US3620724A - Photographic color diffusion transfer processes and elements for use therein - Google Patents

Photographic color diffusion transfer processes and elements for use therein Download PDF

Info

Publication number
US3620724A
US3620724A US3645A US3620724DA US3620724A US 3620724 A US3620724 A US 3620724A US 3645 A US3645 A US 3645A US 3620724D A US3620724D A US 3620724DA US 3620724 A US3620724 A US 3620724A
Authority
US
United States
Prior art keywords
layer
silver halide
laminate
dye
halide emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US3645A
Inventor
Edwin H Land
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polaroid Corp
Original Assignee
Polaroid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polaroid Corp filed Critical Polaroid Corp
Application granted granted Critical
Publication of US3620724A publication Critical patent/US3620724A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/42Structural details
    • G03C8/44Integral units, i.e. the image-forming section not being separated from the image-receiving section
    • G03C8/48Integral units, i.e. the image-forming section not being separated from the image-receiving section characterised by substances used for masking the image-forming section

Definitions

  • a photographic film unit specifically adapted for employment in photographic diffusion transfer color processes, which comprises a photosensitive laminate containing a dimensionally stable support carrying on one surface a dyeable polymeric layer and a photosensitive silver halide emulsion layer having associated therewith a dye image-providing material which is processing composition diffusible as a function of the emul sions exposure to incident actinic radiation, and, positioned intermediate the dyeable polymeric layer and the photosensitive silver halide emulsion layer and associated dye imageproviding material, a layer permeable to processing composition solubilized dye image-providing material comprising visible light-reflecting agent in a concentration effective to mask the dye image-forming material associated with the photosensitive silver halide emulsion layer, subsequent to processing, and insufficient to prevent exposure of the emulsion layer by incident actinic radiation, and to photographic diffusion transfer color processes employing the film unit.
  • the present invention relates to photography and, more particularly, to photographic products specifically adapted for employment in photographic diffusion transfer color processes.
  • the primary objects of the present invention are to provide photographic products particularly adapted for employment in diffusion transfer color processes; to provide photographic products which comprise a photosensitive laminate which contains a plurality of layers including a dimensionally stable common support carrying on one surface a dyeable polymeric layer and a photosensitive silver halide emulsion layer having a dye image-forming material which is processing composition diffusible, as a function of the point-to-point degree of the emulsion's exposure to actinic radiation, and a layer permeable to processing composition solubilized dye image-forming material comprising visible light-reflecting agent, in a concentration sufficient to mask dye image-forming material associated with the photosensitive silver halide emulsion layer subsequent to processing and insufficient to prevent exposure of the photosensitive silver halide emulsion by actinic radiation incident on the layer, positioned intermediate the dyeable polymeric layer and the photosensitive silver halide emulsion layer and associated dye image-forming material; to provide photographic diffusion transfer products comprising a film unit including a photosensitive laminate,
  • the invention accordingly comprises the product possessing the features, properties and the relation of components and the process involving the several steps and the relation and order of one or more of such steps with respect to each of the others which are exemplified in the following detailed disclosure, and the scope of the application of which will be indicated in the claims.
  • FIGS. 1, 2 and 3 are diagrammatic enlarged cross-sectional views of one embodiment of the photographic film unit of the present invention illustrating the association of elements during the three illustrated stages of the performance of a diffusion transfer process, for the production of a multicolor transfer image according to the invention, the thickness of the various materials being exaggerated, and wherein:
  • FIG. 1 represents an exposure stage
  • FIG. 2 represents a processing stage and FIG. 3 represents a product of the process
  • FIG. 4 is a perspective view of a second embodiment of the photographic film unit of the present invention.
  • FIGS. 5, 7 and 9 are diagrammatic enlarged cross-sectional views of a first film unit of FIG. 4, along section line A-A, illustrating the association of elements during the three illustrated stages of the performance of a multicolor diffusion transfer process according to the invention, the thickness of the various materials being exaggerated, and wherein;
  • FIG. 5 represents an exposure stage
  • FIG. 7 represents a processing stage and FIG. 9 represents a product of the process
  • FIGS. 6, 8 and 10 are diagrammatic, further enlarged crosssectional views of the film unit of FIGS. 5, 7 and 9, along section lines 6-6, 8-8 and l0--10, respectively, further illustrating, in detail, the arrangement of layers comprising the photosensitive composite structure during the three illustrated stages of the transfer process;
  • FIGS. ll, 13 and 15 are diagrammatic enlarged cross-sectional views of a second film unit of FIG. 4, along section line AA, illustrating the association of elements during the three illustrated stages of the performance of a multicolor diffusion transfer process according to the invention, and wherein:
  • FIG. 11 represents an exposure stage
  • FIG. 13 represents a processing stage
  • FIG. 15 represents a product of the process
  • FIGS. l2, l4 and I6 are diagrammatic, further enlarged cross-sectional views of the film unit of FIGS. ll, 13 and 15 along section lines 12-12, l4l4 and l616, respectively, further illustrating, in detail, the arrangement of layers comprising the photosensitive composite structure during the three illustrated stages of the transfer process.
  • a photosensitive element containing a dye developer that is, a dye which is a silver halide developing agent, and a silver halide emulsion may be exposed and wetted by a liquidprocessing composition, for example, by immersion, coating, spraying, flowing, etc., in the dark, and the exposed photosensitive element superposed prior to, during, or after wetting, on a sheetlike support element which may be utilized as an image-receiving element.
  • the liquid-processing composition is applied to the photosensitive element in a substantially uniform layer as the photosensitive element is brought into superposed relationship with the image-receiving layer.
  • the liquid-processing composition positioned intermediate the photosensitive element and the image-receiving layer, permeates the emulsion to initiate development of the latent image contained therein.
  • the dye developer is immobilized or precipitated in exposed areas as a consequence of the development of the latent image. This immobilization is apparently, at least in part, due to a change in the solubility characteristics of the dye developer upon oxidation and especially as regards its solubility in alkaline solutions. It may also be due in part to a tanning effect on the emulsion by oxidized developing agent, and in part to a localized exhaustion of alkali as a result of development.
  • the dye developer In unexposed and partially exposed areas of the emulsion, the dye developer is unreacted and diffusible and thus provides an imagewise distribution of unoxidized dye developer dissolved in the liquid processing composition, as a function of the point-to-point degree of exposure of the silver halide emulsion. At least part of this imagewise distribution of unoxidized dye developer is transferred, by imbibition, to a superposed image-receiving layer or element, said transfer substantially excluding oxidized dye developer.
  • the image-receiving element receives a depthwise diffusion, from the developed emulsion, of unoxidized dye developer without appreciably disturbing the imagewise distribution thereof to provide the reversed or positive color image of the developed image.
  • the image-receiving element may contain agents adapted to mordant or otherwise fix the diffused, unoxidized dye developer. If the color of the transferred dye developer is affected by changes in the pH of the image-receiving element, this pH may be adjusted in accordance with well-known techniques to provide a pH affording the desired color.
  • the desired positive image is revealed by stripping the image-receiving layer from the photosensitive element at the end of a suitable imbibition period.
  • the dye developers are compounds which contain, in the same molecule, both the chromophoric system of a dye and also a silver halide developing function.
  • a silver halide developing function is meant a grouping adapted to develop exposed silver halide.
  • a preferred silver halide development function is a hydroquinonyl group.
  • Other suitable developing functions include ortho-dihydroxyphenyl and orthoand para-amino substituted hydroxyphenyl groups.
  • the development function includes a benzenoiddeveloping function, that is, an aromatic developing group which forms quinonoid or quinone substances when oxidized.
  • Multicolor images may be obtained using color image-forming components such as, for example, the previously mentioned dye developers, in diffusion transfer processes by several techniques.
  • One such technique contemplates obtaining multicolor transfer images utilizing dye developers by employment of an integral multilayer photosensitive element, such as is disclosed in the aforementioned U.S. Pat. No. 2,983,606, and particularly with reference to FIG. 9 of the patents drawing, wherein at least two selectively sensitized photosensitive strata, superposed on a single support, are processed, simultaneously and without separation, with a single, common image-receiving layer.
  • a suitable arrangement of this type comprises a support carrying a red-sensitive silver halide emulsion stratum, a green-sensitive silver halide emulsion stratum and a blue-sensitive silver halide emulsion stratum, said emulsions having associated therewith, respectively, for example, a cyan dye developer, a magenta dye developer and a yellow dye developer.
  • the dye developer may be utilized in the silver halide emulsion layer, for example, in the form of particles. or it may be employed as a layer behind the appropriate silver halide emulsion strata.
  • Each set of silver halide emulsion and associated dye developer strata are disclosed to be optionally separated from other sets by suitable interlayers, for example, by a layer of gelatin or polyvinyl alcohol.
  • suitable interlayers for example, by a layer of gelatin or polyvinyl alcohol.
  • a yellow dye developer of the appropriate spectral characteristics and present in a state capable of functioning as a yellow filter may be employed. In such instances, a separate yellow filter maybe omitted.
  • the dye developers are preferably selected for their ability to provide colors that are useful in carrying out subtractive color photography, that is, the previously mentioned cyan, magenta and yellow.
  • the dye developers employed may be incorporated in the respective silver halide emulsion or, in the preferred embodiment, in a separate layer behind the respective silver halide emulsion.
  • the dye developer may, for example, be in a coating or layer behind the respective silver halide emulsion and such a layer of dye developer may be applied by use of a coating solution containing about 0.5 to 8 percent, by weight, of the respective dye developer distributed in a film-forming natural, or synthetic, polymer, for example, gelatin, polyvinyl alcohol, and the like, adapted to be permeated by the chosen diffusion transfer fluid processing composition.
  • a coating solution containing about 0.5 to 8 percent, by weight, of the respective dye developer distributed in a film-forming natural, or synthetic, polymer, for example, gelatin, polyvinyl alcohol, and the like, adapted to be permeated by the chosen diffusion transfer fluid processing composition.
  • solution dyeable polymers such as nylon as, for example, N-methoxymethyl polyhexamethylene adipamide; partially hydrolyzed polyvinyl acetate; polyvinyl alcohol with or without plasticizers; cellulose acetate with filler as, for example, one-half cellulose acetate and one-half oleic acid; gelatin; and other materials of a similar nature.
  • Preferred materials comprise polyvinyl alcohol or gelatin containing a dye mordant such as poly-4-vinylpyridine, as disclosed in U.S. Pat. No. 3,l48,06l, issued Sept. 8, 1964.
  • the liquidprocessing composition referred to for effecting multicolor diffusion transferprocesses comprises at least an aqueous solution of an alkaline material, for example, diethylamine, sodium hydroxide or sodium carbonate and the like, and preferably possessing a pH in excess of l2, and most preferably includes a viscosity-increasing compound constituting a film-forming material of the type which, when the composition is spread and dried, forms a relatively firm and relatively stable film.
  • the preferred film-forming materials disclosed comprise high-molecular-weight polymers such as polymeric, water-soluble ethers which are inert to an alkaline solution such as, for example, a hydroxyethyl cellulose or sodium carboxymethyl cellulose.
  • film-forming materials or thickening agents whose ability to increase viscosity is substantially unaffected if left in solution for a long period of time are also disclosed to be capable of utilization.
  • the film-forming material is preferably contained in the processing composition in such suitable quantities as to impart to the composition a viscosity in excess of I00 cps. at a temperature of approximately 24 C. and preferably in the order of 100,000 cps. to 200,000 cps. at that temperature.
  • an image-receiving layer of the type disclosed in that patent need not be separated from its superposed contact with the photosensitive element, subsequent to transfer image formation, if the image-receiving element is transparent and a processing composition containing a substance rendering the processing composition layer opaque is spread between the image-receiving layer and the silver halide emulsion or emulsions.
  • the image-receiving element is maintained in contact with the photosensitive element, subsequent to dye developer transfer image formation, and includes the presence of an alkaline-processing composition, necessarily having a pH at which dye developer, for example, in reduced form, diffuses to form the dye transfer image, intermediate the elements, the transfer image thus formed is unstable over an extended period of time.
  • the dye image instability is due, at least in part to the presence of what is, in general, a relatively high pH alkaline composition in intimate contact with the dye or dyes forming the image. This contact itself provides instability to the molecular structure of dye by, for example, catalyzing degradation and undesirable structural shifts effecting the spectral absorption characteristics of the image dye.
  • the presence of an alkaline composition possessing a pH at which the dye, for example, in reduced form, diffuses, also provides an integral dynamic system wherein oxidized dye, immobilized in areas of the photosensitive element, as a function of its development, with the passage of time attempts to generate, in such areas, an equilibrium between oxidized and reduced dye.
  • the pH of the dynamic system is such that diffusion of the reduced form of the dye will occur, such reduced dye will, at least in part, transfer to the image-receiving layer and the resultant diffusion will imbalance the equilibrium, in such areas of the photosensitive element, in favor of additional formati m of reduced dye.
  • the ultimate result is substantially the same overall image distortion as occurs when the image-receiving layer acts as a dye sink, with the exception that the dye is more extensively distributed throughout the film unit and the ultimate overall dyeing of the image-receiving layer itself is of lower saturation.
  • an integral photographic film unit particularly adapted for the production of a dye transfer image of unexpectedly improved stability and other properties, by a color diffusion transfer process will be constructed, for example, in accordance with aforementioned U.S. Pat. No. 3,415,644, to include a photosensitive element comprising a laminate having, in sequence, as essential layers, a dimensionally stable opaque layer; a photosensitive silver halide emulsion layer having associated therewith dye image-providing material which is soluble and diffusible, in alkali, at a first pH; an alkaline solution permeable polymeric layer dyeable by the dye image-providing material; a polymeric acid layer containing sufficient acidifying groups to effect reduction, subsequent to substantial, transfer dye image formation, of a selected processing solution having the first pH to a second pH at which said dye image-providing material is insoluble and nondiffusible; and a dimensionally stable transparent layer.
  • a rupturable container retaining an aqueous alkaline-processing composition having the first pH and containing an opacifying agent, in a quantity sufficient to mask the dye image-providing material, is fixedly positioned and extends transverse a leading edge of the laminate whereby to effect unidirectional discharge of the containers contents between the alkaline solution permeable and dyeable polymeric layer and the photosensitive silver halide emulsion layer next adjacent thereto, upon application of compressive force to the container.
  • the dimensionally stable polymeric support layer next adjacent the photosensitive silver halide emulsion layer or layers may be transparent, as disclosed in aforementioned U.S. Pat. No. 3,415,646, and that in such instance the opacifying agent may be initially dispersed in the composite film unit intermediate the dyeable polymeric layer and the silver halide emulsion layer next adjacent, as disclosed in aforementioned U.S. Pat. No. 3,415,645.
  • Film units fabricated in accordance with the parameters set forth above specifically disclose the presence of the stated polymeric acid component to effect in situ process adjustment of the film units operational pH range.
  • the film units require the presence of a polymeric acid layer such as, for example, of the type set forth in U.S. Pat. No. 3,362,819 which, most preferably, includes the presence of an inert timing or spacer layer intermediate the acid-containing layer carried on a support and the imagereceiving layer.
  • a polymeric acid layer such as, for example, of the type set forth in U.S. Pat. No. 3,362,819 which, most preferably, includes the presence of an inert timing or spacer layer intermediate the acid-containing layer carried on a support and the imagereceiving layer.
  • the polymeric acid 1 layer comprises polymers which contains acid materials, such as integral carboxylic acid and sulfonic-acid groups, which are capable of forming salts with alkali metals, such as sodium, potassium etc., or with organic bases, particularly quaternary ammonium bases, such as tetramethyl ammonium hydroxide, or potentially acid-yielding groups, such as anhydrides or lactones, or other groups which are capable of reacting with bases to capture and retain them.
  • the acid-reacting group is, of course, restrained from the acid polymer layer.
  • the acid polymer contains free carboxyl groups and the transfer-processing composition employed contains a large concentration of sodium and/or potassium ions.
  • the acid polymers stated to be most useful are characterized by containing free carboxyl groups, being insoluble in water in the free acid form, and by forming watersoluble sodium and/or potassium salts.
  • dibasic acid halfester derivatives of cellulose which derivatives contain free carboxyl groups, e.g., cellulose acetate hydrogen phthalate, cellulose acetate hydrogen glutarate, cellulose acetate hydrogen succinate, ethyl cellulose hydrogen succinate, ethyl cellulose acetate hydrogen succinate, cellulose acetate hydrogen succinate hydrogen phthalate; ether and ester derivatives or cellulose modified with sulfoanhydrides, e.g., with ortho-sulfobenzoic anhydride; polystyrene sulfonic acid; carboxymethyl cellulose; polyvinyl hydrogen phthalate; polyvinyl acetate hydrogen phthalate; polyacrylic acid; acetals of polyvinyl alcohol with carboxy or sulfo substituted aldehydes, e.g., 0-, m-, or p-benzaldehyde sulfonic acid
  • the pH of the processing composition preferably is of the order of at least 12 to 14.
  • the acid polymer layer is disclosed to contain at least sufficient acid groups to effect a reduction in the pH of the image layer from a pH of about 12 to 14 to a pH of at least 1 l or lower at the end of the imbibition period, and preferably to a pH of about 5 to 8 within a short time after imbibition, thus requiring, of course, that the action of the neutralizing acid be accurately so controlled as not to interfere with either development of the negative or image transfer of unoxidized dye developers.
  • the pH of the image layer must be kept at a functional transfer level, for example, 12 to 14 until the dye image has been formed after which the pH is reduced very rapidly to a pH below that at which dye transfer may be accomplished, for example, at least about 11 and preferably about pH 9 to 10.
  • Unoxidized dye developers containing hydroquinonyldeveloping radicals diffuse from the negative to the positive as the sodium or other alkali salt.
  • the diffusion rate of such dye image-forming components thus is at least partly a function of the alkali concentration, and it is necessary that the pH of the image layer remain on the order of, for example, 12 to 14 until transfer of the necessary quantity of dye has been accomplished.
  • the subsequent pH reduction in addition to its desirable effect upon image light stability, serves a highly valuable photographic function by substantially terminating further dye transfer.
  • the acid groups are disclosed to be so distributed in the acid polymer layer that the rate of their availability to the alkali is controllable, e.g., as a function of the rate of swelling of the polymer layer which rate in turn has a direct relationship to the difiusion rate of the alkali ions.
  • the desired distribution of the acid material in the acid polymer layer may be effected by mixing an acid polymer with a polymer free of acid groups, or lower in concentration of acid groups, and compatible therewith, or by using only the acid polymer but selecting one having a relatively lower proportion of acid groups.
  • the layer containing the polymeric acid may contain a water-insoluble polymer, preferably a cellulose ester, which acts to control or modulate the rate at which the alkali salt of the polymer acid is formed.
  • a water-insoluble polymer preferably a cellulose ester
  • cellulose esters contemplated for use mention is made of cellulose acetate, cellulose acetate butyrate, etc.
  • the particular polymers and combinations of polymers employed in any given embodiment are, of course, selected so as to have adequate wet and dry strength and when necessary or desirable, suitable subcoats are employed to help the various polymeric layers adhere to each other during storage and use.
  • the acid polymeric layer may be disposed within the photosensitive element of the film unit intermediate that elements support and next adjacent photosensitive silver halide emulsion layer and associated dye image-providing material, with the optional presence of a spacer or timing layer intermediate the acid layer and next adjacent silver halide emulsion layer.
  • the inert spacer layer of the last-mentioned patent acts to time" control the pH reduction by the polymeric acid layer.
  • This timing is disclosed to be a function of the rate at which the alkali diffuses through the inert spacer layer. It is'there stated to have been found that the pH does not drop until the alkali has passed through the spacer layer, i.e., the pH is not reduced to any significant extent by the mere diffusion into the interlayer, but the pH drops quite rapidly since once the alkali diffuses through the spacer layer.
  • an integral photographic film unit of simplified construction and particularly adapted for the production of dye transfer images of desirable properties by a color diffusion transfer process will be constructed to include a photosensitive element comprising a laminate structure possessing, as essential layers: a dimensionally stable common support carrying on one surface a photosensitive silver halide emulsion layer having associated therewith a dye image-forming material which is soluble and diffusible in processing composition as a function of the point-to-point degree of exposure of the photosensitive silver halide emulsion layer to incident actinic radiation; a layer permeable to processing composition diffusible dye image-forming material which comprises a reflecting agent present in a concentration insufficient to prevent exposure of the photosensitive silver halide emulsion layer by actinic radiation incident on the reflecting agent container layer; and a polymeric layer dyeable by the dye image-forming material.
  • the dimensionally stable common support is opaque and the photosensitive silver halide emulsion layer is positioned intermediate the support and the dyeable polymeric layer and the transfer image is viewed at the surface of the laminate opposite the opaque support subsequent to processing of the film unit.
  • the dimensionally stable common support is transparent and the dyeable polymeric layer is positioned intermediate the support and the photosensitive silver halide emulsion layer, where it is intended that the dye transfer image be viewed through the support and/or the image residing in the photosensitive silver halide emulsion layer be viewed at the surface of the laminate opposite the support, subsequent to processing, or the photosensitive silver halide emulsion layer is positioned intermediate the support and the dyeable polymeric layer, where it is intended that the dye transfer image be viewed at the surface of the laminate and/or the image residing in the photosensitive silver halide emulsion layer, subsequent to processing, be viewed through the support.
  • the film unit is specifically adapted to provide for the production of a multicolor dye transfer image and the photosensitive laminate comprises, as essential layers, at least two selectively sensitized silver halide emulsion strata each having dye imageproviding materials of predetermined color associated therewith which are soluble and diffusible in processing com position as a function of the point-to-point degree of exposure of the respective associated silver halide emulsion strata; a polymeric layer permeable by processing composition solubilized dye image-providing materials which contains a reflecting agent in a quantity insufficient to prevent exposure of the selectively sensitized silver halide emulsion strata by actinic radiation incident on the layer; a polymeric layer dyeable by the dye image-providing material; and the dimensionally stable common support layer.
  • the preferred dye image-providing materials comprise dyes which are silver halide developing agents, as stated above, for purposes of simplicity and clarity, the present invention will be further described hereinafter in terms of such dyes, without limitation of the invention to the illustrative dyes denoted, and, in addition the photographic film unit structure will be detailed hereinafter employing preferred structural embodiments, without limitation of the invention to the preferred structures denoted.
  • the silver halide emulsions comprising the multicolor photosensitive laminate preferably possess predominant spectral sensitivity to separate regions of the spectrum and each has associated therewith a dye, which is a silver halide developing agent and is, most preferably, substantially soluble in the reduced form only at a first pH possessing, subsequent to processing, a spectral absorption range substantially complementary to the predominant sensitivity range of its associated emulsion.
  • each of the emulsion strata, and its associated dye is separated from the remaining emulsion strata, and their associated dye, by separate processing solution permeable polymeric interlayers.
  • the silver halide emulsion comprises photosensitive silver halide dispersed in gelatin and is about 0.6 to 6 microns in thickness; the dye itself is dispersed in an aqueous processing solution permeable polymeric binder, preferably gelatin, as a separate layer about 1 to 7 microns in thickness; the processing solution permeable polymeric interlayers, preferably gelatin, are about 1 to 5 microns in thickness; the processing solution permeable reflecting agent containing layer is about 0.05 to 0.025 micron in thickness; the processing solution permeable and dyeable polymeric layer is transparent and about 0.25 to 0.4 mil in thickness; and the dimensionally stable support layer is processing solution impermeable and about 2 to 6 mils in thickness.
  • the relative dimensions recited above may be appropriately modified, in accordance with the desires of the operator, with respect to the specific product to be ultimately prepared.
  • the respective silver halide/dye developer units of the photosensitive element will be in the form of a tripack configuration which will ordinarily comprise a cyan dye developer/red-sensitive emulsion unit distal the laminates exposure surface, the yellow dye developer/blue-sensitive emulsion unit proximal the exposure surface and the magenta dye developer/greensensitive emulsion unit intermediate those units, recognizing that the relative order of such units may be varied in accordance with the desires of the operator.
  • FIGS. 1 through 16 of the drawings wherein there is illustrated preferred film units of the present invention and wherein like numbers, appearing in the various figures, refer to like components.
  • FIGS. 1 through 3 illustrate diagrammatic cross-sectional views of a preferred film unit of the present invention during the various depicted stages in the performance of a photographic diffusion transfer process as detailed hereinafter.
  • the film unit detailed comprises, prior to processing, a photosensitive laminate including, in order, dimensionally stable opaque support layer 10, preferably an actinic radiation-opaque flexible sheet material; cyan dye developer layer 11; red-sensitive silver halide emulsion layer 12; interlayer 13; magenta dye developer layer 14; green-sensitive silver halide emulsion layer 15; interlayer 16; yellow dye developer layer 17; blue-sensitive silver halide emulsion layer 18; reflecting layer 19; image-receiving layer 20; and stripping layer 21.
  • a photosensitive laminate including, in order, dimensionally stable opaque support layer 10, preferably an actinic radiation-opaque flexible sheet material; cyan dye developer layer 11; red-sensitive silver halide emulsion layer 12; interlayer 13; magenta dye developer layer 14; green-sensitive silver halide emulsion layer 15; interlayer 16; yellow dye developer layer 17; blue-sensitive silver halide emulsion layer 18; reflecting layer 19; image-receiving layer 20;
  • the unit In the performance of a diffusion transfer multicolor process employing the film unit, the unit is exposed to the radiation, actinic to photosensitive laminate, incident on the laminates exposure surface, as illustrated in FIG. 1.
  • the film unit is processed by distribution of processing composition 22 from applicator 23, on the surface of the laminate opposite opaque support layer 10, possessing a pH and solvent concentration at which the cyan, magenta and yellow dye developers are soluble and diffusible as a function of the point-to-point degree of exposure of red-sensitive silver halide emulsion layer 12, green-sensitive silver halide emulsion layer 15 and blue-sensitive silver halide emulsion layer 18, respectively.
  • Processing solution 22 permeates emulsion layers l2, l5 and 18 to initiate development of the latent images contained in the respective emulsions.
  • the cyan, magenta and yellow dye developers, of layers 11, 14 and 17, are immobilized, as a function of the development of their respective associated silver halide emulsions, preferably substantially as a result of their conversion from the reduced form to their relatively insoluble and nondiffusible oxidized form, thereby providing imagewise distributions of mobile, soluble and diffusible cyan, magenta and yellow dye developer, as a function of the pointto-point degree of their associated emulsions exposure.
  • layer 22 of the processing solution optionally may be manually dissociated from the remainder of the film unit,
  • FIG. 4 sets forth a perspective view of the therein specified film units of the present invention, designated 30, and each of FIGS. 5 through 16 illustrate the therein detailed diagrammatic cross-sectional views of such film units, along the stated section line AA, during the various depicted stages in the performance of the photographic diffusion transfer process as detailed hereinafter.
  • film unit 30 comprises rupturable container 31, retaining, prior to processing, aqueous processing solution 26, photosensitive laminate 32 including, in order, image-receiving layer 20; reflecting layer 19; blue-sensitive silver halide emulsion layer 18; yellow dye developer layer 17; interlayer 16; green-sensitive silver halide emulsion layer 15; magenta dye developer layer 14; interlayer l3; red-sensitive silver halide emulsion layer 12; cyan dye developer layer 11; spacer layer 29; neutralizing layer 28; and dimensionally stable opaque support layer 10; and, superposed coextensive the surface of the laminate opposite opaque support layer 10, dimensionally stable transparent sheet 24; both support layer 10 and sheet 24 preferably comprising processing composition impermeable flexible sheet material.
  • photosensitive laminate 33 may also comprise, in order, red-sensitive silver halide emulsion layer 34 containing cyan dye developer; interlayer 35; green-sensitive silver halide emulsion layer 36 containing magenta dye developer; interlayer 37; blue-sensitive silver halide emulsion layer 38 containing yellow dye developer; reflecting layer 19; image-receiving layer 20; spacer layer 29; neutralizing layer 28; and dimensionally stable transparent support layer 39; and, superposed coextensive the surface of the laminate opposite transparent support layer 39, dimensionally stable opaque sheet 40; both support layer 39 and sheet 40 preferably comprising processing composition impermeable flexible sheet material.
  • the composite may be provided with a binding member extending around, for example, the specified edges of composite, maintaining the laminate and sheet element comprising the composite intact except at the interface between the elements during distribution of processing composition 26.
  • the binder member may comprise a pressure-sensitive tape 25 securing the sheet and laminate elements together at the composite's specified edges. Tape 25 will also act to maintain processing composition 26 intermediate the sheet and photosensitive laminate upon application of compressive pressure to container 31 and distribution of its contents intermediate the stated elements. Under such circumstances, binder tape 25 will act to prevent leakage of processing composition from the film unit during and subsequent to photographic processing.
  • Rupturable container 31 may be of the type shown and described in any of US. Pat. Nos. 2,543,181; 2,634,886; 3,653,732; 2,723,051; 3,056,492; 3,056,491; 3,152,515; and the like.
  • such containers will comprise a rectangular blank of fluidand air-impervious sheet material folded longitudinally upon itself to form two walls 41 which are sealed to one another along their longitudinal and end margins to form a cavity in which processing solution 26 is retained.
  • the longitudinal marginal seal 42 is made weaker than the end seals 43 so as to become unsealed in response to the hydraulic pressure generated within the fluid contents 26 of the container by the application of compressive pressure to walls 41 of the container.
  • container 31 is fixedly positioned and extends transverse a leading edge of the photosensitive laminate whereby to effect unidirectional discharge of the containers contents 26 between the laminate and next adjacent sheet, upon application of compressive force to container 31.
  • container 31, as illustrated in FIGS. 5 and 11 is fixedly positioned and extends transverse a leading edge of the laminate with its longitudinal marginal seal 42 directed toward the interface between the laminate and next adjacent sheet. As shown in FIGS.
  • container 31 is fixedly secured to the laminate by extension 43 of tape 25 extending over a portion of one wall 41 of the container, in combination with a separate retaining member such as illustrated retaining tape 44 extending over a portion of the outer wall 41 of the container and a portion of the laminate's surface generally equal in areas to about that covered by tape 25.
  • extension flap 46 of tape 25 is preferably of such area and dimensions that upon, for example, manual separation of container 31 and tape 44, subsequent to distribution of processing composition 26, from the remainder of film unit 30, flap 46 may be folded over the edge of the laminate, previously covered by tape 44, in order to facilitate maintenance of the laminate's structural integrity, for example, during the flexations inevitable in storage and use of the processed film unit, and to provide a suitable mask or frame, for viewing of the transfer image through the picture viewing area of transparent sheet 24 in the film unit of FIG. 9 and transparent layer 39 in the film unit of FIG. 15.
  • the fluid contents of the container comprise an aqueous processing solution having a pH and solvent concentration at which the dye developers are soluble and diffusible and, in the film unit of FIGS. 1!
  • sheet 40 may additionally contain an opacifying agent to provide in part the opaque character to the surface area of laminate 33 employing sheet 40 or to provide in whole the opaque character to laminate 33 in film units wherein sheet 40 comprises a transparent sheet such as transparent sheet 24 of laminate 32 or a translucent sheet material.
  • the selected reflecting agent should be one providing a 7 background suitable for viewing the dye developer transfer image formed in the dyeable polymeric layer.
  • a reflecting agent be selected that will not interfere with the color integrity of the dye transfer image, as viewed by the observer, and, most preferably, an agent which is aesthetically pleasing to the viewer and does not provide a background noise signal degrading, or detracting from, the information content of the image.
  • Particularly desirable reflecting agents will be those providing a white background, for viewing the transfer image, and specifically those conventionally employed to provide background for reflection photographic prints and, especially those agents possessing the optical properties desired for reflection of incident radiation.
  • reflecting agents adapted for employment in the practice of the present invention, mention may be made of barium sulfate, zinc sulfide, titanium dioxide, barium stearate, silver flake, silicates, alumina, zirconium oxide, zirconium acetyl acetate, sodium zirconium sulfate, kaolin, mica, and the like.
  • a particularly preferred reflecting agent comprises titanium dioxide due to its highly effective reflection properties.
  • the titanium dioxide reflecting agent employed will possess a particle size distribution averaging less than about 0.2 micron in diameter and preferably less than about 0.l micron and most preferably averaging less than about 0.05 micron in diameter as initially present preceding exposure of the film unit, which preferred materials, upon contact with aqueous alkaline processing composition, preferably aggregate to provide particles possessing a diameter in excess of about 0.2 micron in diameter and will be coated at a coverage of about 200 to l,000 mgs./ft.”.
  • the reflecting agent will be present in a quantity insufficient to prevent exposure of the emulsion layers by actinic radiation incident on the dimensionally stable transparent layer of the film unit but in a concentration sufficient, subsequent to processing, to mask dye developer associated with the silver halide emulsion strata from the dye transfer image. It has been quite unexpectedly discovered that the preferred embodiment employing titanium dioxide initially present in a relatively small particle size provides unexpectedly efficient transit of radiation through the reflecting layer during exposure which upon contact with an alkaline processing composition and aggregation of the titanium dioxide particles provides efficient light reflectivity and masking capacity subsequent to such aggregation.
  • the reflecting agent may be distributed within a processing composition permeable polymeric matrix such as gelatin and/or any other such polymeric matrixes as are specifically denoted throughout the specification as suitable for employment as a matrix binder.
  • the preferred reflecting agents are those which remain immobile within their respective compositions during and subsequent to photographic processing and particularly those which comprise insoluble and nondiffusible inorganic pigment dispersions within the layer in which they are disposed.
  • the unit In the performance of a diffusion transfer multicolor process employing film unit 30, the unit is exposed to radiation, actinic to the photosensitive laminate, incident on the laminate's exposure surface, as illustrated in FIGS. 5 and l 1.
  • film unit 30 is processed by being passed through opposed suitably gapped rolls 45 in order to apply compressive pressure to frangible container 31 and to efi'ect rupture of longitudinal seal 42 and distribution of alkaline processing composition 26, having a pH at which the cyan, magenta and yellow dye developers are soluble and diffusible, intermediate transparent sheet 24 and image-receiving layer 20 in laminate 32 of FIGS. 5 to 10, and opaque sheet 40 and red-sensitive silver halide emulsion layer 34 in laminate 33 of FIGS. 11 to 16.
  • Alkaline processing solution 26 permeates emulsion layers l5, l7 and 19 of laminate 32 and emulsion layers 34, 36 and 38 of laminate 33 to initiate development of the latent images contained in the respective emulsions.
  • the cyan, magenta and yellow dye developers, of layers l1, l4 and 17 of laminate 32 and of emulsion layers 34, 36 and 38 of laminate 33 are immobilized, as a function of the development of their respective associated silver halide emulsions, preferably substantially as a result of their conversion from the reduced form to their relatively insoluble and nondiffusible oxidized form, thereby providing imagewise distributions of mobile, soluble and diffusible cyan, magenta and yellow dye developer, as a function of the point-to-point degree of their associated emulsions exposure.
  • At least part of the imagewise distributions of mobile cyan, magenta and yellow dye developer transfers, by diffusion, to aqueous alkaline solution permeable and dyeable polymeric layer 20 to provide a multicolor dye transfer image to that layer.
  • a sufficient portion of the ions comprising aqueous alkaline solution 26 transfers, by diffusion, through permeable polymeric spacer layer 29 and to permeable polymeric acid layer 28 whereby alkaline solution 26 decreases in pH, as a function of neutralization, to a pH at which the cyan, magenta and yellow dye developers, in the reduced form, are substantially insoluble and nondiffusible, to provide thereby a stable multicolor dye transfer image viewable through dimensionally stable transparent layer 24.
  • container 31 may be manually dissociated from the remainder of the film unit, as described above.
  • the multicolor dye transfer image of laminate 32 is viewable through dimensionally stable transparent sheet 24 and that of laminate 33 is viewable through dimensionally stable transparent layer 39 subsequent to transfer image formation, in the preferred embodiments detailed above.
  • transparent sheet 24 of laminate 32 as shown in FIGS. 5 to 10
  • opaque sheet 40 of laminate 33 as shown in FIGS. 11 to 16, illustrated in the respective figures as a sheet element fixedly maintained, superposed on and coextensive with the surface of the laminate distal opaque support layer 10 and transparent support layer 39, respectively, may in a further embodiment of the present invention, be
  • the dimensionally stable sheet may comprise a flexible sheet material displaced from contact with the surface of laminate 32 and/or 33 during photoexposure and brought into superposed relationship with such surface subsequent to exposure contemporaneous with, or preceding, distribution of processing composition 26 intermediate such sheet and the photoexposed laminate.
  • the superposed dimensionally stable sheet may be stripped from the remainder of the film unit alone or in accompaniment with the processing composition where desired.
  • the flexible sheet material when superposed on the surface of the laminate subsequent to photoexposure of laminate 32 may comprise an opaque sheet material and/or the processing composition may retain opacifying agent or agents and either and/or both taken together may possess sufficient opacifying capacity to insure protection of the laminate from actinic radiation incident on that surface of the laminate through which photoexposure was accomplished, which, in combination with opaque support layer of the laminate, provides a structure adapted to be processed in the presence of actinic radiation.
  • the superposed dimensionally stable sheet may be stripped from the remainder of the film unit, where desired or opaque, alone or in accompaniment with the processing composition, where desired or opaque, to reveal the dye transfer image carried by the laminate.
  • Displacement of the flexible sheet may be manually effected alone or together with processing composition residuum where desired by selective adhesion to, or release of the processing composition from, the manually displaced sheet element.
  • substitution of a dimensionally stable transparent support layer in replacement for the opaque support layer 10 of laminate 32, exposes to viewing the dye image present in the photosensitive silver halide emulsion and associated dye developer layers which is negative with respect to the dye transfer image carried by imagereceiving layer and may be viewed against reflecting layer 19 which masks the dye transfer image from observation through such transparent support layer.
  • the processing composition need not, but may, retain opacifying agent or agents, as previously noted, for the purposes of further opacification capacity and in such instance opaque sheet 39 may be optionally replaced by a translucent or transparent sheet material.
  • opaque sheet 39 may be optionally replaced by a translucent or transparent sheet material.
  • the sheet material and processing composition employed may be transparent for viewing purposes.
  • the dimensionally stable sheet may be stripped from the remainder of the film unit alone or in combination with the processing composition and especially where either the sheet and/or the processing composition is opaque and it is desired to view the aforementioned negative dye image.
  • Film units similar to that set forth in the drawings may be prepared, for example, by coating, in succession, on an opaque 4 mil polyethylene terephthalate film base:
  • Transparent cellulose triacetate polymeric sheet may then be superposed on the external surface of coating No. 11 and the two components then taped together, in composite form, at their respective edges by means of opaque pressure-sensitive binding tape extending around, in contact with, and over the edges of the resultant film unit.
  • a rupturable container comprising an outer layer of paper, an intermediate layer of lead foil and an inner liner or layer of polyvinyl chloride retaining an aqueous alkaline processing solution comprising:
  • each of the composites may then be fixedly mounted on the leading edge, of each of the composites, by pressure-sensitive tapes interconnecting the respective containers and laminates, such that upon application of compressive pressure to the container its contents will be distributed, upon rupture of the containers marginal seal, intermediate the cellulose triacetate sheet and the imagereceiving layer.
  • the photosensitive laminates may be exposed through step wedges to selectively filtered radiation incident on the transparent sheet and processed by passage of the exposed film unit through suitably gapped opposed rolls, to effect rupture of the container and distribution of the containers contents between the photosensitive element and the sheet element.
  • a multicolor dye transfer image formation may be viewed through the transparent cellulose triacetate sheet and such image formation is found to be substantially completed and exhibiting the required color brilliance, hues, saturation and isolation within a period of about 1 to 3 minutes.
  • the pH of the alkaline-processing solution initially employed must be a pH at which the dye developers employed are soluble and diffusible.
  • the specific pH to be employed may be readily determined empirically for any dye developer, or group of dye developers, most particularly desirable dye developers are soluble at pH's above 9 and relatively insoluble at pHs below 9, in reduced form, and the system can be readily balanced accordingly for such dye developers.
  • the processing composition in the preferred embodiments detailed, will include the stated film-forming viscosity-increasing agent or agents, to facilitate spreading of the composition and to provide maintenance of the spread composition as a structurally stable layer of the laminate, subsequent to distribution, it is not necessary that such agent be employed as a component of the composition.
  • the concentration of solvent, that is, water, etc., comprising the composition be the minimum amount necessary to conduct the desired transfer process, in order not to adversely affect the structural integrity of the laminate and that the layers forming the laminate can readily accommodate and dissipate the solvent throughout during processing and drying without effecting undesirable dimensional changes in the layers forming the laminate.
  • a polymeric acid layer for example, as illustrated in FIGS. to 16 of the drawings, will be additionally incorporated, as stated, in the film unit of the present invention, to provide reduction of the alkalinity of the film unit from a pH at which the dyes are soluble to a pH at which the dyes are substantially nondiffusible, in order to advantageously stabilize the dye transfer image.
  • a polymeric acid layer such as that obtained by coating the polyethylene terephthalate film base with the partial butyl ester of polyethylene/maleic anhydride copolymer prepared by refluxing, for 14 hours, about 300 grams of highviscosity poly-(ethylene/maleic anhydride), about 140 grams of n-butyl alcohol and about 1 cc. of 85 percent phosphoric acid to provide a polymeric acid layer approximately 0.75 mil. thick preferably in turn overcoated with a 2:1 solution of hydroxy propyl cellulose and polyvinyl alcohol in water to provide a polymeric spacer layer approximately 0.25 mil. thick, will be positioned intermediate the common support and next adjacent essential layer, as previously described.
  • Young preferably the aforementioned rate at which the cations of the alkaline-processing composition, i.e., alkali ions, are available for capture in the polymeric acid layer should be decreased with increasing transfer-processing temperatures in order to provide diffusion transfer color processes relatively independent of positive transfer image variations over an extended range of ambient temperatures.
  • the diffusion rate of alkali through a permeable inert polymeric spacer layer increases with increased processing temperature to the extent, for example, that at relatively high transfer processing temperatures, that is, transfer processing temperatures above approximately F., a premature decrease in the pH of the transfer-processing composition occurs due, at least in part, to the rapid diffusion of alkali from the dye transfer environment and its subsequent neutralization upon contact with the polymeric acid layer.
  • transfer processing temperatures that is, transfer processing temperatures above approximately F.
  • the last-mentioned inert spacer layer was disclosed to provide an effective diffusion barrier timewise preventing effective traverse of the inert spacer layer by alkali having temperature depressed diffusion rates and to result in maintenance of the transfer processing environment's high pH for such an extended time interval as to facilitate formation of transfer image stain and its resultant degradation of the positive transfer images color definition.
  • acetals of polyvinyl were stated to generally comprise saturated aliphatic hydrocarbon chains of a molecular weight of at least 1,000, preferably of about 1,000 to 50,000, possessing a degree of acetalation within about 10 to 30 percent, l0 to 30 percent, 20 to 80 percent, and 10 to 40 percent, of the polyvinyl alcohols theoretical polymeric hydroxy groups, respectively, and including mixed acetals where desired.
  • a mixture of the polymers is to be employed, for example, a mixture of hydroxypropyl methyl cellulose and partial polyvinyl butyral.
  • multicolor transfer images may be provided over an extended processing temperature range which exhibit desired maximum and minimum dye transfer image densities; yellow, magenta and cyan dye saturation; red, green and blue hues; and color separation.
  • the dimensionally stable support layers referred to may comprise any of the various type of conventional opaque and transparent rigid or flexible materials possessing the support and optional characteristics denoted above, and may comprise polymeric films of both synthetic types and those derived from naturally occurring products.
  • Particularly suitable materials include aqueous alkaline solution impermeable, water vapor permeable, flexible polymeric materials such as vapor-permeable polymeric films derived from ethylene glycol terephthalic acid, vinyl chloride polymers; polyvinyl acetate; polyamides; polymethacrylic acid methyl and ethyl esters; cellulose derivatives such as cellulose, acetate, triacetate, nitrate, propionate, butyrate, acetate-propionate, or acetate-butyrate; alkaline solution impermeable, water vapor permeable papers; crosslinked polyvinyl alcohol; regenerated cellulose; and the like.
  • liquid processing composition employed may contain an auxiliary or accelerating developing agent, such as p-methylaminophenol, 2,4-diaminophenol, pbenzylaminophenyl, hydroquinone, toluhydroquinone, phenylhydroquinone, 4'-methylphenylhydroquinone, etc. It is also contemplated to employ a plurality of auxiliary or accelerating developing agents, such as a 3-pyrazolidone developing agent and a benzenoid developing agent, as disclosed in U.S. Pat. No. 3,039,869, issued June 19, 1962.
  • auxiliary developing agents examples include l-phenyl-3-pyrazolidone in combination with pbenzylaminophenol and l-phenyl-3-pyrazolidone in combination with 2,5-bis-ethylenimino-hydroquinone.
  • auxiliary developing agents may be employed in the liquid-processing composition or they may be initially incorporated, at least in part, in any one or more of the silver halide emulsion strata, the strata containing the dye developers, the interlayers, the image-receiving layer, or in any other auxiliary layer or layers, of the film unit.
  • the dye developer oxidized during development may be oxidized and immobilized as a result of a reaction, e.g., an energytransfer reaction, with the oxidation product of an oxidized auxiliary developing agent, the latter developing agent being oxidized by the development of exposed silver halide.
  • a reaction e.g., an energytransfer reaction
  • Such a reaction of oxidized developing agent with unoxidized dye developer would regenerate the auxiliary developing agent for further reaction with the exposed silver halide.
  • the relative proportions of the agents of the diffusion transfer processing composition may be altered to suit the requirements of the operator.
  • modify the herein described developing compositions by the substitution of preservatives, alkalies, etc., other than those specifically mentioned, provided that the pH of the composition is initially at the pH and solvent concentration required.
  • components such as restrainers, accelerators, etc.
  • concentration of various components may be varied over a wide range and when desirable adaptable components may be disposed in the photosensitive element, prior to exposure, in a separate permeable layer of the photosensitive element and/or in the photosensitive emulsion.
  • nitrocarboxymethyl cellulose as disclosed in U.S. Pat. No. 2,992,104
  • an acylamidobenzene sulfo ester of a partial sulfobenzal of polyvinyl alcohol as disclosed in U.S. Pat. No. 3,043,692
  • polymers of N-alkyl-a,B-unsaturated carboxamides and copolymers of N-alkyl-a,B-carboxamides with N-hydroxyalkyl-a,B-unsaturated carboxamides as disclosed in US. Pat. No.
  • the preparation of the dye developer dispersion may also be obtained by dissolving the dye in an appropriate solvent, or mixture of solvents, and the resultant solution distributed in the polymeric binder, with optional subsequent removal of the solvent, or solvents, employed, as, for example, by vaporization where the selected solvent, or solvents, possesses a sufficiently low boiling point or washing where the selected solvent, or solvents, possesses a sufficiently high differential solubility in the wash medium, for example, water, when measured against the solubility of the remaining composition components, and/or obtained by dissolving both the polymeric binder and dye in a common solvent.
  • dye image-providing materials Although the invention has been discussed in detail throughout employing dye developers, the preferred dye image-providing materials, it will be readily recognized that other, less preferred, dye image-providing materials may be substituted in replacement of the preferred dye developers in the practice of the invention.
  • dye image-forming materials such as those disclosed in U.S. Pat. Nos. 2,647,049, issued July 28, 1953; 2,661,293, issued Dec. 1, 1953; 2,698,244, issued Dec. 28, 1954; 2,698,798, issued Jan. 4, 1955; and 2,802,735, issued Aug.
  • color diffusion transfer processes which employ color-coupling techniques comprising, at least in part, reacting one or more color-developing agents and one or more color formers or couplers to provide a dye transfer image to a superposed image-receiving layer and those dis closed in U.S. Pat. No. 2,774,668, issued Dec. 18, 1956 wherein color diffusion transfer processes are described which employ the imagewise differential transfer of complete dyes by the mechanisms therein described to provide a transfer dye image to a contiguous image-receiving layer.
  • the silver halide crystals may be prepared by reacting a water-soluble silver salt, such as silver nitrate, with at least one water-soluble halide, such as ammonium, potassium or sodium bromide, preferably together with a corresponding iodide, in an aqueous solution of a peptizing agent such as a colloidal gelatin solution; digesting the dispersion at an elevated temperature, to provide increased crystal growth; washing the resultant dispersion to remove undesirable reaction products and residual water-soluble salts by chilling the dispersion, noodling the set dispersion, and washing the noodles with cold water, or alternatively, employing any of the various fiocc systems, or
  • Optical sensitization of the emulsions silver halide crystals may be accomplished by contact of the emulsion composition with an effective concentration of the selected optical sensitizing dyes dissolved in an appropriate dispersing solvent such as methanol, ethanol, acetone, water, and the like; all according to the traditional procedures of the art, as described in Hammer, F. M., The Cyanine Dyes and Related Compounds.
  • an appropriate dispersing solvent such as methanol, ethanol, acetone, water, and the like
  • Additional optional additives such as coating aids, hardeners, viscosity-increasing agents, stabilizers, preservatives, and the like, for example, those set forth hereinafter, also may be incorporated in the emulsion formulation, according to the conventional procedures known in the photographic emulsion manufacturing art.
  • the photoresponsive material of the photographic emulsion will, as previously described, preferably comprise a crystal of silver, for example, one or more of the silver halides such as silver chloride, silver iodide, silver bromide, or mixed silver halides such as silver chlorobromide or silver iodobromide, of varying halide ratios and varying silver concentrations.
  • the silver halides such as silver chloride, silver iodide, silver bromide, or mixed silver halides such as silver chlorobromide or silver iodobromide, of varying halide ratios and varying silver concentrations.
  • the aforementioned gelatin may be, in whole or in part, replaced with some other colloidal material such as albumin; casein; or zein; or resins such as a cellulose derivative, as described in U.S. Pat. Nos. 2,322,085 and 2,327,808; polyacrylamides, as described in US. Pat. No. 2,54l,474; vinyl polymers such as described in an extensive multiplicity of readily available US. and foreign patents.
  • the photosensitive component of the film unit may comprise at least two sets of selectively sensitized minute photosensitive elements arranged in the form of a photosensitive screen wherein each of the minute photosensitive elements has associated therewith, for example, an appropriate dye developer in or behind its respective silver halide emulsion portion.
  • a suitable photosensitive screen will comprise minute red-sensitized emulsion elements, minute green-sensitized emulsion elements and minute blue-sensitized emulsion elements arranged in side-by-side relationship in a screen pattern and having associated therewith, respectively, a cyan, a magenta and a yellow dye developer.
  • the present invention also includes the employment of a black dye developer and the use of a mixture of dye developers adapted to provide a black and white transfer image, for example, the employment of dye developers of the three subtractive colors in an appropriate mixture in which the quantities of the dye developers are proportioned such that the colors combine to provide black.
  • the expression positive image has been used, this expression should not be interpreted in a restrictive sense since it is used primarily for purposes of illustration, in that it defines the image produced on the image carrying layer as being reversed, in the positive-negative sense, with respect to the image in the photosensitive emulsion layers.
  • positive image assume that the photosensitive element is exposed to actinic light through a negative transparency. In this case, the latent image in the photosensitive emulsion layers will be a positive and the dye image produced on the image-carrying layer will be a negative.
  • the expression positive image is intended to cover such an image produced on the image-carrying layer.
  • the film unit may also contain one or more subcoats or layers, which, in turn, may contain one or more additives such as plasticizers, intermediate essential layers for the purpose, for example, of improving adhesion, and that any one or more of the described layers may comprise a composite of two or more strata of the same, or different, components and which may be contiguous, or separated from, each other, for example, two or more neutralizing layers or the like.
  • additives such as plasticizers, intermediate essential layers for the purpose, for example, of improving adhesion
  • any one or more of the described layers may comprise a composite of two or more strata of the same, or different, components and which may be contiguous, or separated from, each other, for example, two or more neutralizing layers or the like.
  • a photographic film unit which comprises a photosensitive laminate containing, as essential layers, a dimensionally stable common support carrying on one surface, a dyeable polymeric layer and a photosensitive silver halide emulsion layer having associated therewith a dye image-forming material which is processing composition difiusible, as a function of the point-to-point degree of the emulsion 5 exposure to actinic radiation, and a layer permeable to processing composition solubilized dye image-forming material comprising visible light-reflecting agent in a concentration sufficient to mask said dye image-forming material associated with said photosensitive silver halide emulsion layer subsequent to processing and insufficient to prevent exposure of the photosensitive silver halide emulsion by actinic radiation incident on the layer positioned intermediate said dyeable polymeric layer and said photosensitive silver halide emulsion layer and associated dye image-forming material.
  • a photographic film unit as defined in claim 2 including a processing composition permeable polymeric spacer layer positioned intennediate said acidic layer and said next adjacent essential layer.
  • a photographic film unit as defined in claim which is adapted to be processed by passing said unit between a pair of juxtaposed pressureaapplying members, including a transparent dimensionally stable sheet superposed substantially coextensive the surface of said laminate opposite said dimensionally stable opaque support and a rupturable container retaining a processing composition fixedly positioned and extending transverse a leading edge of said photosensitive laminate and adapted to effect unidirectional discharge of said container's contents intermediate said sheet and said laminate.
  • a photographic film unit as defined in claim 7 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members, including a dimensionally stable sheet superposed substantially coextensive the surface of said laminate opposite said dimensionally stable transparent common support and a rupturable container retaining a processing composition fixedly positioned and extending transverse a leading edge of said photosensitive laminate and adapted to effect unidirectional discharge of said containers contents intermediate said sheet and said laminate.
  • a photographic film unit as defined in claim 1 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members, including a separate dimensionally stable sheet having a leading edge fixedly positioned extending transverse a leading edge of said laminate and adapted to be superposed subsequent to photoexposure of said laminate substantially coextensive the surface of said laminate opposite said dimensionally stable common support and a rupturable container retaining a processing composition and extending transverse said leading edge of said photosensitive laminate intermediate said sheet and said laminate and adapted to effect unidirectional distribution of said. containers contents intermediate said sheet and said laminate upon superpositioning of said sheet on said surface of said laminate.
  • a photographic film unit as defined in claim 4 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members and which includes, in combination:
  • a photosensitive laminate containing, as essential layers, at least two selectively sensitized silver halide emulsion layers each having a dye, which dye is a silver halide developing agent, of predetermined color associated therewith, each of said dyes soluble and diffusible, in alkali, at a first pH, as a function of exposure of its associated silver halide emulsion layer, an alkaline solution permeable transparent polymeric layer dyeable by said dyes, a layer permeable to solubilized dye comprising visible light-reflecting agent in a concentration insufficient to prevent exposure of the selectively sensitized silver halide emulsion's layers by actinic radiation incident on the layer and sufficient to mask said dyes associated with said silver halide emulsion layers subsequent to processing positioned intermediate said dyeable polymeric layer and the silver halide emulsion layer next adjacent thereto, a dimensionally stable alkaline solution impermeable support layer, an an alkaline solution permeable transparent acidic layer containing sufficient acid
  • a photographic film unit as defined in claim 17 including a dimensionally stable sheet superposed coextensive the surface of the laminate opposite said dimensionally stable support layer and a rupturable container retaining an aqueous alkaline processing solution, having said first pH, fixedly positioned and extending transverse said leading edge of said laminate to effect unidirectional discharge of the containers contents coextensive the surface of the laminate intermediate said laminate and said sheet.
  • each of said selectively sensitized photosensitive silver halide emulsion layers has predominant spectral sensitivity to separate regions of the spectrum and subsequent to photoexposure of said laminate the dye associated with each of said silver halide emulsion layers possesses, subsequent to processing, a spectral absorption range substantially complementary to the predominant sensitivity range of its associated emulsion layer.
  • a photographic film unit as defined in claim 21 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members and which comprises, in combination:
  • a photosensitive laminate containing, in sequence, a redsensitive silver halide emulsion layer having associated therewith a cyan dye, a green-sensitive silver halide emulsion layer having associated therewith a magenta dye, a blue-sensitive silver halide emulsion layer having associated therewith a yellow dye, each of said cyan, magenta and yellow dyes being silver halide developing agents and being soluble and diffusible, in alkali, at a first pH, as a function of the exposure of its associated silver halide emulsion layer, an alkaline solution solubilized dye-permeable polymeric layer comprising a dispersion of visible, light-reflecting inorganic pigment in a concentration sufficient to mask dye associated with said silver halide emulsion layers subsequent to processing and insufficient to prevent exposure of said silver halide emul-

Abstract

The present invention is directed, in general, to a photographic film unit, specifically adapted for employment in photographic diffusion transfer color processes, which comprises a photosensitive laminate containing a dimensionally stable support carrying on one surface a dyeable polymeric layer and a photosensitive silver halide emulsion layer having associated therewith a dye image-providing material which is processing composition diffusible as a function of the emulsion''s exposure to incident actinic radiation, and, positioned intermediate the dyeable polymeric layer and the photosensitive silver halide emulsion layer and associated dye image-providing material, a layer permeable to processing composition solubilized dye imageproviding material comprising visible light-reflecting agent in a concentration effective to mask the dye image-forming material associated with the photosensitive silver halide emulsion layer, subsequent to processing, and insufficient to prevent exposure of the emulsion layer by incident actinic radiation, and to photographic diffusion transfer color processes employing the film unit.

Description

United States Patent Inventor Edwin H. Land Cambridge, Mass.
App]. No. 3,645
Filed Jan. 19, 1970 Patented Nov. 16, I971 Assignee Polaroid Corporation Cambridge, Mass.
PHOTOGRAPHIC COLOR DIFFUSION TRANSFER PROCESSES AND ELEMENTS FOR USE THEREIN 44 Claims, 16 Drawing Figs.
[52] U.S.Cl .i 96/3, 96/29 D [51] Int. Cl. G03c 7/00, G030 5/54 [50] Field of Search 96/3, 29 R, 29 D [56] References Cited UNITED STATES PATENTS 2,563,342 8/1951 Land 96/29 R l EXPOSURE SURFACE- 2| 4 19 \as, g is as I514 2 S i I3 '2 i x g ll a llll 3,620,724
2,60" tSS 8/1952 Land Ki/29R Primary E.\'aminerNorman G. Torchin Assistant Examiner-Alfonso T. Suro Pico Atwrneys Brown and Mikulka and Robert M. Ford ABSTRACT: The presentinvention is directed, in general. to a photographic film unit, specifically adapted for employment in photographic diffusion transfer color processes, which comprises a photosensitive laminate containing a dimensionally stable support carrying on one surface a dyeable polymeric layer and a photosensitive silver halide emulsion layer having associated therewith a dye image-providing material which is processing composition diffusible as a function of the emul sions exposure to incident actinic radiation, and, positioned intermediate the dyeable polymeric layer and the photosensitive silver halide emulsion layer and associated dye imageproviding material, a layer permeable to processing composition solubilized dye image-providing material comprising visible light-reflecting agent in a concentration effective to mask the dye image-forming material associated with the photosensitive silver halide emulsion layer, subsequent to processing, and insufficient to prevent exposure of the emulsion layer by incident actinic radiation, and to photographic diffusion transfer color processes employing the film unit.
STRIPPING LAYER IMAGE RECEIVING LAYER I REFLECTING LAYER 'BLUE SENSITIVE SILVER HALIDE EMULSION LAYER YELLOW DYE DEVELOPER LAYER INTERLAYER GREEN SENSITIVE SILVER HALIDE EMULSION LAYER MAGENTA DYE DEVELOPER LAYER INTERLAYER RED SENSITIVE SILVER HALIDE EMULSION LAYER "CYAN DYE DEVELOPER LAYER OPAQUE SUPPORT LAYER PATENTEUunv 16 um SHEET 2 OF 8 INVENTOR. EDWIN H. LAN D anal W773. 9M
ATTORNEYS PATENTEUnuv 16 I97! 3.620.724
sum 5 or 8 mu 4 PmOnEDm 2 64.10
INVENTOR. EDWlN H. LAND filww n a/m mm amd W 112.50%
ATTORNEYS M JW i m 9.
PATENTEBNUV 1s l97l SHEET 7 [IF 8 INVENTOR. EDWIN H. LAND @Mw n wrwl We. and
ATTORNEYS PIIOTOGRAPI-IIC COLOR DIFFUSION TRANSFER PROCESSES AND ELEMENTS FOR USE THEREIN This application is a continuation-in-part of copending application Ser. No. 519,995, filed Jan. I 1, I966, which in turn is a continuation-in-part of application Ser. No. 368,662, filed May 19, 1964 now U.S. Pat. No. 3,332,369.
The present invention relates to photography and, more particularly, to photographic products specifically adapted for employment in photographic diffusion transfer color processes.
The primary objects of the present invention are to provide photographic products particularly adapted for employment in diffusion transfer color processes; to provide photographic products which comprise a photosensitive laminate which contains a plurality of layers including a dimensionally stable common support carrying on one surface a dyeable polymeric layer and a photosensitive silver halide emulsion layer having a dye image-forming material which is processing composition diffusible, as a function of the point-to-point degree of the emulsion's exposure to actinic radiation, and a layer permeable to processing composition solubilized dye image-forming material comprising visible light-reflecting agent, in a concentration sufficient to mask dye image-forming material associated with the photosensitive silver halide emulsion layer subsequent to processing and insufficient to prevent exposure of the photosensitive silver halide emulsion by actinic radiation incident on the layer, positioned intermediate the dyeable polymeric layer and the photosensitive silver halide emulsion layer and associated dye image-forming material; to provide photographic diffusion transfer products comprising a film unit including a photosensitive laminate, of the last-identified type, in combination with a rupturable container retaining a processing composition; to provide a diffusion transfer photographic film unit, of the last-identified type, wherein the container is fixedly positioned and extends transverse a leading edge of the photosensitive laminate whereby to effect, upon application of compressive pressure, discharge of the processing composition contiguous the surface of the laminate opposite the dimensionally stable support layer; to provide a diffusion transfer film unit, of the last-identified type, including a dimensionally stable sheet superposed substantially coextensive the surface of the laminate opposite the dimensionally stable support and the rupturable container fixedly positioned and extending transverse a leading edge of the photosensitive laminate and adapted to effect, upon application of compressive pressure, unidirectional discharge of the containers contents intermediate the sheet and the laminate; to provide a diffusion transfer film unit, of the last-identified type, wherein the separate dimensionally stable sheet possesses a leading edge fixedly positioned extending transverse a leading edge of the laminate and is adapted to be superposed subsequent to photoexposure of the laminate substantially coextensive the surface of the laminate opposite the dimensionally stable common support and the rupturable container retaining the processing composition is adapted to effect, upon application of compressive pressure, unidirectional distribution of the containers processing composition intermediate the sheet and the laminate upon superpositioning of the sheet coextensive the surface of the laminate; and to provide photographic diffusion transfer color processes employing such products.
Other objects of the invention will in part be obvious and will in part appear hereinafter.
The invention accordingly comprises the product possessing the features, properties and the relation of components and the process involving the several steps and the relation and order of one or more of such steps with respect to each of the others which are exemplified in the following detailed disclosure, and the scope of the application of which will be indicated in the claims.
For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings wherein:
FIGS. 1, 2 and 3 are diagrammatic enlarged cross-sectional views of one embodiment of the photographic film unit of the present invention illustrating the association of elements during the three illustrated stages of the performance of a diffusion transfer process, for the production of a multicolor transfer image according to the invention, the thickness of the various materials being exaggerated, and wherein:
FIG. 1 represents an exposure stage,
FIG. 2 represents a processing stage and FIG. 3 represents a product of the process;
FIG. 4 is a perspective view of a second embodiment of the photographic film unit of the present invention;
FIGS. 5, 7 and 9 are diagrammatic enlarged cross-sectional views of a first film unit of FIG. 4, along section line A-A, illustrating the association of elements during the three illustrated stages of the performance of a multicolor diffusion transfer process according to the invention, the thickness of the various materials being exaggerated, and wherein;
FIG. 5 represents an exposure stage,
FIG. 7 represents a processing stage and FIG. 9 represents a product of the process;
FIGS. 6, 8 and 10 are diagrammatic, further enlarged crosssectional views of the film unit of FIGS. 5, 7 and 9, along section lines 6-6, 8-8 and l0--10, respectively, further illustrating, in detail, the arrangement of layers comprising the photosensitive composite structure during the three illustrated stages of the transfer process;
FIGS. ll, 13 and 15 are diagrammatic enlarged cross-sectional views of a second film unit of FIG. 4, along section line AA, illustrating the association of elements during the three illustrated stages of the performance of a multicolor diffusion transfer process according to the invention, and wherein:
FIG. 11 represents an exposure stage,
FIG. 13 represents a processing stage and,
FIG. 15 represents a product of the process; and
FIGS. l2, l4 and I6 are diagrammatic, further enlarged cross-sectional views of the film unit of FIGS. ll, 13 and 15 along section lines 12-12, l4l4 and l616, respectively, further illustrating, in detail, the arrangement of layers comprising the photosensitive composite structure during the three illustrated stages of the transfer process.
As disclosed in U.S. Pat. No. 2,983,606, issued May 9, 1961, a photosensitive element containing a dye developer, that is, a dye which is a silver halide developing agent, and a silver halide emulsion may be exposed and wetted by a liquidprocessing composition, for example, by immersion, coating, spraying, flowing, etc., in the dark, and the exposed photosensitive element superposed prior to, during, or after wetting, on a sheetlike support element which may be utilized as an image-receiving element. In a preferred embodiment, the liquid-processing composition is applied to the photosensitive element in a substantially uniform layer as the photosensitive element is brought into superposed relationship with the image-receiving layer. The liquid-processing composition, positioned intermediate the photosensitive element and the image-receiving layer, permeates the emulsion to initiate development of the latent image contained therein. The dye developer is immobilized or precipitated in exposed areas as a consequence of the development of the latent image. This immobilization is apparently, at least in part, due to a change in the solubility characteristics of the dye developer upon oxidation and especially as regards its solubility in alkaline solutions. It may also be due in part to a tanning effect on the emulsion by oxidized developing agent, and in part to a localized exhaustion of alkali as a result of development. In unexposed and partially exposed areas of the emulsion, the dye developer is unreacted and diffusible and thus provides an imagewise distribution of unoxidized dye developer dissolved in the liquid processing composition, as a function of the point-to-point degree of exposure of the silver halide emulsion. At least part of this imagewise distribution of unoxidized dye developer is transferred, by imbibition, to a superposed image-receiving layer or element, said transfer substantially excluding oxidized dye developer. The image-receiving element receives a depthwise diffusion, from the developed emulsion, of unoxidized dye developer without appreciably disturbing the imagewise distribution thereof to provide the reversed or positive color image of the developed image. The image-receiving element may contain agents adapted to mordant or otherwise fix the diffused, unoxidized dye developer. If the color of the transferred dye developer is affected by changes in the pH of the image-receiving element, this pH may be adjusted in accordance with well-known techniques to provide a pH affording the desired color. The desired positive image is revealed by stripping the image-receiving layer from the photosensitive element at the end of a suitable imbibition period.
The dye developers, as noted above, are compounds which contain, in the same molecule, both the chromophoric system of a dye and also a silver halide developing function. By a silver halide developing function" is meant a grouping adapted to develop exposed silver halide. A preferred silver halide development function is a hydroquinonyl group. Other suitable developing functions include ortho-dihydroxyphenyl and orthoand para-amino substituted hydroxyphenyl groups. In general, the development function includes a benzenoiddeveloping function, that is, an aromatic developing group which forms quinonoid or quinone substances when oxidized.
Multicolor images may be obtained using color image-forming components such as, for example, the previously mentioned dye developers, in diffusion transfer processes by several techniques. One such technique contemplates obtaining multicolor transfer images utilizing dye developers by employment of an integral multilayer photosensitive element, such as is disclosed in the aforementioned U.S. Pat. No. 2,983,606, and particularly with reference to FIG. 9 of the patents drawing, wherein at least two selectively sensitized photosensitive strata, superposed on a single support, are processed, simultaneously and without separation, with a single, common image-receiving layer. A suitable arrangement of this type comprises a support carrying a red-sensitive silver halide emulsion stratum, a green-sensitive silver halide emulsion stratum and a blue-sensitive silver halide emulsion stratum, said emulsions having associated therewith, respectively, for example, a cyan dye developer, a magenta dye developer and a yellow dye developer. The dye developer may be utilized in the silver halide emulsion layer, for example, in the form of particles. or it may be employed as a layer behind the appropriate silver halide emulsion strata. Each set of silver halide emulsion and associated dye developer strata are disclosed to be optionally separated from other sets by suitable interlayers, for example, by a layer of gelatin or polyvinyl alcohol. In certain instances, it may be desirable to incorporate a yellow filter in front of the green-sensitive emulsion and such yellow filter may be incorporated in an interlayer. However, where desirable, a yellow dye developer of the appropriate spectral characteristics and present in a state capable of functioning as a yellow filter may be employed. In such instances, a separate yellow filter maybe omitted.
The dye developers are preferably selected for their ability to provide colors that are useful in carrying out subtractive color photography, that is, the previously mentioned cyan, magenta and yellow. The dye developers employed may be incorporated in the respective silver halide emulsion or, in the preferred embodiment, in a separate layer behind the respective silver halide emulsion. Specifically, the dye developer may, for example, be in a coating or layer behind the respective silver halide emulsion and such a layer of dye developer may be applied by use of a coating solution containing about 0.5 to 8 percent, by weight, of the respective dye developer distributed in a film-forming natural, or synthetic, polymer, for example, gelatin, polyvinyl alcohol, and the like, adapted to be permeated by the chosen diffusion transfer fluid processing composition.
As'examples of materials, for use as the image-receiving layer, mention may be made of solution dyeable polymers such as nylon as, for example, N-methoxymethyl polyhexamethylene adipamide; partially hydrolyzed polyvinyl acetate; polyvinyl alcohol with or without plasticizers; cellulose acetate with filler as, for example, one-half cellulose acetate and one-half oleic acid; gelatin; and other materials of a similar nature. Preferred materials comprise polyvinyl alcohol or gelatin containing a dye mordant such as poly-4-vinylpyridine, as disclosed in U.S. Pat. No. 3,l48,06l, issued Sept. 8, 1964.
As disclosed in the previously cited patents, the liquidprocessing composition referred to for effecting multicolor diffusion transferprocesses comprises at least an aqueous solution of an alkaline material, for example, diethylamine, sodium hydroxide or sodium carbonate and the like, and preferably possessing a pH in excess of l2, and most preferably includes a viscosity-increasing compound constituting a film-forming material of the type which, when the composition is spread and dried, forms a relatively firm and relatively stable film. The preferred film-forming materials disclosed comprise high-molecular-weight polymers such as polymeric, water-soluble ethers which are inert to an alkaline solution such as, for example, a hydroxyethyl cellulose or sodium carboxymethyl cellulose. Additionally, film-forming materials or thickening agents whose ability to increase viscosity is substantially unaffected if left in solution for a long period of time are also disclosed to be capable of utilization. As stated, the film-forming material is preferably contained in the processing composition in such suitable quantities as to impart to the composition a viscosity in excess of I00 cps. at a temperature of approximately 24 C. and preferably in the order of 100,000 cps. to 200,000 cps. at that temperature.
in accordance with aforementioned U.S. Pat. No. 2,983,606, an image-receiving layer of the type disclosed in that patent need not be separated from its superposed contact with the photosensitive element, subsequent to transfer image formation, if the image-receiving element is transparent and a processing composition containing a substance rendering the processing composition layer opaque is spread between the image-receiving layer and the silver halide emulsion or emulsions.
However, it has been found, if the image-receiving element is maintained in contact with the photosensitive element, subsequent to dye developer transfer image formation, and includes the presence of an alkaline-processing composition, necessarily having a pH at which dye developer, for example, in reduced form, diffuses to form the dye transfer image, intermediate the elements, the transfer image thus formed is unstable over an extended period of time. The dye image instability is due, at least in part to the presence of what is, in general, a relatively high pH alkaline composition in intimate contact with the dye or dyes forming the image. This contact itself provides instability to the molecular structure of dye by, for example, catalyzing degradation and undesirable structural shifts effecting the spectral absorption characteristics of the image dye. in addition, the presence of an alkaline composition, possessing a pH at which the dye, for example, in reduced form, diffuses, also provides an integral dynamic system wherein oxidized dye, immobilized in areas of the photosensitive element, as a function of its development, with the passage of time attempts to generate, in such areas, an equilibrium between oxidized and reduced dye. In that the pH of the dynamic system is such that diffusion of the reduced form of the dye will occur, such reduced dye will, at least in part, transfer to the image-receiving layer and the resultant diffusion will imbalance the equilibrium, in such areas of the photosensitive element, in favor of additional formati m of reduced dye. As a function of the efficiency of the imagereceiving layer, as a dye sink, such nonimagewise dyeing of the image-carrying layer still further imbalances the equilibrium in favor of the additional formation of dye in reduced, diffusible form. Under such circumstances, the transfer image \lefinition, originally carried by the image-receiving layer, will suffer a continuous decrease in the delta between the images maximum and minimum densities and may, ultimately, result in the imageureceiving element's loss of all semblance of image definition; merely becoming a polymeric stratum carrying a relatively uniform overall dyeing.
Any attempt to decrease the dye sink capacity of the imagecarrying layer, for example, by reduction of its mordant capacity, in order to alleviate, at least to an extent, the action of the image-receiving layer as a dye sink, however, will enhance diffusion of the dye, comprising the transfer image, from the image-carrying layer, to the remainder of the element due, at least in part, to the continued presence of the alkaline composition having a pH at which the reduced form of the dye, forming the transfer image, is diffusible. The ultimate result is substantially the same overall image distortion as occurs when the image-receiving layer acts as a dye sink, with the exception that the dye is more extensively distributed throughout the film unit and the ultimate overall dyeing of the image-receiving layer itself is of lower saturation.
The problems inherent in fabricating a film unit of the type wherein the image-receiving element, the alkaline processing composition and the photosensitive element are maintained in contiguous contact subsequent to dye transfer image formation, for example, a film unit of the type described hereinbefore with reference to aforementioned U.S. Pat. No. 2,983,606, may be effectively obviated by fabrication of a film unit in accordance with the physical parameters specifically set forth in U.S. Pat. Nos. 3,415,644; 3,415,645; and 3,415,646, issued Dec. 10, 1960, respectively, in the name of Edwin H. Land.
Specifically an integral photographic film unit particularly adapted for the production of a dye transfer image of unexpectedly improved stability and other properties, by a color diffusion transfer process will be constructed, for example, in accordance with aforementioned U.S. Pat. No. 3,415,644, to include a photosensitive element comprising a laminate having, in sequence, as essential layers, a dimensionally stable opaque layer; a photosensitive silver halide emulsion layer having associated therewith dye image-providing material which is soluble and diffusible, in alkali, at a first pH; an alkaline solution permeable polymeric layer dyeable by the dye image-providing material; a polymeric acid layer containing sufficient acidifying groups to effect reduction, subsequent to substantial, transfer dye image formation, of a selected processing solution having the first pH to a second pH at which said dye image-providing material is insoluble and nondiffusible; and a dimensionally stable transparent layer. In combination with the laminate, a rupturable container retaining an aqueous alkaline-processing composition having the first pH and containing an opacifying agent, in a quantity sufficient to mask the dye image-providing material, is fixedly positioned and extends transverse a leading edge of the laminate whereby to effect unidirectional discharge of the containers contents between the alkaline solution permeable and dyeable polymeric layer and the photosensitive silver halide emulsion layer next adjacent thereto, upon application of compressive force to the container.
It will also be recognized that the dimensionally stable polymeric support layer next adjacent the photosensitive silver halide emulsion layer or layers may be transparent, as disclosed in aforementioned U.S. Pat. No. 3,415,646, and that in such instance the opacifying agent may be initially dispersed in the composite film unit intermediate the dyeable polymeric layer and the silver halide emulsion layer next adjacent, as disclosed in aforementioned U.S. Pat. No. 3,415,645.
Employment of the last-mentioned film units, according to the described color diffusion transfer photographic process, specifically provides for the production of a highly stable color transfer image accomplished, at least in part, by effectively obviating the previously discussed disadvantages of the prior art products and processes, by in process adjustment of the environmental pH of the film unit from a pH at which transfer processing is operative to a pH at which dye transfer is inoperative subsequent to substantial transfer image formation. The stable color transfer image is obtained irrespective of the fact that the film unit is maintained as an integral laminate unit during exposure, processing, viewing, and storage of the unit, which transfer image exhibits the required maximum and minimum dye transfer image densities, dye saturation. hues and definition.
Film units fabricated in accordance with the parameters set forth above specifically disclose the presence of the stated polymeric acid component to effect in situ process adjustment of the film units operational pH range.
Specifically, the film units require the presence of a polymeric acid layer such as, for example, of the type set forth in U.S. Pat. No. 3,362,819 which, most preferably, includes the presence of an inert timing or spacer layer intermediate the acid-containing layer carried on a support and the imagereceiving layer.
As set forth in the last-mentioned patent, the polymeric acid 1 layer comprises polymers which contains acid materials, such as integral carboxylic acid and sulfonic-acid groups, which are capable of forming salts with alkali metals, such as sodium, potassium etc., or with organic bases, particularly quaternary ammonium bases, such as tetramethyl ammonium hydroxide, or potentially acid-yielding groups, such as anhydrides or lactones, or other groups which are capable of reacting with bases to capture and retain them. The acid-reacting group is, of course, restrained from the acid polymer layer. In the preferred embodiments disclosed, the acid polymer contains free carboxyl groups and the transfer-processing composition employed contains a large concentration of sodium and/or potassium ions. The acid polymers stated to be most useful are characterized by containing free carboxyl groups, being insoluble in water in the free acid form, and by forming watersoluble sodium and/or potassium salts. One may also employ polymers containing carboxylic acid anhydride groups, at least some of which preferably have been converted to free carboxyl groups prior to imbibition. While the most readily available polymeric acids are derivatives of cellulose or of vinyl polymers, polymeric acids from other classes of polymers may be used. As examples of specific polymeric acids set forth in the application, mention may be made of dibasic acid halfester derivatives of cellulose which derivatives contain free carboxyl groups, e.g., cellulose acetate hydrogen phthalate, cellulose acetate hydrogen glutarate, cellulose acetate hydrogen succinate, ethyl cellulose hydrogen succinate, ethyl cellulose acetate hydrogen succinate, cellulose acetate hydrogen succinate hydrogen phthalate; ether and ester derivatives or cellulose modified with sulfoanhydrides, e.g., with ortho-sulfobenzoic anhydride; polystyrene sulfonic acid; carboxymethyl cellulose; polyvinyl hydrogen phthalate; polyvinyl acetate hydrogen phthalate; polyacrylic acid; acetals of polyvinyl alcohol with carboxy or sulfo substituted aldehydes, e.g., 0-, m-, or p-benzaldehyde sulfonic acid or carboxylic acid; partial esters of ethylene/maleic anhydride copolymers; partial esters of methyl-vinyl ether/maleic anhydride copolymers; etc.
As previously noted, the pH of the processing composition preferably is of the order of at least 12 to 14. The acid polymer layer is disclosed to contain at least sufficient acid groups to effect a reduction in the pH of the image layer from a pH of about 12 to 14 to a pH of at least 1 l or lower at the end of the imbibition period, and preferably to a pH of about 5 to 8 within a short time after imbibition, thus requiring, of course, that the action of the neutralizing acid be accurately so controlled as not to interfere with either development of the negative or image transfer of unoxidized dye developers. For this reason, the pH of the image layer must be kept at a functional transfer level, for example, 12 to 14 until the dye image has been formed after which the pH is reduced very rapidly to a pH below that at which dye transfer may be accomplished, for example, at least about 11 and preferably about pH 9 to 10. Unoxidized dye developers containing hydroquinonyldeveloping radicals diffuse from the negative to the positive as the sodium or other alkali salt. The diffusion rate of such dye image-forming components thus is at least partly a function of the alkali concentration, and it is necessary that the pH of the image layer remain on the order of, for example, 12 to 14 until transfer of the necessary quantity of dye has been accomplished. The subsequent pH reduction, in addition to its desirable effect upon image light stability, serves a highly valuable photographic function by substantially terminating further dye transfer.
In order to prevent premature pH reduction during transfer processing, as evidenced, for example, by an undesired reduction in positive image density, the acid groups are disclosed to be so distributed in the acid polymer layer that the rate of their availability to the alkali is controllable, e.g., as a function of the rate of swelling of the polymer layer which rate in turn has a direct relationship to the difiusion rate of the alkali ions. The desired distribution of the acid material in the acid polymer layer may be effected by mixing an acid polymer with a polymer free of acid groups, or lower in concentration of acid groups, and compatible therewith, or by using only the acid polymer but selecting one having a relatively lower proportion of acid groups. These embodiments are illustrated, respectively, in the cited copending application, by (a) a mixture of cellulose acetate and cellulose acetate hydrogen phthalate and (b) a cellulose acetate hydrogen phthalate polymer having a much lower percentage of phthalyl groups than the first-mentioned cellulose acetate hydrogen phthalate.
It is also there disclosed that the layer containing the polymeric acid may contain a water-insoluble polymer, preferably a cellulose ester, which acts to control or modulate the rate at which the alkali salt of the polymer acid is formed. As examples of cellulose esters contemplated for use, mention is made of cellulose acetate, cellulose acetate butyrate, etc. The particular polymers and combinations of polymers employed in any given embodiment are, of course, selected so as to have adequate wet and dry strength and when necessary or desirable, suitable subcoats are employed to help the various polymeric layers adhere to each other during storage and use.
In U.S. Pat. No. 3,362,821, it is also disclosed that the acid polymeric layer may be disposed within the photosensitive element of the film unit intermediate that elements support and next adjacent photosensitive silver halide emulsion layer and associated dye image-providing material, with the optional presence of a spacer or timing layer intermediate the acid layer and next adjacent silver halide emulsion layer.
The inert spacer layer of the last-mentioned patent, for example, an inert spacer layer comprising polyvinyl alcohol or gelatin, acts to time" control the pH reduction by the polymeric acid layer. This timing is disclosed to be a function of the rate at which the alkali diffuses through the inert spacer layer. it is'there stated to have been found that the pH does not drop until the alkali has passed through the spacer layer, i.e., the pH is not reduced to any significant extent by the mere diffusion into the interlayer, but the pH drops quite rapidly since once the alkali diffuses through the spacer layer.
It has now been quite unexpectedly discovered that the problems inherent in fabricating a film unit of the type where the image-receiving element and the photosensitive element are maintained in contiguous contact during processing and subsequent to dye transfer image formation, for example, a film unit of the type described, with reference to aforementioned U.S. Pat. No. 2,983,606, may be effectively obviated in a considerably simplified manner by fabrication of a film unit in accordance with the physical parameters detailed below.
Specifically, it has been quite unexpectedly discovered that an integral photographic film unit of simplified construction and particularly adapted for the production of dye transfer images of desirable properties by a color diffusion transfer process will be constructed to include a photosensitive element comprising a laminate structure possessing, as essential layers: a dimensionally stable common support carrying on one surface a photosensitive silver halide emulsion layer having associated therewith a dye image-forming material which is soluble and diffusible in processing composition as a function of the point-to-point degree of exposure of the photosensitive silver halide emulsion layer to incident actinic radiation; a layer permeable to processing composition diffusible dye image-forming material which comprises a reflecting agent present in a concentration insufficient to prevent exposure of the photosensitive silver halide emulsion layer by actinic radiation incident on the reflecting agent container layer; and a polymeric layer dyeable by the dye image-forming material.
In a preferred embodiment of the present invention the dimensionally stable common support is opaque and the photosensitive silver halide emulsion layer is positioned intermediate the support and the dyeable polymeric layer and the transfer image is viewed at the surface of the laminate opposite the opaque support subsequent to processing of the film unit. In a second embodiment of the invention the dimensionally stable common support is transparent and the dyeable polymeric layer is positioned intermediate the support and the photosensitive silver halide emulsion layer, where it is intended that the dye transfer image be viewed through the support and/or the image residing in the photosensitive silver halide emulsion layer be viewed at the surface of the laminate opposite the support, subsequent to processing, or the photosensitive silver halide emulsion layer is positioned intermediate the support and the dyeable polymeric layer, where it is intended that the dye transfer image be viewed at the surface of the laminate and/or the image residing in the photosensitive silver halide emulsion layer, subsequent to processing, be viewed through the support.
in the preferred embodiments of the present invention, the film unit is specifically adapted to provide for the production of a multicolor dye transfer image and the photosensitive laminate comprises, as essential layers, at least two selectively sensitized silver halide emulsion strata each having dye imageproviding materials of predetermined color associated therewith which are soluble and diffusible in processing com position as a function of the point-to-point degree of exposure of the respective associated silver halide emulsion strata; a polymeric layer permeable by processing composition solubilized dye image-providing materials which contains a reflecting agent in a quantity insufficient to prevent exposure of the selectively sensitized silver halide emulsion strata by actinic radiation incident on the layer; a polymeric layer dyeable by the dye image-providing material; and the dimensionally stable common support layer.
In view of the fact that the preferred dye image-providing materials comprise dyes which are silver halide developing agents, as stated above, for purposes of simplicity and clarity, the present invention will be further described hereinafter in terms of such dyes, without limitation of the invention to the illustrative dyes denoted, and, in addition the photographic film unit structure will be detailed hereinafter employing preferred structural embodiments, without limitation of the invention to the preferred structures denoted.
The silver halide emulsions comprising the multicolor photosensitive laminate preferably possess predominant spectral sensitivity to separate regions of the spectrum and each has associated therewith a dye, which is a silver halide developing agent and is, most preferably, substantially soluble in the reduced form only at a first pH possessing, subsequent to processing, a spectral absorption range substantially complementary to the predominant sensitivity range of its associated emulsion.
in the preferred embodiment, each of the emulsion strata, and its associated dye, is separated from the remaining emulsion strata, and their associated dye, by separate processing solution permeable polymeric interlayers.
in such preferred embodiment of the invention, the silver halide emulsion comprises photosensitive silver halide dispersed in gelatin and is about 0.6 to 6 microns in thickness; the dye itself is dispersed in an aqueous processing solution permeable polymeric binder, preferably gelatin, as a separate layer about 1 to 7 microns in thickness; the processing solution permeable polymeric interlayers, preferably gelatin, are about 1 to 5 microns in thickness; the processing solution permeable reflecting agent containing layer is about 0.05 to 0.025 micron in thickness; the processing solution permeable and dyeable polymeric layer is transparent and about 0.25 to 0.4 mil in thickness; and the dimensionally stable support layer is processing solution impermeable and about 2 to 6 mils in thickness. It will be specifically recognized that the relative dimensions recited above may be appropriately modified, in accordance with the desires of the operator, with respect to the specific product to be ultimately prepared.
In the preferred embodiment of the present invention s film unit for the production of a multicolor transfer image, the respective silver halide/dye developer units of the photosensitive element will be in the form of a tripack configuration which will ordinarily comprise a cyan dye developer/red-sensitive emulsion unit distal the laminates exposure surface, the yellow dye developer/blue-sensitive emulsion unit proximal the exposure surface and the magenta dye developer/greensensitive emulsion unit intermediate those units, recognizing that the relative order of such units may be varied in accordance with the desires of the operator.
Reference is now made to FIGS. 1 through 16 of the drawings wherein there is illustrated preferred film units of the present invention and wherein like numbers, appearing in the various figures, refer to like components.
As illustrated in the drawings, each of FIGS. 1 through 3 illustrate diagrammatic cross-sectional views of a preferred film unit of the present invention during the various depicted stages in the performance of a photographic diffusion transfer process as detailed hereinafter.
As illustrated in FIG. 1, the film unit detailed comprises, prior to processing, a photosensitive laminate including, in order, dimensionally stable opaque support layer 10, preferably an actinic radiation-opaque flexible sheet material; cyan dye developer layer 11; red-sensitive silver halide emulsion layer 12; interlayer 13; magenta dye developer layer 14; green-sensitive silver halide emulsion layer 15; interlayer 16; yellow dye developer layer 17; blue-sensitive silver halide emulsion layer 18; reflecting layer 19; image-receiving layer 20; and stripping layer 21.
In the performance of a diffusion transfer multicolor process employing the film unit, the unit is exposed to the radiation, actinic to photosensitive laminate, incident on the laminates exposure surface, as illustrated in FIG. 1.
Subsequent to exposure, as illustrated by FIGS. 2 and 3, the film unit is processed by distribution of processing composition 22 from applicator 23, on the surface of the laminate opposite opaque support layer 10, possessing a pH and solvent concentration at which the cyan, magenta and yellow dye developers are soluble and diffusible as a function of the point-to-point degree of exposure of red-sensitive silver halide emulsion layer 12, green-sensitive silver halide emulsion layer 15 and blue-sensitive silver halide emulsion layer 18, respectively.
Processing solution 22 permeates emulsion layers l2, l5 and 18 to initiate development of the latent images contained in the respective emulsions. The cyan, magenta and yellow dye developers, of layers 11, 14 and 17, are immobilized, as a function of the development of their respective associated silver halide emulsions, preferably substantially as a result of their conversion from the reduced form to their relatively insoluble and nondiffusible oxidized form, thereby providing imagewise distributions of mobile, soluble and diffusible cyan, magenta and yellow dye developer, as a function of the pointto-point degree of their associated emulsions exposure. At'
least part of the imagewise distributions of mobile cyan, magenta and yellow dye developer transfers, by diffusion, to dyeable polymeric layer 20 to provide a multicolor dye transfer image to that layer.
Subsequent to substantial multicolor dye transfer image formation, layer 22 of the processing solution optionally may be manually dissociated from the remainder of the film unit,
which may be facilitated by stripping layer 21, as described above, to provide the product illustrated in FIG. 3.
As further illustrated in the drawings, FIG. 4 sets forth a perspective view of the therein specified film units of the present invention, designated 30, and each of FIGS. 5 through 16 illustrate the therein detailed diagrammatic cross-sectional views of such film units, along the stated section line AA, during the various depicted stages in the performance of the photographic diffusion transfer process as detailed hereinafter.
As detailed in FIGS. 5 to 8, inclusive, film unit 30 comprises rupturable container 31, retaining, prior to processing, aqueous processing solution 26, photosensitive laminate 32 including, in order, image-receiving layer 20; reflecting layer 19; blue-sensitive silver halide emulsion layer 18; yellow dye developer layer 17; interlayer 16; green-sensitive silver halide emulsion layer 15; magenta dye developer layer 14; interlayer l3; red-sensitive silver halide emulsion layer 12; cyan dye developer layer 11; spacer layer 29; neutralizing layer 28; and dimensionally stable opaque support layer 10; and, superposed coextensive the surface of the laminate opposite opaque support layer 10, dimensionally stable transparent sheet 24; both support layer 10 and sheet 24 preferably comprising processing composition impermeable flexible sheet material.
As detailed in FIGS. 11 to 16, inclusive, photosensitive laminate 33 may also comprise, in order, red-sensitive silver halide emulsion layer 34 containing cyan dye developer; interlayer 35; green-sensitive silver halide emulsion layer 36 containing magenta dye developer; interlayer 37; blue-sensitive silver halide emulsion layer 38 containing yellow dye developer; reflecting layer 19; image-receiving layer 20; spacer layer 29; neutralizing layer 28; and dimensionally stable transparent support layer 39; and, superposed coextensive the surface of the laminate opposite transparent support layer 39, dimensionally stable opaque sheet 40; both support layer 39 and sheet 40 preferably comprising processing composition impermeable flexible sheet material.
The composite may be provided with a binding member extending around, for example, the specified edges of composite, maintaining the laminate and sheet element comprising the composite intact except at the interface between the elements during distribution of processing composition 26. As illustrated in the figures, the binder member may comprise a pressure-sensitive tape 25 securing the sheet and laminate elements together at the composite's specified edges. Tape 25 will also act to maintain processing composition 26 intermediate the sheet and photosensitive laminate upon application of compressive pressure to container 31 and distribution of its contents intermediate the stated elements. Under such circumstances, binder tape 25 will act to prevent leakage of processing composition from the film unit during and subsequent to photographic processing.
Rupturable container 31 may be of the type shown and described in any of US. Pat. Nos. 2,543,181; 2,634,886; 3,653,732; 2,723,051; 3,056,492; 3,056,491; 3,152,515; and the like. In general, such containers will comprise a rectangular blank of fluidand air-impervious sheet material folded longitudinally upon itself to form two walls 41 which are sealed to one another along their longitudinal and end margins to form a cavity in which processing solution 26 is retained. The longitudinal marginal seal 42 is made weaker than the end seals 43 so as to become unsealed in response to the hydraulic pressure generated within the fluid contents 26 of the container by the application of compressive pressure to walls 41 of the container.
As illustrated in FIGS. 5, 7, 11 and 13, container 31 is fixedly positioned and extends transverse a leading edge of the photosensitive laminate whereby to effect unidirectional discharge of the containers contents 26 between the laminate and next adjacent sheet, upon application of compressive force to container 31. Thus, container 31, as illustrated in FIGS. 5 and 11 is fixedly positioned and extends transverse a leading edge of the laminate with its longitudinal marginal seal 42 directed toward the interface between the laminate and next adjacent sheet. As shown in FIGS. 5, 7, 11 and 13, container 31 is fixedly secured to the laminate by extension 43 of tape 25 extending over a portion of one wall 41 of the container, in combination with a separate retaining member such as illustrated retaining tape 44 extending over a portion of the outer wall 41 of the container and a portion of the laminate's surface generally equal in areas to about that covered by tape 25.
As illustrated in FIGS. 7 and 13, extension flap 46 of tape 25 is preferably of such area and dimensions that upon, for example, manual separation of container 31 and tape 44, subsequent to distribution of processing composition 26, from the remainder of film unit 30, flap 46 may be folded over the edge of the laminate, previously covered by tape 44, in order to facilitate maintenance of the laminate's structural integrity, for example, during the flexations inevitable in storage and use of the processed film unit, and to provide a suitable mask or frame, for viewing of the transfer image through the picture viewing area of transparent sheet 24 in the film unit of FIG. 9 and transparent layer 39 in the film unit of FIG. 15. The fluid contents of the container comprise an aqueous processing solution having a pH and solvent concentration at which the dye developers are soluble and diffusible and, in the film unit of FIGS. 1! to 16, may additionally contain an opacifying agent to provide in part the opaque character to the surface area of laminate 33 employing sheet 40 or to provide in whole the opaque character to laminate 33 in film units wherein sheet 40 comprises a transparent sheet such as transparent sheet 24 of laminate 32 or a translucent sheet material.
The selected reflecting agent should be one providing a 7 background suitable for viewing the dye developer transfer image formed in the dyeable polymeric layer. In general, while substantially any reflecting agent may be employed, it is preferred that a reflecting agent be selected that will not interfere with the color integrity of the dye transfer image, as viewed by the observer, and, most preferably, an agent which is aesthetically pleasing to the viewer and does not provide a background noise signal degrading, or detracting from, the information content of the image. Particularly desirable reflecting agents will be those providing a white background, for viewing the transfer image, and specifically those conventionally employed to provide background for reflection photographic prints and, especially those agents possessing the optical properties desired for reflection of incident radiation.
As examples of reflecting agents adapted for employment in the practice of the present invention, mention may be made of barium sulfate, zinc sulfide, titanium dioxide, barium stearate, silver flake, silicates, alumina, zirconium oxide, zirconium acetyl acetate, sodium zirconium sulfate, kaolin, mica, and the like.
A particularly preferred reflecting agent comprises titanium dioxide due to its highly effective reflection properties. In general, in such preferred embodiment, the titanium dioxide reflecting agent employed will possess a particle size distribution averaging less than about 0.2 micron in diameter and preferably less than about 0.l micron and most preferably averaging less than about 0.05 micron in diameter as initially present preceding exposure of the film unit, which preferred materials, upon contact with aqueous alkaline processing composition, preferably aggregate to provide particles possessing a diameter in excess of about 0.2 micron in diameter and will be coated at a coverage of about 200 to l,000 mgs./ft.". Specifically, the reflecting agent will be present in a quantity insufficient to prevent exposure of the emulsion layers by actinic radiation incident on the dimensionally stable transparent layer of the film unit but in a concentration sufficient, subsequent to processing, to mask dye developer associated with the silver halide emulsion strata from the dye transfer image. It has been quite unexpectedly discovered that the preferred embodiment employing titanium dioxide initially present in a relatively small particle size provides unexpectedly efficient transit of radiation through the reflecting layer during exposure which upon contact with an alkaline processing composition and aggregation of the titanium dioxide particles provides efficient light reflectivity and masking capacity subsequent to such aggregation.
Where desired, the reflecting agent may be distributed within a processing composition permeable polymeric matrix such as gelatin and/or any other such polymeric matrixes as are specifically denoted throughout the specification as suitable for employment as a matrix binder.
In general, the preferred reflecting agents are those which remain immobile within their respective compositions during and subsequent to photographic processing and particularly those which comprise insoluble and nondiffusible inorganic pigment dispersions within the layer in which they are disposed.
In the performance of a diffusion transfer multicolor process employing film unit 30, the unit is exposed to radiation, actinic to the photosensitive laminate, incident on the laminate's exposure surface, as illustrated in FIGS. 5 and l 1.
Subsequent to exposure, as illustrated by FIGS. 5 and 7 and 11 and 13, film unit 30 is processed by being passed through opposed suitably gapped rolls 45 in order to apply compressive pressure to frangible container 31 and to efi'ect rupture of longitudinal seal 42 and distribution of alkaline processing composition 26, having a pH at which the cyan, magenta and yellow dye developers are soluble and diffusible, intermediate transparent sheet 24 and image-receiving layer 20 in laminate 32 of FIGS. 5 to 10, and opaque sheet 40 and red-sensitive silver halide emulsion layer 34 in laminate 33 of FIGS. 11 to 16.
Alkaline processing solution 26 permeates emulsion layers l5, l7 and 19 of laminate 32 and emulsion layers 34, 36 and 38 of laminate 33 to initiate development of the latent images contained in the respective emulsions. The cyan, magenta and yellow dye developers, of layers l1, l4 and 17 of laminate 32 and of emulsion layers 34, 36 and 38 of laminate 33 are immobilized, as a function of the development of their respective associated silver halide emulsions, preferably substantially as a result of their conversion from the reduced form to their relatively insoluble and nondiffusible oxidized form, thereby providing imagewise distributions of mobile, soluble and diffusible cyan, magenta and yellow dye developer, as a function of the point-to-point degree of their associated emulsions exposure. At least part of the imagewise distributions of mobile cyan, magenta and yellow dye developer transfers, by diffusion, to aqueous alkaline solution permeable and dyeable polymeric layer 20 to provide a multicolor dye transfer image to that layer. Subsequent to substantial transfer image formation, a sufficient portion of the ions comprising aqueous alkaline solution 26 transfers, by diffusion, through permeable polymeric spacer layer 29 and to permeable polymeric acid layer 28 whereby alkaline solution 26 decreases in pH, as a function of neutralization, to a pH at which the cyan, magenta and yellow dye developers, in the reduced form, are substantially insoluble and nondiffusible, to provide thereby a stable multicolor dye transfer image viewable through dimensionally stable transparent layer 24.
Subsequent to distribution of processing solution 26, container 31, optionally, may be manually dissociated from the remainder of the film unit, as described above.
As previously stated, the multicolor dye transfer image of laminate 32 is viewable through dimensionally stable transparent sheet 24 and that of laminate 33 is viewable through dimensionally stable transparent layer 39 subsequent to transfer image formation, in the preferred embodiments detailed above.
Where desired, transparent sheet 24 of laminate 32, as shown in FIGS. 5 to 10, and/or opaque sheet 40 of laminate 33, as shown in FIGS. 11 to 16, illustrated in the respective figures as a sheet element fixedly maintained, superposed on and coextensive with the surface of the laminate distal opaque support layer 10 and transparent support layer 39, respectively, may in a further embodiment of the present invention, be
fixedly positioned extending transverse a leading edge of the laminate and adapted to be superposed on the surface of the laminate prior to, or contemporaneous with, distribution of processing composition 26. ln such instance, the dimensionally stable sheet may comprise a flexible sheet material displaced from contact with the surface of laminate 32 and/or 33 during photoexposure and brought into superposed relationship with such surface subsequent to exposure contemporaneous with, or preceding, distribution of processing composition 26 intermediate such sheet and the photoexposed laminate.
As relating to laminate 32, subsequent to processing of the integral film unit, the superposed dimensionally stable sheet may be stripped from the remainder of the film unit alone or in accompaniment with the processing composition where desired. In further embodiments of the present invention, the flexible sheet material when superposed on the surface of the laminate subsequent to photoexposure of laminate 32, may comprise an opaque sheet material and/or the processing composition may retain opacifying agent or agents and either and/or both taken together may possess sufficient opacifying capacity to insure protection of the laminate from actinic radiation incident on that surface of the laminate through which photoexposure was accomplished, which, in combination with opaque support layer of the laminate, provides a structure adapted to be processed in the presence of actinic radiation. Subsequent to the processing of such film unit, the superposed dimensionally stable sheet may be stripped from the remainder of the film unit, where desired or opaque, alone or in accompaniment with the processing composition, where desired or opaque, to reveal the dye transfer image carried by the laminate. Displacement of the flexible sheet may be manually effected alone or together with processing composition residuum where desired by selective adhesion to, or release of the processing composition from, the manually displaced sheet element.
It will also be recognized that substitution of a dimensionally stable transparent support layer, in replacement for the opaque support layer 10 of laminate 32, exposes to viewing the dye image present in the photosensitive silver halide emulsion and associated dye developer layers which is negative with respect to the dye transfer image carried by imagereceiving layer and may be viewed against reflecting layer 19 which masks the dye transfer image from observation through such transparent support layer.
With respect to laminate 33, the processing composition need not, but may, retain opacifying agent or agents, as previously noted, for the purposes of further opacification capacity and in such instance opaque sheet 39 may be optionally replaced by a translucent or transparent sheet material. In those instances where it is desired to view the dye image present in the photosensitive silver halide emulsion and associated dye developer layers, which is negative with respect to the dye transfer image carried by the image-receiving layer, against the masking background of reflecting layer 19, the sheet material and processing composition employed may be transparent for viewing purposes.
Analogous to aforementioned description regarding laminate 32, the dimensionally stable sheet may be stripped from the remainder of the film unit alone or in combination with the processing composition and especially where either the sheet and/or the processing composition is opaque and it is desired to view the aforementioned negative dye image.
The present invention will be further illustrated and detailed in conjunction with the following illustrative constructions which set out representative embodiments and photographic utilization of the novel photographic film units of this invention, which, however, are not limited to the details herein set forth and are intended to be illustrative only.
Film units similar to that set forth in the drawings may be prepared, for example, by coating, in succession, on an opaque 4 mil polyethylene terephthalate film base:
l. a layer of the cyan dye developer l,4-bis(B-[hydroquinonyl-a-methyl]ethyl-amino)-5,8-dihydroxy-anathraquinone dispersed in gelatin and coated at a coverage of about 150 mgs./ft." of dye and about 200 mgs./ft."' of gelatin;
2. a red-sensitive gelatino silver iodobromide emulsion coated at a coverage of about 200 mgs./ft. of silver and about mgs./ft. of gelatin;
3. a layer of gelatin coated at a coverage of about 200 mgs./ft.;
4. a layer of the magenta dye developer 4-isopropoxy-2-[p- (,B-hydroquinonyl ethyl) phenylazo )-naphthalenel ethoxy acetate dispersed gelatin and coated at a coverage of about 70 mgs./ft. of dye and about 100 mgs./ft. of gelatin;
5. a green-sensitive gelatino silver halide emulsion coated at a coverage of about 100 mgs./ft." of silver and about 60 mgsJft. of gelatin;
6. a layer of gelatin coated at a coverage of about mgs./ft.
7. a layer of the yellow dye developer 4-(p-[B-hydroquinonyl ethyl] phenylazo)-3-(N-n-hexylcarboxamido)-lphenyl-S-pyrazolone dispersed in gelatin and coated at a coverage of about 40 mgs./ft. of dye and about 50 mgs./ft. of gelatin;
8. a blue-sensitive gelatino silver iodobromide emulsion coated at a coverage of about 60 mgsJft. of silver and about 50 mgs./ft. ofgelatin;
9. a layer containing 4'-methylphenyl hydroquinone dispersed in gelatin and coated at a coverage of about 10 mgs./ft." of 4'-methylphenyl hydroquinone and about 30 mgs./ft. of gelatin;
10. a layer of titanium dioxide possessing a mean particle size of below about 0.03 micron in diameter in gelatin coated at a coverage of approximately 600 mgsJft. titanium dioxide and of approximately 150 mgsJft. gelatin to provide a polymeric reflecting layer approximately 0. l5 mil. thick; and
l l. a 2:1 mixture, by weight, of polyvinyl alcohol and poly- 4-vinylpyridine, at a coverage of approximately 600 mgs./ft. to provide a polymeric image-receiving layer approximately 0.40 mil. thick.
Transparent cellulose triacetate polymeric sheet may then be superposed on the external surface of coating No. 11 and the two components then taped together, in composite form, at their respective edges by means of opaque pressure-sensitive binding tape extending around, in contact with, and over the edges of the resultant film unit.
A rupturable container comprising an outer layer of paper, an intermediate layer of lead foil and an inner liner or layer of polyvinyl chloride retaining an aqueous alkaline processing solution comprising:
I00 cc.
1.5 g. l.0g.
may then be fixedly mounted on the leading edge, of each of the composites, by pressure-sensitive tapes interconnecting the respective containers and laminates, such that upon application of compressive pressure to the container its contents will be distributed, upon rupture of the containers marginal seal, intermediate the cellulose triacetate sheet and the imagereceiving layer.
The photosensitive laminates may be exposed through step wedges to selectively filtered radiation incident on the transparent sheet and processed by passage of the exposed film unit through suitably gapped opposed rolls, to effect rupture of the container and distribution of the containers contents between the photosensitive element and the sheet element. Subsequent to processing, a multicolor dye transfer image formation may be viewed through the transparent cellulose triacetate sheet and such image formation is found to be substantially completed and exhibiting the required color brilliance, hues, saturation and isolation within a period of about 1 to 3 minutes.
The pH of the alkaline-processing solution initially employed must be a pH at which the dye developers employed are soluble and diffusible. Although it has been found that the specific pH to be employed may be readily determined empirically for any dye developer, or group of dye developers, most particularly desirable dye developers are soluble at pH's above 9 and relatively insoluble at pHs below 9, in reduced form, and the system can be readily balanced accordingly for such dye developers. In addition, although as previously noted, the processing composition, in the preferred embodiments detailed, will include the stated film-forming viscosity-increasing agent or agents, to facilitate spreading of the composition and to provide maintenance of the spread composition as a structurally stable layer of the laminate, subsequent to distribution, it is not necessary that such agent be employed as a component of the composition. In the later instance, however, it will be preferred that the concentration of solvent, that is, water, etc., comprising the composition be the minimum amount necessary to conduct the desired transfer process, in order not to adversely affect the structural integrity of the laminate and that the layers forming the laminate can readily accommodate and dissipate the solvent throughout during processing and drying without effecting undesirable dimensional changes in the layers forming the laminate.
In a particularly preferred embodiment, a polymeric acid layer, for example, as illustrated in FIGS. to 16 of the drawings, will be additionally incorporated, as stated, in the film unit of the present invention, to provide reduction of the alkalinity of the film unit from a pH at which the dyes are soluble to a pH at which the dyes are substantially nondiffusible, in order to advantageously stabilize the dye transfer image. In such instance, a polymeric acid layer such as that obtained by coating the polyethylene terephthalate film base with the partial butyl ester of polyethylene/maleic anhydride copolymer prepared by refluxing, for 14 hours, about 300 grams of highviscosity poly-(ethylene/maleic anhydride), about 140 grams of n-butyl alcohol and about 1 cc. of 85 percent phosphoric acid to provide a polymeric acid layer approximately 0.75 mil. thick preferably in turn overcoated with a 2:1 solution of hydroxy propyl cellulose and polyvinyl alcohol in water to provide a polymeric spacer layer approximately 0.25 mil. thick, will be positioned intermediate the common support and next adjacent essential layer, as previously described. i
As disclosed in aforementioned U.S. Pat. No. 3,362,819, the presence of an inert spacer layer was found to be effective in evening out the various reaction rates over a wide range of temperatures, for example, by preventing premature pH reduction when inhibition is effected at temperatures above room temperature, for example, at 95 to 100 F. By providing an inert spacer layer, that application discloses that the rate at which alkali is available for capture in the polymeric acid layer becomes a function of the alkali diffusion rates.
However, as disclosed in copending US. Pat. application Ser. No. 664,503, filed Aug. 30, 1967, in the names of Leonard C. Farney, Howard G. Rogers and Richard W.
Young, preferably the aforementioned rate at which the cations of the alkaline-processing composition, i.e., alkali ions, are available for capture in the polymeric acid layer should be decreased with increasing transfer-processing temperatures in order to provide diffusion transfer color processes relatively independent of positive transfer image variations over an extended range of ambient temperatures.
Specifically, it is there stated to have been found that the diffusion rate of alkali through a permeable inert polymeric spacer layer increases with increased processing temperature to the extent, for example, that at relatively high transfer processing temperatures, that is, transfer processing temperatures above approximately F., a premature decrease in the pH of the transfer-processing composition occurs due, at least in part, to the rapid diffusion of alkali from the dye transfer environment and its subsequent neutralization upon contact with the polymeric acid layer. This was stated to be especially true of alkali traversing an inert spacer layer possessing permeability to alkali optimized to be effective within the temperature range of optimum transfer processing. Conversely, at temperatures below the optimum transfer processing range, for example, temperatures below approximately 40 F., the last-mentioned inert spacer layer was disclosed to provide an effective diffusion barrier timewise preventing effective traverse of the inert spacer layer by alkali having temperature depressed diffusion rates and to result in maintenance of the transfer processing environment's high pH for such an extended time interval as to facilitate formation of transfer image stain and its resultant degradation of the positive transfer images color definition.
It is further stated in the last-mentioned copending applica- V tion Ser. No. 664,503 to have been found, however, that if the inert spacer layer of the print-receiving element is replaced by a spacer layer which comprises a permeable polymeric layer exhibiting permeability inversely dependent on temperature, that is, a polymeric film-forming material which exhibits decreasing permeability to solubilized alkali derived cations such as alkali metal and quanternary ammonium ions under conditions of increasing temperature, that the positive transfer image defects resultant from the aforementioned overextended pH maintenance and/or premature pH reduction are obviated.
As examples of polymers which were disclosed to exhibit inverse temperature-dependent permeability to alkali, mention may be made of: hydroxypropyl polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyvinyl oxazolidone, hydroxypropyl methyl cellulose, iospropyl cellulose, partial acetals of polyvinyl alcohol such as partial polyvinyl butyral, partial polyvinyl formal, partial polyvinyl acetal, partial polyvinyl propional, and the like.
The last-mentioned specified acetals of polyvinyl were stated to generally comprise saturated aliphatic hydrocarbon chains of a molecular weight of at least 1,000, preferably of about 1,000 to 50,000, possessing a degree of acetalation within about 10 to 30 percent, l0 to 30 percent, 20 to 80 percent, and 10 to 40 percent, of the polyvinyl alcohols theoretical polymeric hydroxy groups, respectively, and including mixed acetals where desired.
Where desired, a mixture of the polymers is to be employed, for example, a mixture of hydroxypropyl methyl cellulose and partial polyvinyl butyral.
Employment of the detailed and preferred film units of the present invention, according to the herein described color diffusion transfer process, specifically provides for the production of a highly stable transfer image accomplished, at least in part, by effectively obviating the previously discussed disadvantages of the prior art products and processes, by in process adjustment of the environmental processing from a condition at which dye diffusion or transfer is operative to a condition at which dye transfer is substantially inoperative subsequent to substantial transfer image formation. The stable color transfer image is obtained irrespective of the fact that the film unit is maintained as an integral laminate unit during exposure, processing, viewing, and storage of the unit. Accordingly, by means of the present invention, multicolor transfer images may be provided over an extended processing temperature range which exhibit desired maximum and minimum dye transfer image densities; yellow, magenta and cyan dye saturation; red, green and blue hues; and color separation. These unexpected advantages are in addition to the manufacturing advantages obtained by reason of the present inventions integral color transfer film unit and which will be readily apparent from examination of the units parameters, that is, for example, advantages in more efficient utilization of fabricating materials and components, enhanced simplicity of film manufacture and camera design and construction. and more simplified and effectively controlled customer utilization of the unit.
The dimensionally stable support layers referred to may comprise any of the various type of conventional opaque and transparent rigid or flexible materials possessing the support and optional characteristics denoted above, and may comprise polymeric films of both synthetic types and those derived from naturally occurring products. Particularly suitable materials include aqueous alkaline solution impermeable, water vapor permeable, flexible polymeric materials such as vapor-permeable polymeric films derived from ethylene glycol terephthalic acid, vinyl chloride polymers; polyvinyl acetate; polyamides; polymethacrylic acid methyl and ethyl esters; cellulose derivatives such as cellulose, acetate, triacetate, nitrate, propionate, butyrate, acetate-propionate, or acetate-butyrate; alkaline solution impermeable, water vapor permeable papers; crosslinked polyvinyl alcohol; regenerated cellulose; and the like.
It will be noted that the liquid processing composition employed may contain an auxiliary or accelerating developing agent, such as p-methylaminophenol, 2,4-diaminophenol, pbenzylaminophenyl, hydroquinone, toluhydroquinone, phenylhydroquinone, 4'-methylphenylhydroquinone, etc. It is also contemplated to employ a plurality of auxiliary or accelerating developing agents, such as a 3-pyrazolidone developing agent and a benzenoid developing agent, as disclosed in U.S. Pat. No. 3,039,869, issued June 19, 1962. As examples of suitable combinations of auxiliary developing agents, mention may be made of l-phenyl-3-pyrazolidone in combination with pbenzylaminophenol and l-phenyl-3-pyrazolidone in combination with 2,5-bis-ethylenimino-hydroquinone. Such auxiliary developing agents may be employed in the liquid-processing composition or they may be initially incorporated, at least in part, in any one or more of the silver halide emulsion strata, the strata containing the dye developers, the interlayers, the image-receiving layer, or in any other auxiliary layer or layers, of the film unit. It may be noted that at least a portion of the dye developer oxidized during development may be oxidized and immobilized as a result of a reaction, e.g., an energytransfer reaction, with the oxidation product of an oxidized auxiliary developing agent, the latter developing agent being oxidized by the development of exposed silver halide. Such a reaction of oxidized developing agent with unoxidized dye developer would regenerate the auxiliary developing agent for further reaction with the exposed silver halide.
In addition, development may be effected in the presence of an onium compound, particularly a quaternary ammonium compound, in accordance with the processes disclosed in U.S. Pat. No. 3,173,786, issued Mar. 16, 1965.
It will be apparent that the relative proportions of the agents of the diffusion transfer processing composition may be altered to suit the requirements of the operator. Thus, it is within the scope of this invention to modify the herein described developing compositions by the substitution of preservatives, alkalies, etc., other than those specifically mentioned, provided that the pH of the composition is initially at the pH and solvent concentration required. When desirable, it is also contemplated to include, in the developing composition, components such as restrainers, accelerators, etc. Similarly, the concentration of various components may be varied over a wide range and when desirable adaptable components may be disposed in the photosensitive element, prior to exposure, in a separate permeable layer of the photosensitive element and/or in the photosensitive emulsion.
in all examples of this specification, percentages of components are given by weight unless otherwise indicated.
An extensive compilation of specific dye developers particularly adapted for employment in photographic diffusion transfer processes is set forth in aforementioned U.S. Pat. No. 2,983,606 and in the various copending U.S. applications referred to in that patent, especially in the table of U.S. applications incorporated by reference into the patent as detailed in column 27. As examples of additional U.S. patents detailing specific dye developers for photographic transfer process use, mention may also be made of U.S. Pat. Nos. 2,983,605; 2,992,106; 3,047,386; 3,076,808; 3,076,820; 3,077,402; 3,126,280; 3,131,061; 3,134,762; 3,134,765; 3,135,604; 3,135,605; 3,l35,606; 3,135,734; 3,141,772; 3,142,565; and the like.
As additional examples of synthetic, film-forming, permeable polymers particularly adapted to retain dispersed dye developer, mention may be made of nitrocarboxymethyl cellulose, as disclosed in U.S. Pat. No. 2,992,104; an acylamidobenzene sulfo ester of a partial sulfobenzal of polyvinyl alcohol, as disclosed in U.S. Pat. No. 3,043,692; polymers of N-alkyl-a,B-unsaturated carboxamides and copolymers of N-alkyl-a,B-carboxamides with N-hydroxyalkyl-a,B-unsaturated carboxamides, as disclosed in US. Pat. No. 3,069,263; copolymers of vinylphthalimide and a,/3-unsaturated carboxylic acids, as disclosed in U.S. Pat. No. 3,061,428; copolymers of N-vinylpyrrolidones and afi-unsaturated carboxylic acids and terepolymers of N-vinylpyrrolidones, a,B-unsaturated carboxylic acids and alkyl esters of afi-unsaturated carboxylic acids, as disclosed in U.S. Pat. No. 3,044,873; copolymers of N,N-dialkyl-a,fi-unsaturated carboxamides with a,/3-unsaturated carboxylic acids, the corresponding amides of such acids, and copolymers of N-aryland N-cycloalkyl-a,B-unsaturated carboxamides with a,B-unsaturated carboxylic acids, as disclosed in U.S. Pat. No. 3,069,264; and the like.
ln addition to conventional techniques for the direct dispersion of a particulate solid material in a polymeric, or colloidal. matrix such as ball-milling and the like techniques, the preparation of the dye developer dispersion may also be obtained by dissolving the dye in an appropriate solvent, or mixture of solvents, and the resultant solution distributed in the polymeric binder, with optional subsequent removal of the solvent, or solvents, employed, as, for example, by vaporization where the selected solvent, or solvents, possesses a sufficiently low boiling point or washing where the selected solvent, or solvents, possesses a sufficiently high differential solubility in the wash medium, for example, water, when measured against the solubility of the remaining composition components, and/or obtained by dissolving both the polymeric binder and dye in a common solvent.
For further detailed treatment of solvent distribution systems of the types referred to above, and for an extensive compilation of the conventional solvents traditionally employed in the art to effect distribution of photographic colorproviding materials in polymeric binders, specifically for the formation component layers of photographic film units, reference may be made to U.S. Pat. Nos. 2,269,158; 2,322,027; 2,304,939; 2,304,940; 2,801,171; and the like.
Although the invention has been discussed in detail throughout employing dye developers, the preferred dye image-providing materials, it will be readily recognized that other, less preferred, dye image-providing materials may be substituted in replacement of the preferred dye developers in the practice of the invention. For example, there may be employed dye image-forming materials such as those disclosed in U.S. Pat. Nos. 2,647,049, issued July 28, 1953; 2,661,293, issued Dec. 1, 1953; 2,698,244, issued Dec. 28, 1954; 2,698,798, issued Jan. 4, 1955; and 2,802,735, issued Aug. 13, 1957, wherein color diffusion transfer processes are described which employ color-coupling techniques comprising, at least in part, reacting one or more color-developing agents and one or more color formers or couplers to provide a dye transfer image to a superposed image-receiving layer and those dis closed in U.S. Pat. No. 2,774,668, issued Dec. 18, 1956 wherein color diffusion transfer processes are described which employ the imagewise differential transfer of complete dyes by the mechanisms therein described to provide a transfer dye image to a contiguous image-receiving layer.
For the production of the photosensitive gelatino silver halide emulsions employed to provide the film unit, the silver halide crystals may be prepared by reacting a water-soluble silver salt, such as silver nitrate, with at least one water-soluble halide, such as ammonium, potassium or sodium bromide, preferably together with a corresponding iodide, in an aqueous solution of a peptizing agent such as a colloidal gelatin solution; digesting the dispersion at an elevated temperature, to provide increased crystal growth; washing the resultant dispersion to remove undesirable reaction products and residual water-soluble salts by chilling the dispersion, noodling the set dispersion, and washing the noodles with cold water, or alternatively, employing any of the various fiocc systems, or
, procedures, adapted to effect removal of undesired components, for example, the procedures described in US. Pat. Nos. 2,6l4,928; 2,614,929; 2,728,662; and the like; afterripening the dispersion at an elevated temperature in combination with the addition of gelatin and various adjuncts, for example, chemical sensitizing agents of US. Pat. Nos. l,574,944; 1,623,499; 2,4l0,689; 2,597,856; 2,597,9l; 2,487,850; 2,518,698; 2,52l,926; and the like; all according to the traditional procedures of the art, as described in Neblette, C. 8., Photography Its Materials and Processex, 6th Ed., i962.
Optical sensitization of the emulsions silver halide crystals may be accomplished by contact of the emulsion composition with an effective concentration of the selected optical sensitizing dyes dissolved in an appropriate dispersing solvent such as methanol, ethanol, acetone, water, and the like; all according to the traditional procedures of the art, as described in Hammer, F. M., The Cyanine Dyes and Related Compounds.
Additional optional additives, such as coating aids, hardeners, viscosity-increasing agents, stabilizers, preservatives, and the like, for example, those set forth hereinafter, also may be incorporated in the emulsion formulation, according to the conventional procedures known in the photographic emulsion manufacturing art.
The photoresponsive material of the photographic emulsion will, as previously described, preferably comprise a crystal of silver, for example, one or more of the silver halides such as silver chloride, silver iodide, silver bromide, or mixed silver halides such as silver chlorobromide or silver iodobromide, of varying halide ratios and varying silver concentrations.
As the binder for the respective emulsion strata, the aforementioned gelatin may be, in whole or in part, replaced with some other colloidal material such as albumin; casein; or zein; or resins such as a cellulose derivative, as described in U.S. Pat. Nos. 2,322,085 and 2,327,808; polyacrylamides, as described in US. Pat. No. 2,54l,474; vinyl polymers such as described in an extensive multiplicity of readily available US. and foreign patents.
Although the preceding description of the invention has been couched in terms of the preferred photosensitive component construction wherein at least two selectively sensitized photosensitive strata are in contiguous coplanar relationship and, specifically, in terms of the preferred tripack type structure comprising a red-sensitive silver halide emulsion stratum, a green-sensitive silver halide emulsion stratum and a bluesensitive silver halide emulsion stratum having associated therewith, respectively, a cyan dye developer, a magenta dye developer and a yellow dye developer, the photosensitive component of the film unit may comprise at least two sets of selectively sensitized minute photosensitive elements arranged in the form of a photosensitive screen wherein each of the minute photosensitive elements has associated therewith, for example, an appropriate dye developer in or behind its respective silver halide emulsion portion. In general, a suitable photosensitive screen will comprise minute red-sensitized emulsion elements, minute green-sensitized emulsion elements and minute blue-sensitized emulsion elements arranged in side-by-side relationship in a screen pattern and having associated therewith, respectively, a cyan, a magenta and a yellow dye developer.
The present invention also includes the employment of a black dye developer and the use of a mixture of dye developers adapted to provide a black and white transfer image, for example, the employment of dye developers of the three subtractive colors in an appropriate mixture in which the quantities of the dye developers are proportioned such that the colors combine to provide black.
Where in the specification, the expression positive image" has been used, this expression should not be interpreted in a restrictive sense since it is used primarily for purposes of illustration, in that it defines the image produced on the image carrying layer as being reversed, in the positive-negative sense, with respect to the image in the photosensitive emulsion layers. As an example of an alternative meaning for positive image," assume that the photosensitive element is exposed to actinic light through a negative transparency. In this case, the latent image in the photosensitive emulsion layers will be a positive and the dye image produced on the image-carrying layer will be a negative. The expression positive image" is intended to cover such an image produced on the image-carrying layer.
In addition to the described essential layers, it will be recognized that the film unit may also contain one or more subcoats or layers, which, in turn, may contain one or more additives such as plasticizers, intermediate essential layers for the purpose, for example, of improving adhesion, and that any one or more of the described layers may comprise a composite of two or more strata of the same, or different, components and which may be contiguous, or separated from, each other, for example, two or more neutralizing layers or the like.
Since certain changes may be made in the above product and process without departing from the scope of the invention herein involved, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
What is claimed is:
1. A photographic film unit which comprises a photosensitive laminate containing, as essential layers, a dimensionally stable common support carrying on one surface, a dyeable polymeric layer and a photosensitive silver halide emulsion layer having associated therewith a dye image-forming material which is processing composition difiusible, as a function of the point-to-point degree of the emulsion 5 exposure to actinic radiation, and a layer permeable to processing composition solubilized dye image-forming material comprising visible light-reflecting agent in a concentration sufficient to mask said dye image-forming material associated with said photosensitive silver halide emulsion layer subsequent to processing and insufficient to prevent exposure of the photosensitive silver halide emulsion by actinic radiation incident on the layer positioned intermediate said dyeable polymeric layer and said photosensitive silver halide emulsion layer and associated dye image-forming material.
2. A photographic film unit as defined in claim 1 wherein said dyeable polymeric layer is processing composition permeable and said film unit additionally includes an acidic layer, containing sufficient substantially nondiffusible acid reagent to effect reduction of a processing composition having a first pH at which said dye image-forming material is soluble and diffusible as a function of the point-to-point degree of the emulsion's exposure to actinic radiation; to a second pH at which said material is substantially nondiffusible, positioned adjacent said dimensionally stable common support.
3. A photographic film unit as defined in claim 2 including a processing composition permeable polymeric spacer layer positioned intennediate said acidic layer and said next adjacent essential layer.
4. A photographic film unit as defined in claim I wherein said dye image-providing material is a dye which is a silver halide developing agent.
5. A photographic film unit as defined in claim 1 wherein said dimensionally stable common support is opaque and said photosensitive silver halide emulsion layer is positioned intermediate said support and said dyeable polymeric layer.
6. A photographic film unit as defined in claim which is adapted to be processed by passing said unit between a pair of juxtaposed pressureaapplying members, including a transparent dimensionally stable sheet superposed substantially coextensive the surface of said laminate opposite said dimensionally stable opaque support and a rupturable container retaining a processing composition fixedly positioned and extending transverse a leading edge of said photosensitive laminate and adapted to effect unidirectional discharge of said container's contents intermediate said sheet and said laminate.
7. A photographic film unit as defined in claim I wherein said dimensionally stable common support is transparent and said dyeable polymeric layer is positioned intermediate said support and said photosensitive silver halide emulsion layer.
8. A photographic film unit as defined in claim 7 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members, including a dimensionally stable sheet superposed substantially coextensive the surface of said laminate opposite said dimensionally stable transparent common support and a rupturable container retaining a processing composition fixedly positioned and extending transverse a leading edge of said photosensitive laminate and adapted to effect unidirectional discharge of said containers contents intermediate said sheet and said laminate.
9. A photographic film unit as defined in claim 8 wherein said dimensionally stable sheet is opaque.
10. A photographic film unit as defined in claim 8 wherein said dimensionally stable sheet is superposed in substantially coextensive relationship to the surface of said silver halide emulsion layer and associated dye image-forming material and said processing composition contains dispersed therein an opacifying agent.
11. A photographic film unit as defined in claim 1 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members, including a separate dimensionally stable sheet having a leading edge fixedly positioned extending transverse a leading edge of said laminate and adapted to be superposed subsequent to photoexposure of said laminate substantially coextensive the surface of said laminate opposite said dimensionally stable common support and a rupturable container retaining a processing composition and extending transverse said leading edge of said photosensitive laminate intermediate said sheet and said laminate and adapted to effect unidirectional distribution of said. containers contents intermediate said sheet and said laminate upon superpositioning of said sheet on said surface of said laminate.
12. A photographic film unit as defined in claim 11 wherein said dimensionally stable sheet is opaque and is adapted to be superposed subsequent to photoexposure in substantially coextensive relationship to the surface of said laminate opposite said dimensionally stable common support, said common support is transparent, and said dyeable polymeric layer is positioned intermediate said support and said photosensitive silver halide emulsion layer.
13. A photographic film unit as defined in claim 11 wherein said dimensionally stable sheet is transparent and is adapted to be superposed subsequent to photoexposure in substantially coextensive relationship to the surface of said laminate opposite said dimensionally stable common support, said common support is opaque, and said photosensitive silver halide emulsion layer is positioned intermediate said support and said dyeable polymeric layer.
14. A photographic film unit as defined in claim 1 wherein said visible light reflecting agent is titanium dioxide.
15. A photographic film unit as defined in claim 13 wherein said titanium dioxide is dispersed in a processing composition permeable polymeric binder at a concentration of about 200 to l,000 mgs./ft.
16. A photographic film unit as defined in claim 14 wherein said titanium dioxide is present as a dispersion possessing a particle size average diameter of about 0.2 to 0.3 microns.
17. A photographic film unit as defined in claim 4 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members and which includes, in combination:
a photosensitive laminate containing, as essential layers, at least two selectively sensitized silver halide emulsion layers each having a dye, which dye is a silver halide developing agent, of predetermined color associated therewith, each of said dyes soluble and diffusible, in alkali, at a first pH, as a function of exposure of its associated silver halide emulsion layer, an alkaline solution permeable transparent polymeric layer dyeable by said dyes, a layer permeable to solubilized dye comprising visible light-reflecting agent in a concentration insufficient to prevent exposure of the selectively sensitized silver halide emulsion's layers by actinic radiation incident on the layer and sufficient to mask said dyes associated with said silver halide emulsion layers subsequent to processing positioned intermediate said dyeable polymeric layer and the silver halide emulsion layer next adjacent thereto, a dimensionally stable alkaline solution impermeable support layer, an an alkaline solution permeable transparent acidic layer containing sufficient acidifying groups to effect reduction of a processing solution having said first pH to a second pH at which said dyes are insoluble and nondiffusible positioned adjacent said dimensionally stable support layer.
18. A photographic film unit as defined in claim 17 including a dimensionally stable sheet superposed coextensive the surface of the laminate opposite said dimensionally stable support layer and a rupturable container retaining an aqueous alkaline processing solution, having said first pH, fixedly positioned and extending transverse said leading edge of said laminate to effect unidirectional discharge of the containers contents coextensive the surface of the laminate intermediate said laminate and said sheet.
19. A photographic film unit as defined in claim 17 wherein each of said selectively sensitized photosensitive silver halide emulsion layers has predominant spectral sensitivity to separate regions of the spectrum and subsequent to photoexposure of said laminate the dye associated with each of said silver halide emulsion layers possesses, subsequent to processing, a spectral absorption range substantially complementary to the predominant sensitivity range of its associated emulsion layer.
20. A photographic film unit as defined in claim 19 wherein each of said silver halide emulsion layers and its associated dye is separated from the next adjacent silver halide emulsion layer and its associated dye by an alkaline solution permeable polymeric interlayer.
21. A photographic film unit as defined in claim 18 wherein said dimensionally stable sheet is opaque and is superposed next adjacent the silver halide emulsion layer and associated dye distal said dimensionally stable support layer of said laminate and said support layer is transparent.
22. A photographic film unit as defined in claim 21 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members and which comprises, in combination:
a photosensitive laminate containing, in sequence, a redsensitive silver halide emulsion layer having associated therewith a cyan dye, a green-sensitive silver halide emulsion layer having associated therewith a magenta dye, a blue-sensitive silver halide emulsion layer having associated therewith a yellow dye, each of said cyan, magenta and yellow dyes being silver halide developing agents and being soluble and diffusible, in alkali, at a first pH, as a function of the exposure of its associated silver halide emulsion layer, an alkaline solution solubilized dye-permeable polymeric layer comprising a dispersion of visible, light-reflecting inorganic pigment in a concentration sufficient to mask dye associated with said silver halide emulsion layers subsequent to processing and insufficient to prevent exposure of said silver halide emul-

Claims (43)

  1. 2. A photographic film unit as defined in claim 1 wherein said dyeable polymeric layer is processing composition permeable and said film unit additionally includes an acidic layer, containing sufficient substantially nondiffusible acid reagent to effect reduction of a processing composition having a first pH at which said dye image-forming material is soluble and diffusible as a function of the point-to-point degree of the emulsion''s exposure to actinic radiation; to a second pH at which said material is substantially nondiffusible, positioned adjacent said dimensionally stable common support.
  2. 3. A photographic film unit as defined in claim 2 including a processing composition permeable polymeric spacer layer positioned intermediate said acidic layer and said next adjacent essential layer.
  3. 4. A photographic film unit as defined in claim 1 wherein said dye image-providing material is a dye which is a silver halide developing agent.
  4. 5. A photographic film unit as defined in claim 1 wherein said dimensionally stable common support is opaque and said photosensitive silver halide emulsion layer is positioned intermediate said support and said dyeable polymeric layer.
  5. 6. A photographic film unit as defined in claim 5 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members, including a transparent dimensionally stable sheet superposed substantially coextensive the surface of said laminate opposite said dimensionally stable opaque support and a rupturable container retaining a processing composition fIxedly positioned and extending transverse a leading edge of said photosensitive laminate and adapted to effect unidirectional discharge of said container''s contents intermediate said sheet and said laminate.
  6. 7. A photographic film unit as defined in claim 1 wherein said dimensionally stable common support is transparent and said dyeable polymeric layer is positioned intermediate said support and said photosensitive silver halide emulsion layer.
  7. 8. A photographic film unit as defined in claim 7 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members, including a dimensionally stable sheet superposed substantially coextensive the surface of said laminate opposite said dimensionally stable transparent common support and a rupturable container retaining a processing composition fixedly positioned and extending transverse a leading edge of said photosensitive laminate and adapted to effect unidirectional discharge of said container''s contents intermediate said sheet and said laminate.
  8. 9. A photographic film unit as defined in claim 8 wherein said dimensionally stable sheet is opaque.
  9. 10. A photographic film unit as defined in claim 8 wherein said dimensionally stable sheet is superposed in substantially coextensive relationship to the surface of said silver halide emulsion layer and associated dye image-forming material and said processing composition contains dispersed therein an opacifying agent.
  10. 11. A photographic film unit as defined in claim 1 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members, including a separate dimensionally stable sheet having a leading edge fixedly positioned extending transverse a leading edge of said laminate and adapted to be superposed subsequent to photoexposure of said laminate substantially coextensive the surface of said laminate opposite said dimensionally stable common support and a rupturable container retaining a processing composition and extending transverse said leading edge of said photosensitive laminate intermediate said sheet and said laminate and adapted to effect unidirectional distribution of said container''s contents intermediate said sheet and said laminate upon superpositioning of said sheet on said surface of said laminate.
  11. 12. A photographic film unit as defined in claim 11 wherein said dimensionally stable sheet is opaque and is adapted to be superposed subsequent to photoexposure in substantially coextensive relationship to the surface of said laminate opposite said dimensionally stable common support, said common support is transparent, and said dyeable polymeric layer is positioned intermediate said support and said photosensitive silver halide emulsion layer.
  12. 13. A photographic film unit as defined in claim 11 wherein said dimensionally stable sheet is transparent and is adapted to be superposed subsequent to photoexposure in substantially coextensive relationship to the surface of said laminate opposite said dimensionally stable common support, said common support is opaque, and said photosensitive silver halide emulsion layer is positioned intermediate said support and said dyeable polymeric layer.
  13. 14. A photographic film unit as defined in claim 1 wherein said visible light reflecting agent is titanium dioxide.
  14. 15. A photographic film unit as defined in claim 13 wherein said titanium dioxide is dispersed in a processing composition permeable polymeric binder at a concentration of about 200 to 1, 000 mgs./ft.2.
  15. 16. A photographic film unit as defined in claim 14 wherein said titanium dioxide is present as a dispersion possessing a particle size average diameter of about 0.2 to 0.3 microns.
  16. 17. A photographic film unit as defined in claim 4 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members and which includes, in combination: a photosensitive laminate containing, as essential layeRs, at least two selectively sensitized silver halide emulsion layers each having a dye, which dye is a silver halide developing agent, of predetermined color associated therewith, each of said dyes soluble and diffusible, in alkali, at a first pH, as a function of exposure of its associated silver halide emulsion layer, an alkaline solution permeable transparent polymeric layer dyeable by said dyes, a layer permeable to solubilized dye comprising visible light-reflecting agent in a concentration insufficient to prevent exposure of the selectively sensitized silver halide emulsion''s layers by actinic radiation incident on the layer and sufficient to mask said dyes associated with said silver halide emulsion layers subsequent to processing positioned intermediate said dyeable polymeric layer and the silver halide emulsion layer next adjacent thereto, a dimensionally stable alkaline solution impermeable support layer, an an alkaline solution permeable transparent acidic layer containing sufficient acidifying groups to effect reduction of a processing solution having said first pH to a second pH at which said dyes are insoluble and nondiffusible positioned adjacent said dimensionally stable support layer.
  17. 18. A photographic film unit as defined in claim 17 including a dimensionally stable sheet superposed coextensive the surface of the laminate opposite said dimensionally stable support layer and a rupturable container retaining an aqueous alkaline processing solution, having said first pH, fixedly positioned and extending transverse said leading edge of said laminate to effect unidirectional discharge of the container''s contents coextensive the surface of the laminate intermediate said laminate and said sheet.
  18. 19. A photographic film unit as defined in claim 17 wherein each of said selectively sensitized photosensitive silver halide emulsion layers has predominant spectral sensitivity to separate regions of the spectrum and subsequent to photoexposure of said laminate the dye associated with each of said silver halide emulsion layers possesses, subsequent to processing, a spectral absorption range substantially complementary to the predominant sensitivity range of its associated emulsion layer.
  19. 20. A photographic film unit as defined in claim 19 wherein each of said silver halide emulsion layers and its associated dye is separated from the next adjacent silver halide emulsion layer and its associated dye by an alkaline solution permeable polymeric interlayer.
  20. 21. A photographic film unit as defined in claim 18 wherein said dimensionally stable sheet is opaque and is superposed next adjacent the silver halide emulsion layer and associated dye distal said dimensionally stable support layer of said laminate and said support layer is transparent.
  21. 22. A photographic film unit as defined in claim 21 which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members and which comprises, in combination: a photosensitive laminate containing, in sequence, a red-sensitive silver halide emulsion layer having associated therewith a cyan dye, a green-sensitive silver halide emulsion layer having associated therewith a magenta dye, a blue-sensitive silver halide emulsion layer having associated therewith a yellow dye, each of said cyan, magenta and yellow dyes being silver halide developing agents and being soluble and diffusible, in alkali, at a first pH, as a function of the exposure of its associated silver halide emulsion layer, an alkaline solution solubilized dye-permeable polymeric layer comprising a dispersion of visible, light-reflecting inorganic pigment in a concentration sufficient to mask dye associated with said silver halide emulsion layers subsequent to processing and insufficient to prevent exposure of said silver halide emulsions by actinic radiation incident on the layer, an alkaline solution permeable transparent polymeric layer dyeable by said dyes, an alkaline solution permeable transparent polymeric aCid layer containing sufficient acidifying groups to effect reduction of a processing solution having said first pH to a second pH at which said dyes are insoluble and nondiffusible, and a dimensionally stable alkaline solution impermeable transparent support; a dimensionally stable opaque sheet fixedly maintained superposed substantially coextensive the surface of the laminate opposite said transparent support; and a rupturable container retaining an aqueous alkaline-processing solution, having said first pH, fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional discharge of the container''s contents intermediate said laminate and said opaque sheet upon application of compressive force to said container.
  22. 23. A photographic film unit as defined in claim 22 wherein said pigment comprises titanium dioxide.
  23. 24. A photographic film unit as defined in claim 22 wherein said first pH is above 9 and said second pH is below 9.
  24. 25. A process of forming transfer images in color which comprises, in combination, the steps of: a. exposing a photographic film unit which includes, in combination, a photosensitive laminate containing, as essential layers, a photosensitive silver halide emulsion layer having associated therewith dye image-providing material, a polymeric layer dyeable by said image-providing material, a layer permeable to processing composition solubilized dye image-providing material comprising visible light reflecting agent in a concentration sufficient to mask said dye image-providing material associated with said photosensitive silver halide emulsion layer subsequent to processing and insufficient to prevent exposure of the photosensitive silver halide emulsion by actinic radiation incident on said layer positioned intermediate said dyeable polymeric layer and said photosensitive emulsion layer and dye image-providing material, and a dimensionally stable common support layer; b. contacting said exposed photosensitive silver halide emulsion layer with a processing composition; c. effecting thereby development of said silver halide emulsion; d. forming thereby an imagewise distribution of mobile dye image-providing material, as a function of the point-to-point degree of emulsion exposure; e. transferring, by diffusion, at least a portion of said imagewise distribution of mobile dye image-providing material to said polymeric layer dyeable by said dye image-providing material to provide a dye image thereto in terms of said imagewise distribution; and f. maintaining said laminate intact subsequent to said processing.
  25. 26. A process of forming transfer images in color as defined in claim 25 wherein said dimensionally stable support layer is opaque to incident actinic radiation, said photosensitive silver halide emulsion layer is positioned intermediate said support and said dyeable polymeric layer, said film unit is contacted with incident-exposing actinic radiation at the surface of said film unit opposite said support, and said film unit is contacted with said processing composition at the surface of said film unit opposite said support.
  26. 27. A process of forming transfer images in color as defined in claim 25 which comprises, in combination, the steps of: a. exposing a photographic film unit which is adapted to be processed by passing the unit between a pair of juxtaposed pressure-applying members and which includes, in combination: a photosensitive laminate containing, as essential layers, a photosensitive silver halide emulsion layer having associated therewith dye image-providing material which is soluble and diffusible, in alkali, at a first pH, as a function of the exposure of said associated silver halide emulsion layer to actinic radiation, an alkaline solution permeable polymeric layer dyeable by said image-providing material, an alkaline solution dye image-providing material permeable layer comprising visible light-refleCting agent in a concentration sufficient to mask said dye image-providing material associated with said photosensitive silver halide emulsion subsequent to processing and insufficient to prevent exposure of the photosensitive silver halide emulsion by actinic radiation incident on the layer positioned intermediate said dyeable polymeric layer and said photosensitive silver halide emulsion layer and associated dye image-providing material, a dimensionally stable support layer, and an alkaline solution permeable acidic layer containing sufficient acidifying groups to effect reduction of a processing solution having said first pH to said second pH at which said dye image-providing material is substantially insoluble and nondiffusible positioned adjacent said dimensionally stable support layer; a dimensionally stable sheet superposed coextensive the surface of the laminate opposite the dimensionally stable support layer; and a rupturable container retaining an aqueous alkaline-processing solution, having said first pH, fixedly positioned and extending transverse a leading edge of said photosensitive laminate to effect unidirectional discharge of the container''s contents intermediate said dimensionally stable sheet and the surface of said laminate opposite said support layer upon application of compressive force to said container; b. applying compressive force to said rupturable container to effect unidirectional discharge of the container''s aqueous alkaline-processing solution coextensive said surface of said laminate opposite said support layer and intermediate said laminate and said dimensionally stable sheet; c. effecting thereby development of said silver halide emulsion; d. forming thereby an imagewise distribution of mobile dye image-providing material, as a function of the point-to-point degree of emulsion exposure; e. transferring by diffusion, at least a portion of said imagewise distribution of mobile dye image-providing material to said alkaline solution permeable polymeric layer dyeable by said dye image-providing material to provide a dye image thereto in terms of said imagewise distribution; f. transferring, by diffusion, subsequent to substantial transfer image formation, a sufficient portion of the ions of said alkaline solution to said alkaline solution permeable polymeric acid layer to thereby reduce the alkalinity of said aqueous alkaline solution to said second pH; and g. maintaining said laminate intact subsequent to said processing.
  27. 28. A process as defined in claim 27 including the step of separating said container from laminate subsequent to substantial transfer image formation.
  28. 29. A process as defined in claim 27 wherein said aqueous alkaline solution additionally contains a film-forming polymeric material.
  29. 30. A process as defined in claim 27 wherein said light-reflecting agent comprises titanium dioxide dispersed in an alkaline solution permeable polymeric binder.
  30. 31. A process as defined in claim 27 wherein said photosensitive silver halide emulsion layer and associated dye image-providing material is positioned in said laminate distal said dimensionally stable support layer, said support layer is transparent to incident actinic radiation, said dimensionally stable sheet is opaque to incident actinic radiation, and said film unit is contacted with exposing actinic radiation incident on said transparent support layer.
  31. 32. A process as defined in claim 27 wherein said dimensionally stable sheet is opaque to actinic radiation, said dimensionally stable layer is transparent to actinic radiation, and said photosensitive silver halide emulsion layer and associated dye image-providing material is positioned in said laminate distal said dimensionally stable transparent support layer, and including the step of superposing said sheet coextensive the surface of said laminate opposite said dimensionally stable transparent support layer subsequent to exposure of said laminate and preceding distriBution of said processing solution coextensive the surface of the laminate.
  32. 33. A process as defined in claim 25 wherein said dye image-providing material is a dye which is a silver halide developing agent.
  33. 34. A process of forming transfer images in color, as defined in claim 33, which comprises, in combination, the steps of: a. exposing a photographic film unit which includes, in combination: a photosensitive laminate containing at least two selectively sensitized silver halide emulsion strata, each of said silver halide emulsions having associated therewith a dye, which is a silver halide developing agent, of predetermined color, and is soluble and diffusible in processing composition as a function of the exposure of its associated silver halide emulsion, a polymeric layer dyeable by said dye, a solubilized dye-permeable layer including visible light-reflecting agent present in a concentration sufficient to mask said dyes associated with said silver halide emulsions subsequent to processing and a concentration during exposure insufficient to prevent exposure of the selectively sensitized silver halide emulsions by actinic radiation incident on the layer positioned intermediate said dyeable polymeric layer and the silver halide emulsion layer next adjacent thereto, and a dimensionally stable support layer; b. contacting said exposed film unit with a processing composition; c. effecting thereby development of each of said silver halide emulsions; d. immobilizing the dye associated with each of said emulsions as a result of development; e. forming an imagewise distribution of mobile dye, as a function of the point-to-point degree of emulsion exposure; f. transferring, by imbibation, at least a portion of each of said imagewise distributions of mobile dye to said alkaline solution permeable polymeric layer dyeable by said dyes to provide thereto a dye image; and g. maintaining the laminate intact subsequent to processing.
  34. 35. A process as defined in claim 34 wherein each of said selectively sensitized silver halide emulsion strata has predominant spectral sensitivity to a separate region of the spectrum and, subsequent to exposure, the dye associated with each of said emulsion strata has a spectral absorption range substantially complementary to the predominant sensitivity range of its associated emulsion.
  35. 36. A process as defined in claim 35 wherein said dimensionally stable support layer is opaque to incident actinic radiation, said selectively sensitized silver halide emulsion layers are positioned intermediate said dyeable polymeric layer and said opaque support layer, said film unit is exposed by contact with actinic radiation incident on the surface of the film unit opposite said opaque support layer, and said selectively exposed film unit is contacted with said processing composition at said surface opposite said opaque support layer.
  36. 37. A process as defined in claim 35 wherein said film unit includes an alkaline processing composition permeable polymeric acid layer containing sufficient acidifying groups to effect reduction of a processing composition having a first pH at which said dyes are soluble and diffusible to a second pH at which said dyes are substantially insoluble and nondiffusible positioned adjacent said dimensionally stable support layer.
  37. 38. A process as defined in claim 37 wherein said film unit includes a dimensionally stable sheet positioned on the surface of the laminate opposite said dimensionally stable support layer, and a rupturable container retaining an aqueous alkaline-processing composition having said first pH fixedly positioned and extending transverse a leading edge of said laminate to effect unidirectional discharge of the container''s contents on the surface of the laminate opposite the dimensionally stable support layer upon application of compressive force to the container, and including the steps of applying compressive force to the rupturable container, subsequent to Exposure of the laminate, to effect unidirectional discharge of the container''s aqueous alkaline-processing composition intermediate said sheet and said laminate and, subsequent to substantial dye transfer image formation, transferring, by imbibition, a sufficient portion of the ions of said aqueous alkaline-processing composition to said polymeric acid layer to thereby reduce the alkalinity of said composition from said first pH to said second pH.
  38. 39. A process as defined in claim 38 wherein said dimensionally stable support layer is transparent, said dimensionally stable sheet is opaque and said dyeable polymeric layer is positioned intermediate said support layer and the selectively sensitized silver halide emulsion layer next adjacent thereto.
  39. 40. A process as defined in claim 38 wherein said dimensionally stable support layer is opaque; said dimensionally stable sheet is transparent and said selectively sensitized silver halide emulsion layer is positioned intermediate said support layer and said dyeable polymeric layer.
  40. 41. A process of forming transfer images in color, as defined in claim 38, which comprises, in combination, the steps of: a. exposing a photographic film unit which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members and which includes, in combination: a photosensitive laminate containing, as essential layers, a blue-sensitive silver halide emulsion layer having associated therewith a yellow dye, a green-sensitive silver halide emulsion layer having associated therewith a magenta dye, a red-sensitive silver halide emulsion layer having associated therewith a cyan dye, each of said cyan, magenta and yellow dyes being silver halide developing agents and being soluble and diffusible, in alkali, at a first pH, as a function of the exposure of its associated silver halide emulsion layer, an alkaline solution permeable polymeric layer dyeable by each of said dyes, an alkaline solution solubilized dye permeable polymeric layer comprising a dispersion of visible light-reflecting inorganic pigment in a concentration sufficient to mask dye associated with said silver halide emulsion layers subsequent to processing and insufficient to prevent exposure of said silver halide emulsions by actinic radiation incident on the layer positioned intermediate said dyeable polymeric layer and the silver halide emulsion layer next adjacent, a dimensionally stable alkaline solution impermeable support layer, and an alkaline solution permeable polymeric acid layer containing sufficient acidifying groups to effect reduction of a processing solution having said first pH to a second pH at which said dyes are insoluble and nondiffusible positioned adjacent said support layer; a dimensionally stable sheet fixedly positioned superposed on the surface of the laminate opposite said support layer; and a rupturable container retaining an aqueous alkaline-processing composition having said first pH fixedly positioned and extending transverse said leading edge of said laminate to effect unidirectional discharge of the container''s contents on the surface of said laminate intermediate said transparent sheet and said laminate upon application of compressive force to said container; b. applying compressive force to said rupturable container to effect unidirectional discharge of the container''s alkaline solution intermediate said transparent sheet and said laminate; c. effecting thereby development of the latent image contained in each of said silver halide emulsions; d. immobilizing said yellow, magenta and cyan dye, as a result of development of their respective associated silver halide emulsions; e. forming thereby an imagewise distribution of mobile yellow, magenta and cyan dye, as a function of the point-to-point degree of exposure of their respective associated silver halide emulsions; f. transferring, by diffusion, at least a portion of each of said imagewise distributiOns of mobile dye to said alkaline solution permeable polymeric layer dyeable by said dyes to provide thereto a multicolor dye image; g. transferring, by diffusion, subsequent to substantial transfer image formation, a sufficient portion of the ions of said aqueous alkaline solution to said alkaline solution permeable polymeric acid layer to thereby reduce the alkalinity of said solution to said second pH; and h. maintaining the laminate intact subsequent to processing.
  41. 42. A process as defined in claim 38 wherein said first pH is above 9 and said second pH is below 9.
  42. 43. A process as defined in claim 38 wherein said processing solution includes an opacifying agent.
  43. 44. A process as defined in claim 38 wherein said visible light-reflecting agent comprises titanium dioxide.
US3645A 1970-01-19 1970-01-19 Photographic color diffusion transfer processes and elements for use therein Expired - Lifetime US3620724A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US364570A 1970-01-19 1970-01-19

Publications (1)

Publication Number Publication Date
US3620724A true US3620724A (en) 1971-11-16

Family

ID=21706871

Family Applications (1)

Application Number Title Priority Date Filing Date
US3645A Expired - Lifetime US3620724A (en) 1970-01-19 1970-01-19 Photographic color diffusion transfer processes and elements for use therein

Country Status (8)

Country Link
US (1) US3620724A (en)
JP (1) JPS5411697B1 (en)
BE (1) BE761707R (en)
CA (1) CA938826A (en)
DE (1) DE2102425C2 (en)
GB (1) GB1336362A (en)
IT (1) IT996015B (en)
NL (1) NL7100695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508809A (en) * 1982-06-03 1985-04-02 Agfa-Gevaert Aktiengesellschaft Process for the exposure and development of photo-graphic images and an apparatus for carrying out the process
US4606992A (en) * 1985-10-17 1986-08-19 Eastman Kodak Company Reflecting layer for image transfer prints

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2563342A (en) * 1947-01-28 1951-08-07 Polaroid Corp Photographic product and process
US2607685A (en) * 1946-10-03 1952-08-19 Polaroid Corp Photographic product comprising a plurality of rupturable containers, each carrying a liquid for processing said product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666460A (en) * 1966-01-11 1972-05-30 Polaroid Corp Diffusion transfer article and process using humectant in emulsion layer
BE732985A (en) * 1968-05-13 1969-11-13
JPS4911938A (en) * 1972-05-15 1974-02-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2607685A (en) * 1946-10-03 1952-08-19 Polaroid Corp Photographic product comprising a plurality of rupturable containers, each carrying a liquid for processing said product
US2563342A (en) * 1947-01-28 1951-08-07 Polaroid Corp Photographic product and process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508809A (en) * 1982-06-03 1985-04-02 Agfa-Gevaert Aktiengesellschaft Process for the exposure and development of photo-graphic images and an apparatus for carrying out the process
US4537486A (en) * 1982-06-03 1985-08-27 Agfa-Gevaert Aktiengesellschaft Apparatus for the exposure and development of photographic images
US4606992A (en) * 1985-10-17 1986-08-19 Eastman Kodak Company Reflecting layer for image transfer prints

Also Published As

Publication number Publication date
DE2102425A1 (en) 1971-08-05
NL7100695A (en) 1971-07-21
GB1336362A (en) 1973-11-07
IT996015B (en) 1975-12-10
JPS5411697B1 (en) 1979-05-17
CA938826A (en) 1973-12-25
BE761707R (en) 1971-07-19
DE2102425C2 (en) 1982-05-06

Similar Documents

Publication Publication Date Title
US3415644A (en) Novel photographic products and processes
US3594165A (en) Novel photographic products and processes
US3415645A (en) Opaque permeable polymeric layer in photo-sensitive element
US3415646A (en) Novel photographic products and processes
US3473925A (en) Photographic diffusion transfer color process and film unit for use therein
US3615422A (en) Photographic products and processes
US3625685A (en) Photographic color diffusion-transfer element comprising aqueous film-forming synthetic polymer suspension layers intermediate its sensitive layers and processes for their use
US3594164A (en) Photographic color diffusion transfer process and film unit for use therein
US3619155A (en) Photographic products and processes utilizing a polyvalent metal ion-cross-linked polymeric layer
US3579333A (en) Multicolor diffusion transfer photographic products and processes with a developing composition comprising a desensitizing agent
US3888669A (en) Photographic products and processes with barrier layers for diffusable dyes
US3734727A (en) Photographic products and processes
US3679409A (en) Color diffusion transfer processes and elements for use thereon with incorporated image-forming material impermeable layer
US3772026A (en) Colorless precursor of alkyl viologen as filter agent in photographic film
US3647435A (en) Integral negative/positive color diffusion transfer process film unit employing in-situ generated visible light-reflecting agent
US3615421A (en) Novel photographic products and processes
US3615543A (en) Multicolor photographic element comprising an oxacyanine sensitizing dye
US4003744A (en) Photographic products with photosensitive layers of same spectral sensitivity and different speed
US3778265A (en) Novel photographic products and processes
US3832173A (en) Novel photographic products and processes
US3697271A (en) Novel photographic products and processes for color diffusion transfer utilizing silver halide emulsions with specific proportions of average halide grain size
US3573043A (en) Photographic diffusion transfer color process and composite film unit for use therein
US3620724A (en) Photographic color diffusion transfer processes and elements for use therein
US3816125A (en) Photographic products and processes
US3794485A (en) Color diffusion transfer film with incorporated dye and desensitizing agent precursor