,554 as Compound No. 1]. Layer 1 comprises an unsensitized nonimage-forming silver bromoiodide (94:6) emulsion having grains less than about 1 micron in diameter, such as an emulsion of the type described in Millikan U.S. application Ser. No. 648,237, filed June 23, 1967. The element is exposed for one-fifth second in a sensitometer and processed by development for 15 minutes with primary aromatic amino color-developing agent. The color development process used is described in detail by Millikan in example 1 of Canadian Pat. No. 726,137 issued Jan. 18, 1966. The processed film has a 5 log E exposure latitude, and exhibits low-image spread. The film provides a low-contrast record of bright images and a high-contrast record of faint images It is well suited for directly recording and measuring the events which occur when a satellite in orbit reenters the earth's atmosphere and burns out. When this example is repeated, except that the DlR coupler is not used, there IS an undesirable increase in the contrast of the bright image; the latitude of the faster emulsion layer is too low. and, the record produced by a bright image obliterates the record produced by a faint image in close geometrical proximity to the bright image.
The invention has been described in detail with particular reference to preferred embodiments thereof, but, it will be understood that variations and modifications can be effected within the spirit and scope of the invention described hereinabove and in the appended claims.
We claim:
1. A photographic element comprising a support having coated thereon:
a. a first photographic silver halide emulsion layer containing (1) nondiffusible photographic coupler which forms image dye and (2) a development inhibitor-releasing photographic coupler; and,
b. a second photographic silver halide emulsion layer containing nondiffusible photographic coupler which forms image dye, said second layer having a faster effective speed sensitivity than said first layer.
2. A photographic element as defined in claim 1 wherein each of said couplers has one of the following structural formulas:
Formulal El) ill RiCC'7Y| N=CRo Formula II Ri-N 1i C-C ll 0 Y3 Rr Rrn Formulalll u- Ru wherein R,, X,, R,,, R R,',,, R R, and R each represents a group of the type employed in, respectively, open-chain ketomethylene couplers, 5-pyrazolonc couplers, and phenolic couplers; and Y,, Y, and Y each represents:
a. a member selected from the group consisting of hydrogen and a colorless coupling-off group to complete said image-forming coupler; and,
b. a colorless group to complete said development inhibitorreleasing coupler.
3. A photographic element as defined in claim 1 wherein each of said couplers has one of the following structural formulas:
wherein R and R each represents a member selected from the group consisting of alkyl, aryl, and a heterocyclic group containing at least one hetero atom selected from oxygen, sulfur and nitrogen; X represents a member selected from the group consisting of cyano and carbamyl; R represents a member selected from the group consisting of alkyl, carbamyl, amino, amido, benzamido, and alkamido; R, and R each represents a member selected from the group consisting of hydrogen, alkyl, aryl, a heterocyclic group containing at least one hetero atom selected from oxygen, sulfur and nitrogen, amino, carbonamido sulfonamido, sulfamyl. carbamyl, halogen and alkoxy; R, and R when taken together, represents the atoms required to complete a benzo group, and when taken separately, each represents a value selected from those given for R and R and, said Y and Y each represents:
a. a member selected from the group consisting of hydrogen, halogen, a thiocyano group, an acyloxy group, an aryloxy group, a cyclooxy group, and. when said R and R represent the atoms to tomplete a benzo group, Y represents any of the foregoing groups given for Y, and Y except aryloxy, and can in addition represent a cycloimido group, to complete said photographic image forming coupler", and,
b. a monothio group selected from an orthoamino-substituted arylmonothio group; an orthonitro-substituted arylmonothio group; and, a heterocyclic radical containing at least one hetero atom selected from oxygen, sulfur and nitrogen, to complete said development inhibitorreleasing coupler.
4. A photographic element as defined in claim 3 wherein said Y Y and Y each represents a heterocyclic monothio radical containing from one to four heteronitrogen atoms, to complete said development inhibitor-releasing coupler.
5. A photographic element as defined in claim 4 wherein said Y Y and Y; each represents a member selected from the group consisting of: a 2-nitrophenylthio group; a 2- aminophenylthio group; a S-tetrazolylthm group; a 2- benzothiazolylthio group; and, a S-phenyl l,3,4-ox adiazolylthio group, to complete said development inhibitor. releasing coupler.
6. A photographic element as defined in claim 3 wherein said second photographic silver halide emulsion layer produces an effective speed which is about 0.6 Log E faster than the effective speed of said first photographic silver halide emulsion.
7. A photographic element as defined in claim 3 wherein said photographic silver halide emulsion layers and said support are separated by a nonimage-recording emulsion layer comprising silver halide grains which have an average diameter ofless than about 1 micron.
8. A photographic element as defined in claim 7 wherein said nonimage-recording silver halide emulsion layer is coated at a thickness of from about 10 to 40 microns.
9. A photographic element comprising a support having coated thereon, in the order given:
a. an unsensitized, nonimagerecording layer comprising gelatin having dispersed therein silver bromoiodide grains having an average diameter of about 0.l to 1 micron;
b. a first panchromatically sensitized photographic gelatin silver bromoiodide emulsion layer containing the cyan image-forming coupler l-hydroxy-2-[8(2,4'-di-tcrtamylphenoxy)-N-butyl]-naphthamide and the development inhibitor-releasing coupler l-hydroxy-4-( I-phenyl- 5-tetrazolylthio)-2-[A-( ,4-dr-tert-amyl-phenoxy)-N-butyl]naphthamide; and,
c. a second panehromatically sensitized photographic gelatin silver bromoiodide emulsion layer containing the cyan image forming coupler l-hydroxy-Z-l 8(2,4'-di-tertamylphenoxy)-N-butyl]-naphthamide, which layer produces an effective speed of about 0.6 Log E faster than said first silver halide emulsion layer.
10. A photographic element as defined in claim 3 wherein said photographic silver halide layers and said support are separated by a photographic antihalation layer.
l Po-wso (5/69) Patent No.
UNITED STATES PATENT OFFICE Dated November 16, 1971 Inventofls) John C. Merchant et a1 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column Column Column line 5,: counting from the top, after "pivalyl-dL'",
insert a hyphen line 6, counting from the top, replace "pivall",
with --pivalyl--; lines 63, 65 and 73, counting from the top, replace "benzamidoih" with --benzamid 7--.
line 32, counting from the top, after "phenyl",
delete the parentheses line &2, counting from the top, after "-2", insert a yphen M, counting from the top, after "2" (first occurrence) insert a hyphen line 15, counting from the top, replace "tetrazolythio", with --tetra.zolylthio)--;
6 4, counting from the top, replace entire line with --3', 5'-dicarboxy-2 naphthanilide line line
Page 1 of 2 pages.
jag UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Pa=ent No. Dated November 16,
' John 0. Merchant et a1 Invenrofle) PAGE 2 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 11, replace the table in the example with G t 82m. Overcoat; Layer 5 GZIZtI 300 I High speed Pan sensitized Layer 4 Cyan Coupler* .22 AgBrl gelatin emulsion Ar; 200 Layer 3 Gel tin 8'2" Barrier Layer Gelatin 263 I Layer 2 Cyan Coupler* 60 Slower speed,Pen aensitizeq DIR Coupler** 12 AgBrl gelatin emulsion A2 200 Gelatin 1000 Unsensitized 1 A 500 A Brl elati em I si n L Layer l lflllllllllsw "E7 7'77 77I77 *l-hydroxy-2-L(2' ,4-di-tert-amylphenoxy)-N-butyfl-naphthamide **l-hydroxy-4-(l-phenyl- -tetrazolylt1 \io)-2LE -(2,4-di-t;ert-
amylphenoxy)-N-buty naphthamide Column 1 1, lines 2 4 and 31 counting from the to re 1 "L8 with ---L;'r P, p ace Signed and sealed this 22nd day of August 1972.
(SEAL) Attest:
EDWARD M.FLETCHER, JR. ROBERT GOTTSCHALK Atte sting Officer Commissioner of Patents

Claims (9)

  1. 2. A photographic element as defined in claim 1 wherein each of said couplers has one of the following structural formulas:
  2. 3. A photographic element as defined in claim 1 wherein each of said couplers has one of the following structural formulas:
  3. 4. A photographic element as defined in claim 3 wherein said Y1, Y2 and Y3 each represents a heterocyclic monothio radical containing from one to four heteronitrogen atoms, to complete said development inhibitor-releasing coupler.
  4. 5. A photographic element as defined in claim 4 wherein said Y1, Y2 and Y3 each represents a member selected from the group consisting of: a 2-nitrophenylthio groUp; a 2-aminophenylthio group; a 5-tetrazolylthio group; a 2-benzothiazolylthio group; and, a 5-phenyl-1,3,4-oxadiazolylthio group, to complete said development inhibitor-releasing coupler.
  5. 6. A photographic element as defined in claim 3 wherein said second photographic silver halide emulsion layer produces an effective speed which is about 0.6 Log E faster than the effective speed of said first photographic silver halide emulsion.
  6. 7. A photographic element as defined in claim 3 wherein said photographic silver halide emulsion layers and said support are separated by a nonimage-recording emulsion layer comprising silver halide grains which have an average diameter of less than about 1 micron.
  7. 8. A photographic element as defined in claim 7 wherein said nonimage-recording silver halide emulsion layer is coated at a thickness of from about 10 to 40 microns.
  8. 9. A photographic element comprising a support having coated thereon, in the order given: a. an unsensitized, nonimage-recording layer comprising gelatin having dispersed therein silver bromoiodide grains having an average diameter of about 0.1 to 1 micron; b. a first panchromatically sensitized photographic gelatin silver bromoiodide emulsion layer containing the cyan image-forming coupler 1-hydroxy-2-(8(2'',4''-di-tert-amylphenoxy)-N-butyl)-naphthamide and the development inhibitor-releasing coupler 1-hydroxy-4-(1-phenyl-5-tetrazolylthio)-2-( Delta -(2, 4-di-tert-amylphenoxyl)-N-butyl)naphthamide; and, c. a second panchromatically sensitized photographic gelatin silver bromoiodide emulsion layer containing the cyan image forming coupler 1-hydroxy-2-(8(2'',4''-di-tert-amylphenoxy)-N-butyl)-naphthamide, which layer produces an effective speed of about 0.6 Log E faster than said first silver halide emulsion layer.
  9. 10. A photographic element as defined in claim 3 wherein said photographic silver halide layers and said support are separated by a photographic antihalation layer.
US730593A 1968-05-20 1968-05-20 Photographic element including superimposed silver halide layers of different speeds Expired - Lifetime US3620747A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US73059368A 1968-05-20 1968-05-20

Publications (1)

Publication Number Publication Date
US3620747A true US3620747A (en) 1971-11-16

Family

ID=24935967

Family Applications (1)

Application Number Title Priority Date Filing Date
US730593A Expired - Lifetime US3620747A (en) 1968-05-20 1968-05-20 Photographic element including superimposed silver halide layers of different speeds

Country Status (6)

Country Link
US (1) US3620747A (en)
JP (1) JPS493843B1 (en)
BE (1) BE733342A (en)
DE (1) DE1925359A1 (en)
FR (1) FR2008905A1 (en)
GB (1) GB1275069A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770436A (en) * 1970-12-26 1973-11-06 Konishiroku Photo Ind Process for forming cyan image in light-sensitive color photographic material
US3839044A (en) * 1971-03-25 1974-10-01 Eastman Kodak Co Silver halide emulsions containing 2-equivalent color couplers
FR2228240A1 (en) * 1973-05-04 1974-11-29 Fuji Photo Film Co Ltd
JPS49129536A (en) * 1973-04-13 1974-12-11
JPS5040134A (en) * 1973-08-16 1975-04-12
US3960558A (en) * 1974-04-29 1976-06-01 Polaroid Corporation Dye free, spectrally sensitive silver halide layers in diffusion transfer films
US4003744A (en) * 1972-12-07 1977-01-18 Polaroid Corporation Photographic products with photosensitive layers of same spectral sensitivity and different speed
US4086094A (en) * 1974-06-20 1978-04-25 Fuji Photo Film Co., Ltd. Photographic couplers with N-heterocyclic development inhibiting coupling-off group
US4134766A (en) * 1976-10-23 1979-01-16 Konishiroku Photo Industry Co., Ltd. Dye image forming process
US4146396A (en) * 1976-01-26 1979-03-27 Fuji Photo Film Co., Ltd. Method of forming color photographic images
WO1979001020A1 (en) * 1978-05-02 1979-11-29 Polaroid Corp Photosensitive elements
US4184876A (en) * 1974-07-09 1980-01-22 Eastman Kodak Company Color photographic materials having increased speed
US4205990A (en) * 1975-08-02 1980-06-03 Konishiroku Photo Industry Co., Ltd. Process for forming a cyan dye image by the use of a 2-equivalent cyan coupler
US4301243A (en) * 1978-12-23 1981-11-17 Agfa-Gevaert Aktiengesellschaft Photographic recording material
US4348474A (en) * 1980-08-01 1982-09-07 Agfa-Gevaert Aktiengesellschaft Light sensitive photographic recording material and the use thereof for the production of photographic images
US4391896A (en) * 1978-09-20 1983-07-05 Eastman Kodak Company Mixture of nondiffusible redox dye-releasers for curve shape control
JPS58140740A (en) * 1982-02-15 1983-08-20 Konishiroku Photo Ind Co Ltd Photosensitive silver halide material
EP0087880A2 (en) * 1982-02-19 1983-09-07 Konica Corporation Silver halide photographic material
US4414308A (en) * 1981-03-20 1983-11-08 Konishiroku Photo Industry Co., Ltd. Silver halide color photographic photosensitive material
US4456682A (en) * 1981-09-21 1984-06-26 Fuji Photo Film Co., Ltd. Silver halide color photographic material
US4614707A (en) * 1984-02-17 1986-09-30 Fuji Photo Film Co., Ltd. Color reversal photographic light-sensitive materials
US4772542A (en) * 1983-09-21 1988-09-20 Konishiroku Photo Industry Co., Ltd. Silver halide photographic material
US4963465A (en) * 1989-01-12 1990-10-16 Agfa-Gevaert Aktiengesellschaft Color photographic negative recording material
US5380639A (en) * 1991-08-23 1995-01-10 Konica Corporation Silver halide color photographic material
US5492797A (en) * 1993-07-27 1996-02-20 Konica Corporation Direct positive silver halide color photographic light-sensitive material
US8699821B2 (en) 2010-07-05 2014-04-15 Apple Inc. Aligning images
US8750636B2 (en) 2005-04-16 2014-06-10 Apple Inc. Smoothing and/or locking operations in video editing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664399A1 (en) * 1990-07-04 1992-01-10 Kodak Pathe INVERSIBLE PRODUCT FOR COLOR PHOTOGRAPHY WITH FINE GRAIN UNDERCOAT.
FR2723791B1 (en) * 1994-08-17 1997-01-03 Kodak Pathe SILVER CHLORIDE PHOTOGRAPHIC PRODUCT AND PHOTOGRAPHY METHOD USING THE SAME
DE69517475T2 (en) * 1994-08-17 2001-03-08 Kodak Pathe Paris Color photographic silver halide material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3035913A (en) * 1956-09-26 1962-05-22 Agfa Ag Photographic tone correction
US3050391A (en) * 1957-12-30 1962-08-21 Gen Aniline & Film Corp Photographic film with fine grain silver chloride underlayer
US3148062A (en) * 1959-04-06 1964-09-08 Eastman Kodak Co Photographic elements and processes using splittable couplers
US3227550A (en) * 1962-09-07 1966-01-04 Eastman Kodak Co Photographic color reproduction process and element
US3227551A (en) * 1959-04-06 1966-01-04 Eastman Kodak Co Photographic color reproduction process and element
US3227552A (en) * 1960-05-13 1966-01-04 Eastman Kodak Co Preparation of photographic direct positive color images
US3243294A (en) * 1963-11-06 1966-03-29 Eastman Kodak Co Photographic direct-positive color process
US3364022A (en) * 1963-04-01 1968-01-16 Eastman Kodak Co Direct positive photographic color reproduction process and element utilizing thio-substituted hydroquinones as development inhibitors
US3450536A (en) * 1961-03-24 1969-06-17 Eg & G Inc Silver halide photographic film having increased exposure-response characteristics

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3035913A (en) * 1956-09-26 1962-05-22 Agfa Ag Photographic tone correction
US3050391A (en) * 1957-12-30 1962-08-21 Gen Aniline & Film Corp Photographic film with fine grain silver chloride underlayer
US3148062A (en) * 1959-04-06 1964-09-08 Eastman Kodak Co Photographic elements and processes using splittable couplers
US3227551A (en) * 1959-04-06 1966-01-04 Eastman Kodak Co Photographic color reproduction process and element
US3227552A (en) * 1960-05-13 1966-01-04 Eastman Kodak Co Preparation of photographic direct positive color images
US3450536A (en) * 1961-03-24 1969-06-17 Eg & G Inc Silver halide photographic film having increased exposure-response characteristics
US3227550A (en) * 1962-09-07 1966-01-04 Eastman Kodak Co Photographic color reproduction process and element
US3364022A (en) * 1963-04-01 1968-01-16 Eastman Kodak Co Direct positive photographic color reproduction process and element utilizing thio-substituted hydroquinones as development inhibitors
US3243294A (en) * 1963-11-06 1966-03-29 Eastman Kodak Co Photographic direct-positive color process

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770436A (en) * 1970-12-26 1973-11-06 Konishiroku Photo Ind Process for forming cyan image in light-sensitive color photographic material
US3839044A (en) * 1971-03-25 1974-10-01 Eastman Kodak Co Silver halide emulsions containing 2-equivalent color couplers
US4003744A (en) * 1972-12-07 1977-01-18 Polaroid Corporation Photographic products with photosensitive layers of same spectral sensitivity and different speed
JPS587987B2 (en) * 1973-04-13 1983-02-14 富士写真フイルム株式会社 color
JPS49129536A (en) * 1973-04-13 1974-12-11
US3990899A (en) * 1973-05-04 1976-11-09 Fuji Photo Film Co., Ltd. Multi-layered color photographic light-sensitive material
FR2228240A1 (en) * 1973-05-04 1974-11-29 Fuji Photo Film Co Ltd
JPS5939738B2 (en) * 1973-08-16 1984-09-26 コニカ株式会社 Multilayer color photographic material
JPS5040134A (en) * 1973-08-16 1975-04-12
US3960558A (en) * 1974-04-29 1976-06-01 Polaroid Corporation Dye free, spectrally sensitive silver halide layers in diffusion transfer films
US4086094A (en) * 1974-06-20 1978-04-25 Fuji Photo Film Co., Ltd. Photographic couplers with N-heterocyclic development inhibiting coupling-off group
US4184876A (en) * 1974-07-09 1980-01-22 Eastman Kodak Company Color photographic materials having increased speed
US4205990A (en) * 1975-08-02 1980-06-03 Konishiroku Photo Industry Co., Ltd. Process for forming a cyan dye image by the use of a 2-equivalent cyan coupler
US4146396A (en) * 1976-01-26 1979-03-27 Fuji Photo Film Co., Ltd. Method of forming color photographic images
US4134766A (en) * 1976-10-23 1979-01-16 Konishiroku Photo Industry Co., Ltd. Dye image forming process
WO1979001020A1 (en) * 1978-05-02 1979-11-29 Polaroid Corp Photosensitive elements
US4391896A (en) * 1978-09-20 1983-07-05 Eastman Kodak Company Mixture of nondiffusible redox dye-releasers for curve shape control
US4301243A (en) * 1978-12-23 1981-11-17 Agfa-Gevaert Aktiengesellschaft Photographic recording material
US4348474A (en) * 1980-08-01 1982-09-07 Agfa-Gevaert Aktiengesellschaft Light sensitive photographic recording material and the use thereof for the production of photographic images
US4414308A (en) * 1981-03-20 1983-11-08 Konishiroku Photo Industry Co., Ltd. Silver halide color photographic photosensitive material
US4456682A (en) * 1981-09-21 1984-06-26 Fuji Photo Film Co., Ltd. Silver halide color photographic material
JPS58140740A (en) * 1982-02-15 1983-08-20 Konishiroku Photo Ind Co Ltd Photosensitive silver halide material
US4500633A (en) * 1982-02-15 1985-02-19 Konishiroku Photo Industry Co., Ltd. Silver halide photographic material
JPH0336205B2 (en) * 1982-02-15 1991-05-30 Konishiroku Photo Ind
EP0087880A3 (en) * 1982-02-19 1983-11-30 Konishiroku Photo Industry Co. Ltd. Silver halide photographic material
EP0087880A2 (en) * 1982-02-19 1983-09-07 Konica Corporation Silver halide photographic material
US4772542A (en) * 1983-09-21 1988-09-20 Konishiroku Photo Industry Co., Ltd. Silver halide photographic material
US4614707A (en) * 1984-02-17 1986-09-30 Fuji Photo Film Co., Ltd. Color reversal photographic light-sensitive materials
US4963465A (en) * 1989-01-12 1990-10-16 Agfa-Gevaert Aktiengesellschaft Color photographic negative recording material
US5380639A (en) * 1991-08-23 1995-01-10 Konica Corporation Silver halide color photographic material
US5492797A (en) * 1993-07-27 1996-02-20 Konica Corporation Direct positive silver halide color photographic light-sensitive material
US8750636B2 (en) 2005-04-16 2014-06-10 Apple Inc. Smoothing and/or locking operations in video editing
US8699821B2 (en) 2010-07-05 2014-04-15 Apple Inc. Aligning images
US8760537B2 (en) 2010-07-05 2014-06-24 Apple Inc. Capturing and rendering high dynamic range images
US8885978B2 (en) 2010-07-05 2014-11-11 Apple Inc. Operating a device to capture high dynamic range images
US9420198B2 (en) 2010-07-05 2016-08-16 Apple Inc. Operating a device to capture high dynamic range images
US10038855B2 (en) 2010-07-05 2018-07-31 Apple Inc. Operating a device to capture high dynamic range images
US10341574B2 (en) 2010-07-05 2019-07-02 Apple Inc. Operating a device to capture high dynamic range images

Also Published As

Publication number Publication date
BE733342A (en) 1969-11-03
DE1925359A1 (en) 1970-09-10
FR2008905A1 (en) 1970-01-30
GB1275069A (en) 1972-05-24
JPS493843B1 (en) 1974-01-29

Similar Documents

Publication Publication Date Title
US3620747A (en) Photographic element including superimposed silver halide layers of different speeds
US3620746A (en) Color photographic material comprising nondiffusing coupler and dir hydroquinone
US3930863A (en) Color photographic sensitive material
US3932185A (en) Multi-layer photosensitive material for color photography
US3990899A (en) Multi-layered color photographic light-sensitive material
US3961960A (en) Multilayer color photographic materials
JPS6135544B2 (en)
US3620745A (en) Color photographic silver halide emulsions of different developing speed one layer having a dir coupler
JPH0670709B2 (en) Photographic print material with increased exposure latitude
US3632373A (en) Method for preparing silver halide layers having substantially uniform image contrast
US3703375A (en) Photographic processes and materials
JPS6395441A (en) Color photographic negative film
US4187110A (en) Silver halide photographic light-sensitive material
US4040829A (en) Multilayer multicolor photographic materials
US4015988A (en) Multilayer color photographic light-sensitive material
US3984245A (en) Photographic sensitive materials
US3833380A (en) Novel photographic elements
US4157916A (en) Silver halide photographic light-sensitive material
JPS5814668B2 (en) Syashinyougenzoyaku
US3961963A (en) Multilayer photographic material
JPS5820425B2 (en) photo coupler
USRE28760E (en) Photographic element including superimposed silver halide layers of different speeds
US3737312A (en) Multicolor photographic film elements comprising a minimum sensitivity sound track recording silver halide emulsion layer and processes for their use
US3615499A (en) Photographic processes
US3376310A (en) Substituted 1-phenyl-5-mercapto-tetrazoles