US3617202A - Wool stabilization process - Google Patents

Wool stabilization process Download PDF

Info

Publication number
US3617202A
US3617202A US723930A US3617202DA US3617202A US 3617202 A US3617202 A US 3617202A US 723930 A US723930 A US 723930A US 3617202D A US3617202D A US 3617202DA US 3617202 A US3617202 A US 3617202A
Authority
US
United States
Prior art keywords
solution
wool
compound
isocyanurate
trichloro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US723930A
Inventor
Xavier Kowalski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Application granted granted Critical
Publication of US3617202A publication Critical patent/US3617202A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/355Heterocyclic compounds having six-membered heterocyclic rings
    • D06M13/358Triazines
    • D06M13/364Cyanuric acid; Isocyanuric acid; Derivatives thereof

Definitions

  • Wallin ABSTRACT Wool is rendered resistant to shrinking by contact with a solution of [(mono-trichloro,) tetra-(monopotassium dichloro,)] penta-isocyanurate or (trichloro), (monopotassium dich1oro,) di-isocyanurate.
  • This invention is an improvement on those processes'previis stabilizedby contact species thereof including, for'example, Cl'; C1; and HOCL Solutions hitherto utilized for this purpose have included for example, aqueous solutions ofsodium hypochlorite, solutions or dispersions oft'ric'hlorocyanuric acid and solutions of the sodium or potassium salts of dichlorocyanuric ac'id. Solutions of this ty peupon standing often exhibit significant reductions in chlorinating action.
  • Such instability renders it difiicult to reproducibly chlorinate successive batches of woolen material in batch operation and SUMMARY or THE iiwENTloN lt is .an-object of this invention to provide improved processes for treatment of wool to render it resistant to shrinking and felting. Particularly, it is an object of the invention to provide processes for shrinkage control of wool which permit uniformfand reproducible treatment of wool; rapid treatment ,of wool; more convenient treatmentof wool; and continuous treatment of wool.
  • Compound I is most conveniently utilized in aqueoussolution at its natural pH of about 4.5.
  • the limited solubility of Compound I restricts the available chlorine content of its solutions, at this pH to about 1.35 percent (calculated as Cl) as compared to solutions of 2.5 to 3 7 generally previously utilized for wooltreatment, it is found that the shrinkage control of wool is effectively accomplished at this and even lower concentrations of Compound I. If desired, higher concentrations can be obtained in more basic solutions.
  • the effectiveness of treatment with dilute solutions is believed to be due, at least in part, to the fact that the natural pH of aqueous solutions of Compound I closely approximates the isoelectric point of wool fibers.
  • the process of this invention can be employed for batch or continuous treatment of wool.
  • the wool in batch-process treatment, according to the invention, is immersed in a solution of Compound I. Contact between the wool and the solution is maintained for a length of time sufficient to provide the desired degree of chlorination. This time will, of course, be in part dependent upon the concentration and temperature of the solution. Generally, concentrations sufficient to provide 0.5-];3-5 percent by weight available chlorine (calculated as Cl) and temperatures of from65 Cl) to F. are utilized for convenience, rapid treatment, and economy. However, 'ifdesired, somewhat higher or lower temperatures and/or concentrations can be employed.
  • Excess chlorine is removed by a conventional antichlor or souring step suchas treatment with a dilute aqueous solution of sodium bisulfite.
  • the wool is then rinsed and dried.
  • wool is sequentiallycontacted with a solution of Compound 1 mainta 'ed at constant concentration; treated with antichlor solution; rinsed; and dried.
  • This can be conveniently accomplished by a series of baths, fitted with squeezing roller or similar meansitoprevent undue transfer of solutions between baths.
  • the solution of Compoundl is maintained at saturation or a lower equilibrium-Iconcentration by the presence of undissolved solid Compound I in contact with the solution or by cycling a portion of the solution into contact with solid Compound I.
  • the liquid squeezed from the wool fibers can be passed through-"a bed of Compound l before beingreturned to the bath.
  • solid Compound I will be confined within a screen or other filter means to prevent deposition of solid Compound I on the fibers being treated.
  • the solutions utilized for treating the wool can contain other commonly used additives, for example, softening agents such as fatty acid compositions; mothproofing agents such as sodium silico fluoride; resinous solutions and dispersions; wetting agents; and the like.
  • a wool-treating solution is prepared by dissolving 20 grams of Compound I in a liter of water. The solution has a pH of about 4.5 and an available chlorine concentration of about 1.35 percent.
  • a sample of wool fabric, measuring 18 by 18 inches is contacted with the solution for about 180 seconds. The sample is removed, treated with a dilute solution of sodium bisulfite, rinsed and dried. The solution is allowed to stand for 20 minutes after which a similar sample is treated in the same manner. The samples are measured, washed, and remeasured to determine shrinkage as the percentage reduction in the original area of the samples. Both samples exhibit 0 percent shrinkage.
  • EXAMPLE III A sample of wool fabric is treated with a solution of Compound I containing about 0.66 percent by weight available chlorine at its natural pH of 4.5 for a period of about 45 seconds. The wool is then soured with a dilute solution of sodium bisulfite, rinsed, and dried. The sample exhibits 0 percent shrinkage after washing.
  • a wool fabric is continuously fed through a bath containing a saturated solution of Compound I.
  • the solution is maintained at saturated concentration by the presence of solid Compound I enclosed within a bag of filter cloth in the bath.
  • the fabric is then passed through rollers to remove excess treating solution and fed into a dilute bath of sodium bisulfite.
  • the fabric is then rinsed and dried. After washing, the fabric exhibits 0 percent shrinkage and has uniform appearance and texture, indicative of uniform chlorination.
  • a continuous process of treating wool comprising sequentially contacting the wool with a solution of [(monotrichloro,) tetra-(monopotassium dichloro,)] penta-isocyanurate said solution being maintained at substantially constant concentration, and souring and rinsing the wool.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Wool is rendered resistant to shrinking by contact with a solution of ((mono-trichloro,) tetra-(monopotassium dichloro,)) penta-isocyanurate or (trichloro), (monopotassium dichloro,) diisocyanurate.

Description

Inventor Xavier Kowalski St. Louis, Mo. App]. No. 723,930 Filed Apr. 24, 11968 Patented Nov. 2, 1971 Assignee Monsanto Company St. Louis, Mo.
WOOL STABILIZATION PROCESS [56] References Ciked UNITED STATES PATENTS 2,993,747 7/1961 Scott 8/127.6 3,150,132 9/1964 Symes 260/248 3,236,585 2/1966 Chesner et a1. 8/128 X FOREIGN PATENTS 607,971 11/1960 Canada 252/187 Primary Examiner-George F, Lesmes Assistant Examiner-H. Wolman Attorneyx- Richard W. Sternberg, Roger R. Jones and Thomas N. Wallin ABSTRACT: Wool is rendered resistant to shrinking by contact with a solution of [(mono-trichloro,) tetra-(monopotassium dichloro,)] penta-isocyanurate or (trichloro), (monopotassium dich1oro,) di-isocyanurate.
ously known to the art wherein wool with a solution containing available chlorine for reaction with the wool. The term available chlorine comprises all reactive continuous processes.
fdichloro,)] penta-isocyanurate,
BACKGROUND or THE INVENTION iThis invention .is relatedto processes forstabilizing wool to render it more resistant to shrinking and felting. Particularly preferred embodiments of the invention relate to stabilization .,.of wool by continuous processes.
This invention is an improvement on those processes'previis stabilizedby contact species thereof including, for'example, Cl'; C1; and HOCL Solutions hitherto utilized for this purpose have included for example, aqueous solutions ofsodium hypochlorite, solutions or dispersions oft'ric'hlorocyanuric acid and solutions of the sodium or potassium salts of dichlorocyanuric ac'id. Solutions of this ty peupon standing often exhibit significant reductions in chlorinating action. Such instability renders it difiicult to reproducibly chlorinate successive batches of woolen material in batch operation and SUMMARY or THE iiwENTloN lt is .an-object of this invention to provide improved processes for treatment of wool to render it resistant to shrinking and felting. Particularly, it is an object of the invention to provide processes for shrinkage control of wool which permit uniformfand reproducible treatment of wool; rapid treatment ,of wool; more convenient treatmentof wool; and continuous treatment of wool.
'These and other objects are obtained by treating wool with aqueous solutions of (trichloro,)(monopotassium dichloro,) diisocyanurate or [(mono-trichloro,) tetra-(monopotassium preferably at the natural pH obtained by dissolving these compounds in water to provide solutionscontaining about 9.5-1.35 percent available chlorine calculated as Cl and at ambient temperatures. Preferably, the treated wool is subsequently given an antichlorine or souring treatment, washed and dried. The processes are applicable to a variety of wool materials including woven or knit fabrics,
bsscairriouor-raaraaaao EMBODIMENTS." j
(monopotassium dichloro,)]' penta' isocyanurate, hereinafter referred,tqfor-eonvenience:asCompound I. This compound has the general formula: T
-disclosure of said "generally precludes the practice of 'rawjstocks, tops, yarn, and the like, The term wool is used percent of available chlorine which were .ln the practice ofzthis inventiori wool isstabilizedby contact with. an aqueous solution of -[(mono'-trichloro,) tetra Methods of preparing this compound and information regarding its properties are disclosed in Pat No. 3, 150132, the patent being incorporated herein by reference;
Although the foregoing compoundv is preferred, the invention can also be practiced with (trichloro,)(monopotassium dichloro,)di-isocyanurate having the general formula:
and hereinafter referred to as Compound ll. Methods of preparing Compound ll and information regarding its properties are also found in the above referred patent.
If desired, mixtures of Compound I and Compound ll can be employed.
In view of advantages of Compound I, particularly in terms of availability and solubility, the invention is described by reference to embodiments employing Compound l.
in the process, Compound I is most conveniently utilized in aqueoussolution at its natural pH of about 4.5. Although the limited solubility of Compound I restricts the available chlorine content of its solutions, at this pH to about 1.35 percent (calculated as Cl) as compared to solutions of 2.5 to 3 7 generally previously utilized for wooltreatment, it is found that the shrinkage control of wool is effectively accomplished at this and even lower concentrations of Compound I. If desired, higher concentrations can be obtained in more basic solutions. The effectiveness of treatment with dilute solutions is believed to be due, at least in part, to the fact that the natural pH of aqueous solutions of Compound I closely approximates the isoelectric point of wool fibers.
The process of this invention can be employed for batch or continuous treatment of wool.
in batch-process treatment, according to the invention, the wool is immersed in a solution of Compound I. Contact between the wool and the solution is maintained for a length of time sufficient to provide the desired degree of chlorination. This time will, of course, be in part dependent upon the concentration and temperature of the solution. Generally, concentrations sufficient to provide 0.5-];3-5 percent by weight available chlorine (calculated as Cl) and temperatures of from65 Cl) to F. are utilized for convenience, rapid treatment, and economy. However, 'ifdesired, somewhat higher or lower temperatures and/or concentrations can be employed.
Excess chlorine is removed by a conventional antichlor or souring step suchas treatment with a dilute aqueous solution of sodium bisulfite. The wool is then rinsed and dried.
' ln continuous processes, according to this invention, wool is sequentiallycontacted with a solution of Compound 1 mainta 'ed at constant concentration; treated with antichlor solution; rinsed; and dried. This can be conveniently accomplished by a series of baths, fitted with squeezing roller or similar meansitoprevent undue transfer of solutions between baths.
The solution of Compoundl is maintained at saturation or a lower equilibrium-Iconcentration by the presence of undissolved solid Compound I in contact with the solution or by cycling a portion of the solution into contact with solid Compound I. For example,.when using a bath fitted with rollers to squeeze excess solution from woven material being treated, the liquid squeezed from the wool fibers can be passed through-"a bed of Compound l before beingreturned to the bath. Preferably, solid Compound I will be confined within a screen or other filter means to prevent deposition of solid Compound I on the fibers being treated.
If desired, the solutions utilized for treating the wool can contain other commonly used additives, for example, softening agents such as fatty acid compositions; mothproofing agents such as sodium silico fluoride; resinous solutions and dispersions; wetting agents; and the like.
In treating wool with Compound I according to this invention, it was surprisingly found that solutions of Compound I were capable of consistently shrink proofing successive batches of wool. Although the reason for this described performance is not fully understood, it is believed to be at least in part due to the excellent stability 'of solutions of Compound I. It must be noted, however, that solutions of other commercially employed shrink proofing agents which are quite stable do not exhibit the desired characteristics of the solutions utilized in the practice of this invention. For example, the stability, with respect to retention of available chlorine (expressed as %Cl) solutions of Compound I and sodium dichloro isocyanurate are shown in table I below.
TABLE I Elapsed 5 available chlorine 17 available chlorine time found in solution of found in saturated sodium diehloroisosolution of Compound I cyanurate 0 3.15 [.35 30 min. 3.]4 1.29 l hr. 3.14 1.28
EXAMPLE I A wool-treating solution is prepared by dissolving 20 grams of Compound I in a liter of water. The solution has a pH of about 4.5 and an available chlorine concentration of about 1.35 percent. A sample of wool fabric, measuring 18 by 18 inches is contacted with the solution for about 180 seconds. The sample is removed, treated with a dilute solution of sodium bisulfite, rinsed and dried. The solution is allowed to stand for 20 minutes after which a similar sample is treated in the same manner. The samples are measured, washed, and remeasured to determine shrinkage as the percentage reduction in the original area of the samples. Both samples exhibit 0 percent shrinkage. For purposes of comparison, the above experiment is repeated with similar samples using a treating solution containing 50 grams per liter of sodium dichloroisocyanuarate a material conventionally employed for the shrink proofing of wool. The first sample treated with this solution exhibits 0 percent shrinkage. However, the second exhibits 2.5 percent shrinkage indicating less complete chlorination.
This experiment demonstrates that Compound I in solution maintains stable chlorination action on wool even after prolonged periods of standing and further that the treatment is effectively accomplished at relatively low concentrations of available chlorine.
EXAMPLE II Solutions of Compound I and of sodium dichloroisocyanurate each containing about grams per liter to provide available chlorine concentrations of about 0.66 percent by weight are prepared. The solution of Compound I is adjusted by addition of sodium hydroxide solution, to a pH of 6.3, the
same as the natural pH of the solution of sodium dichloroisocyanurate. Samples of wool fabric are treated with each solution, soured, and rinsed. The sample treated with Compound I exhibits 0 percent shrinkage whereas the sample treated with sodium dichloroisocyanurate exhibits 2 percent shrinkage. This clearly demonstrates the unusual effectiveness of Compound l at at very low concentrations. Further, it is seen that although it is preferred to use Compound I at its natural pH for reasons of convenience and rapid chlorination (see Example III), the compound may, if desired, be employed in solutions of various pH.
EXAMPLE III A sample of wool fabric is treated with a solution of Compound I containing about 0.66 percent by weight available chlorine at its natural pH of 4.5 for a period of about 45 seconds. The wool is then soured with a dilute solution of sodium bisulfite, rinsed, and dried. The sample exhibits 0 percent shrinkage after washing.
EXAMPLE IV A wool fabric is continuously fed through a bath containing a saturated solution of Compound I. The solution is maintained at saturated concentration by the presence of solid Compound I enclosed within a bag of filter cloth in the bath. The fabric is then passed through rollers to remove excess treating solution and fed into a dilute bath of sodium bisulfite. The fabric is then rinsed and dried. After washing, the fabric exhibits 0 percent shrinkage and has uniform appearance and texture, indicative of uniform chlorination.
Although this invention has been described by reference to specific embodiments, other variations of the invention within the scope of the following claims will be apparent to those skilled in the art.
What is claimed is:
1. In a process of treating wool by contact with a solution containing available chlorine until the wool becomes resistant to shrinking, the improvement wherein said solution is selected from the group consisting of solutions of [(monotrichloro,) tetra-(monopotassium dichloro,)] penta-isocyanurate; (trichloro,)(monopotassium dichloro,) di-isocyanurate: and mixtures thereof.
2. The process of claim 1 wherein said solution is a solution of [(mono-trichloro,) tetra-(monopotassium dichloro,)] penta-isocyanurate.
3. The process of claim 2 further comprising souring, rinsing and drying the wool.
4. The process of claim 2 wherein the concentration of available chlorine as CI is from about 0.5 to about 1.35 percent by weight of said solution.
5. The process of claim 2 wherein said solution has a pH of from about 4 to about 5.
6. A continuous process of treating wool comprising sequentially contacting the wool with a solution of [(monotrichloro,) tetra-(monopotassium dichloro,)] penta-isocyanurate said solution being maintained at substantially constant concentration, and souring and rinsing the wool.
7. The process of claim 6 wherein the concentration of available chlorine as Cl is from about 0.5 to about 1.35 percent by weight of said solution.
8. The process of claim 5 wherein said solution has a pH of from about 4 to about 5.
9. The process of claim 6 comprising the sequential steps of passing the wool through a bath of [(mono-trichloro,) tetra- (monopotassium dichloro,)] penta-isocyanurate solution, said solution being maintained at substantially constant concentration, maintaining contact between the wool and said solution for a sufficient period of time to render the wool resistant to shrinking and souring and rinsing the wool.
10. The process of claim 9 wherein said solution is maintained at substantially constant concentration by passing at least a portion of said solution from said bath into contact with solid [(mon-trichloro,) tetra-(monopotassium dichloro,)] penta-isocyanurate and recycling said portion into said bath.
11. The process of claim 9 wherein said solution is maintained at substantially saturated concentration by maintaining solid [(mono-trichloro,) tetra,(monopotassium dichloro,)] penta-isocyanurate in said bath.
l i l

Claims (10)

  1. 2. The process of claim 1 wherein said solution is a solution of ((mono-trichloro,) tetra-(monopotassium dichloro,)) penta-isocyanurate.
  2. 3. The process of claim 2 further comprising souring, rinsing and drying the wool.
  3. 4. The process of claim 2 wherein the concentration of available chlorine as C1 is from about 0.5 to about 1.35 percent by weight of said solution.
  4. 5. The process of claim 2 wherein said solution has a pH of from about 4 to about 5.
  5. 6. A continuous process of treating wool comprising sequentially contacting the wool with a solution of ((mono-trichloro,) tetra-(monopotassium dichloro,)) penta-isocyanurate said solution being maintained at substantially constant concentration, and souring and rinsing the wool.
  6. 7. The process of claim 6 wherein the concentration of available chlorine as C1 is from about 0.5 to about 1.35 percent by weight of said solution.
  7. 8. The process of claim 5 wherein said solution has a pH of from about 4 to about 5.
  8. 9. The process of claim 6 comprising the sequential steps of passing the wool through a bath of ((mono-trichloro,) tetra-(monopotassium dichloro,)) penta-isocyanurate solution, said solution being maintained at substantially constant concentration, maintaining contact between the wool and said solution for a sufficient period of time to render the wool resistant to shrinking and souring and rinsing the wool.
  9. 10. The process of claim 9 wherein said solution is maintained at substantially constant concentration by passing at least a portion of said solution from said bath into contact with solid ((mono-trichloro,) tetra-(monopotassium dichloro,)) penta-isocyanurate and recycling said portion into said bath.
  10. 11. The process of claim 9 wherein said solution is maintained at substantially saturated concentration by maintaining solid ((mono-trichloro,) tetra,(monopotassium dichloro,)) penta-isocyanurate in said bath.
US723930A 1968-04-24 1968-04-24 Wool stabilization process Expired - Lifetime US3617202A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US72393068A 1968-04-24 1968-04-24

Publications (1)

Publication Number Publication Date
US3617202A true US3617202A (en) 1971-11-02

Family

ID=24908294

Family Applications (1)

Application Number Title Priority Date Filing Date
US723930A Expired - Lifetime US3617202A (en) 1968-04-24 1968-04-24 Wool stabilization process

Country Status (1)

Country Link
US (1) US3617202A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA607971A (en) * 1960-11-01 A. Blomfield Rodney Bleaching and sanitizing tablets
US2993747A (en) * 1955-02-18 1961-07-25 Monsanto Chemicals Shrinkproofing wool textiles with trichlorocyanuric acid or dichlorocyanuric acid and mixtures thereof
US3150132A (en) * 1960-06-21 1964-09-22 Monsanto Co Novel chlorocyanurate compounds
US3236585A (en) * 1962-09-05 1966-02-22 Prec Processes Textiles Ltd Process for reducing tendency of wool to felt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA607971A (en) * 1960-11-01 A. Blomfield Rodney Bleaching and sanitizing tablets
US2993747A (en) * 1955-02-18 1961-07-25 Monsanto Chemicals Shrinkproofing wool textiles with trichlorocyanuric acid or dichlorocyanuric acid and mixtures thereof
US3150132A (en) * 1960-06-21 1964-09-22 Monsanto Co Novel chlorocyanurate compounds
US3236585A (en) * 1962-09-05 1966-02-22 Prec Processes Textiles Ltd Process for reducing tendency of wool to felt

Similar Documents

Publication Publication Date Title
US3318657A (en) Method of bleaching cellulose fibres
JPH08502789A (en) Wool treatment method
US2311507A (en) Shrinkproofing process
US4319879A (en) Method for modifying wool fiber materials to advance quality grade thereof
US2739034A (en) Permonosulfuric acid and sulphite treatment of wool and resulting product
US3617202A (en) Wool stabilization process
US3144300A (en) Treatment of keratinous fibers
US2446682A (en) Modifying cellulose textiles with an alkylolamine-copper complex
JPH05125661A (en) Method of pretreating fiber material
US2521340A (en) Bleaching of cellulosic textiles
US2992138A (en) Cellulosic textile treating composition and process
US3236585A (en) Process for reducing tendency of wool to felt
JPH08503741A (en) Wool treatment method
US2702737A (en) Wool chlorination process
US2037119A (en) Continuous bleaching process
US4189303A (en) Method of shrinkproofing animal fibers with ozone
US3098694A (en) Continuous treatment of wool to shrinkproof and sensitize the same
US2714051A (en) Process for preventing the fulling shrinkage of wool
US2499987A (en) Process for imparting shrink resistance to wool
US3062610A (en) Process for shrinkproofing wool
US3567365A (en) Monitoring the wet processing of a material
US2414704A (en) Process for shrinkproofing wool
US1908481A (en) Method of bleaching fibers
US3071431A (en) Process for feltproofing and shrink-proofing wool and textiles containing wool in alkaline baths and treatment baths therefor
US3397033A (en) Textile bleaching process