US3616254A - Screening procedure for enzyme deficiencies - Google Patents

Screening procedure for enzyme deficiencies Download PDF

Info

Publication number
US3616254A
US3616254A US641733A US3616254DA US3616254A US 3616254 A US3616254 A US 3616254A US 641733 A US641733 A US 641733A US 3616254D A US3616254D A US 3616254DA US 3616254 A US3616254 A US 3616254A
Authority
US
United States
Prior art keywords
aqueous solution
red blood
spot
parts
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US641733A
Inventor
Ernest Beutler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3616254A publication Critical patent/US3616254A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase

Definitions

  • This invention relates to a new type of mass screening procedure for the detection of enzyme deficiencies affecting red blood cells, and more particularly concerns the presence or absence of fluoresence in test samples upon being subjected to long range ultraviolet light, depending upon whether reduced or oxidized pyridine nucleotide is present in the test sample.
  • methylene blue has been used as a receptor dye but requires anaerobic conditions after gassing with carbon monoxide. The reaction is somewhat light sensitive, and it is necessary to use an illuminated water bath for the test.
  • the procedure described herein is extremely simple, does not require anaerobic conditions, requires only a minute quantity of a blood sample, can be carried out at room temperature or at 37C., the blood sample need not be freshly obtained, and is very easy to interpret.
  • the invention comprises a new type of screening procedure for the detection of various enzymatic deficiencies of red blood cells.
  • the sample to be tested either of whole blood or of the red cells alone, is added to a reaction mixture containing pyridine nucleotide, a buffer, a red cell hemolyzing agent, and an enzyme substrate.
  • the pyridine nucleotide in the reaction mixture is either in reduced or oxidized form.
  • the spots from the resulting test mixture are made on ordinary filter paper, immediately as a baseline or control spot, and after varying periods of time.
  • the resulting test mixture may be kept at room temperature or incubated at 37 C.
  • the spots are subjected to longwave ultraviolet light preferably at a wavelength of from 340 to 370 millimicrons.
  • reaction mixture uses reduced pyridine nucleotide and where the reduced pyridine nucleotide is oxidized in the resulting test mixture, there is loss of fluorescence since oxidized pyridine nucleotide does not fluoresce upon subjection to longwave ultraviolet light.
  • my invention will detect deficiencies in red blood cells including glucose-6-phosphate dehydrogenase, hereinafter referred to as G-o-PD; pyruvate kinase, hereinafter referred to as PK; glutathione reductase, hereinafter referred to as GSSG-R; and glactose-l-phosphate uridyl transferase, hereinafter referred to as transferase.
  • G-o-PD glucose-6-phosphate dehydrogenase
  • PK pyruvate kinase
  • glutathione reductase hereinafter referred to as GSSG-R
  • transferase glactose-l-phosphate uridyl transferase
  • my invention is readily adaptable to the screening for many other enzymatic abnormalities, such as phosphogluconic dehydrogenase deficiency and triose phosphate isomerase deficiency.
  • any enzyme deficiency which results either in the reduction of pyridine nucleotide or oxidation of reduced pyridine nucleotide in a test mixture can be detected by my new procedure.
  • an object of this invention to provide a rapid and relatively simple procedure for the detection of a G-6-PD deficiency in red blood cells.
  • Another object of this invention is to provide a rapid and relatively simple procedure for the detection of a GSSG-R deficiency in red blood cells.
  • Still another object of this invention is to provide a rapid and relatively simple procedure for the detection of a PK deficiency in red blood cells.
  • Yet another object of this invention is to provide a rapid and relatively simple procedure for the detection of transferase deficiency in red blood cells.
  • a yet further objection of this invention is to provide a rapid and relatively simple procedure for the detection of various enzyme deficiencies in red blood cells.
  • the detection of enzyme deficiency is based upon the fact that relatively minute quantities of reduced pyridine nucleotides will fluoresce intensely upon activation by longwave ultraviolet light at a wavelength of from about 340 to about 370 millimicrons.
  • the tests are based upon the reduction of pyridine nucleotide.
  • the tests are based upon the oxidation of a reduced pyridine nucleotide.
  • the exciting ultraviolet wavelength used in my new procedure is below the maximum absorption band of hemoglobin, which is the Soret region. Further, the emission maximum for my new procedure is located at 465 millimicrons which is near an absorption minimum of hemoglobin.
  • the volume of the blood sample to be tested in relation to the reaction mixture may vary over a range from a minimum of one part of blood sample to 20 parts of reaction mixture, up to a maximum of one part of blood sample to 5 parts of reaction mixture.
  • test reaction may be allowed to proceed at room temperatures.
  • TPN triphosphopyridine nucleotide
  • TPNH triphosphopyridine nucleotide
  • the test procedure one volume of whole blood, usually 0.02 ml. in amount, is added to 10 volumes of the reaction mixture, usually 0.20 ml., and. the resulting test mixture is incubated for 5 to minutes at 37 C..
  • a spot is made from the resulting test mixture on any suitable filter paper, such as Whatman No. 1. If normal G-6-PD activity is present, the spot on the filter paper will fluoresce brightly under activation by longwave ultraviolet light. Where there is G--PD deficient blood, no appreciable fluorescence appears upon subjecting the spot to longwave ultraviolet light of from about 340 to about 370 millimicrons.
  • test procedure for the presence of G-6-PD may be varied in many ways without adversely affecting the results.
  • the reaction may be allowed to proceed at room temperatures with equivalent results after a period of 10 to minutes.
  • any suitable absorbent material may be used to make spots from the test mixture, so long as the material permits substantial drying of the spots to halt the test reaction.
  • the free acid as well as other alkali salts of this acid may be used as an anticoagulant.
  • reaction time allotted before the commencement of spot testing may vary from a minimum of2 minutes to a maximum of 10 to l5 minutes at 37 C. These reaction times should be increased by a factor of about 1.5 where the reaction takes place at room temperatures.
  • 0.20 ml. of a saturated solution of digitonin 0.20 ml. of a 1 percent solution oisaponin may be substituted as an alternative ingredient in the reaction mixture.
  • 0.20 ml. of a 1 percent solution oisaponin may be substituted as an alternative ingredient in the reaction mixture.
  • the resulting test mixture need be incubated only about 5 minutes at 37 C.
  • concentrations of TPN and glucose-lS-phosphate may be varied without substantially altering the results of this test procedure.
  • concentration of glucose-6- phosphate in the reaction mixture may be varied over a range beginning with a low of one-fifth to a high of 30 times the concentration given in example i, with a corresponding range of TPN concentration varying over a low of one-fourth to a high of 10 times the concentration given in example 1.
  • the potassium phosphate buffer may vary in pH from a low of 6.5 to a high of 8 and in a concentration range from a low of one-tenth to a high of five times the concentration given in example l.
  • Suitable phosphate bufi'ers other than potassium may be used.
  • the digitonin solution need not be saturated so long as there is sufficient digitonin present in the reaction mixture to effectively lyse the red blood cells.
  • the concentration of digitonin may vary from a one-tenth saturated solution to a fully saturated solution. Where saponin is used, the concentration may range from a 1/10 percent solution to a 20 percent solution.
  • Other suitable lysing agents may be used so long as no interference occurs with the test reaction.
  • galactose-l-phosphate uridyl transferase The following is an example for the detection of the absence of the enzyme, galactose-l-phosphate uridyl transferase.
  • the lack of this enzyme in the blood causes galactosemia, which if untreated, results in cirrhosis of the liver, blindness. and mental retardation. If this enzyme deficiency is detected early, a galactose-free diet will prevent these abnormalities.
  • EXAMPLE 2 A blood sample for testing is collected in heparin.
  • the reaction mixture for this test comprises the following:
  • the basis for detection is that when whole blood is added to the above reaction mixture, uridine diphosphoglucose (UDPG) and alpha galactose-l-phosphate (Gal-l-P) react to form alpha-glucose-l-phosphate in the presence of transferase.
  • the alpha-glucose-l phosphate is transformed by phosphoglucomutase, which is present in the hemolysate, to alpha-g]ucose-o-phosphate, which in turn mutarotates spontaneously and with the help of phosphohexose isomerase to beta-glucose-o-phosphate.
  • Glucose-G-phosphate dehydrogenase present in the hemolysate, oxidizes beta-glucose-6 phosphate to -phosphogluconate which in turn is oxidized to ribulose-S-phosphate. Both of these steps result in the reduction of TPN to TPNH, which fluoresces under longwave ultraviolet light. Substantially no fluorescence occurs in tests derived from transferase deficient blood samples.
  • one volume of heparinized whole blood is added to 10 volumes, usually 0.2 ml. of reaction mixture.
  • the pipette used to add the blood to the reaction mixture is left in the tube, and the resulting test mixture is incubated aerobically at 37 C.
  • a spot a few microliters of test solution, is made on Whatman No. l filter paper and is allowed to dry at room temperature. Such drying usually takes about 5 minutes.
  • the spot is examined within 24 hours after drying under longwave ultraviolet light of from about 340 to about 370 millimicrons.
  • test procedure may be varied in several ways without adversely affecting the results.
  • Streaks of capillary blood may be dried on filter paper or other suitable absorbent material and placed into a suitable container holding an appropriate volume, (about times the blood volume) of the reaction mixture. While the filter paper is immersed in the reaction mixture, the reaction mixture is incubated for 2 to 3 hours at 37 C. After incubation, a spot is made from the resulting test mixture on filter paper or other suitable absorbent material that permits drying of spots. The spot so made is allowed to dry at room temperature, which usually takes about 5 minutes. Thereafter, the resulting spot is examined under longwave ultraviolet light for fluorescence in the same manner as before.
  • fresh whole blood may be used instead of heparinized blood for the test.
  • the test may be carried out at room temperatures, with a corresponding decrease in reaction rate of from one-half to one-third the rate at 37 C.
  • Any suitable absorbent material may be used instead of filter paper so long as it permits drying of the spot made on it.
  • the time of incubation at 37 C. may vary from 1 to 3 hours without adversely affecting the results.
  • EDTA may be omitted as an ingredient in the reaction mixture since it only helps enhance the development of fluorescence in the test mixture. Where blood for testing has been collected in EDTA to prevent coagulation, the reaction mixture must omit EDTA.
  • Blood samples collected in heparin may be stored as long as one week at room temperature and may still be used in this test procedure with results equivalent to fresh blood samples.
  • the digitonin solution concentration may be varied from a low of 1/10 saturation up to saturation, so long as there is sufficient digitonin to effectively lyse the red blood cells.
  • a l percent solution of saponin may be used with equivalent results.
  • the concentration of saponin may vary from l/l0 to percent without adverse effect on the test procedure.
  • Other suitable red blood cell lysing agents may also be used, so long as no interference occurs with the test reaction.
  • the concentration of UDPG, GallP, and TPN in the reaction mixture may be varied without substantially altering the results of the test procedure.
  • each of the corresponding concentrations of UDPG, Gal-l-P, and TPN may be varied over a range from a low of one-fourth to a high of 10 times the concentrations given in example 2.
  • the tris-acetate buffer may vary over a pH range of 6.2 to 9.2, and a concentration range from a low of one-tenth to a high of3 times the concentration given in example 2.
  • the following is an example for the detection of a pyruvate kinase deficiency in red blood cells.
  • Anticoagulants such as heparin, ACD, or EDTA, or other suitable anticoagulants, may be used in the preparation of the blood sample to be tested.
  • the anticoagulated blood sample is then centrifuged and the plasma and buffy coat are removed with careful aspiration or other suitable means.
  • the white blood cells are removed since white cell pyruvate kinase activity may be normal even though the red blood cells are deficient in pyruvate kinase.
  • red blood cells Four volumes of physiologic saline solution are added to the red blood cells to produce a 20 percent suspension of red blood cells. The resulting suspension of red blood cells is now ready for testing.
  • one volume of the red blood cell suspension is added to 10 volumes of the reaction mixture, usually 0.20 ml., and the resulting test mixture is incubated at 37 C. for 30 minutes, after which spots from the test mixture are made on filter paper as previously described in preceding examples, dried, and examined under longwave ultraviolet light.
  • the original blood sample contained red blood cells deficient in pyruvate kinase, bright fluorescence of spots derived from such a blood sample will persist, while spots derived from normal blood samples will have no appreciable fluorescence, after incubation.
  • the neutralized ingredients of the reaction mixture of example 3 may be neutralized to a pH of 7-8 with pH paper using approximately 0.2 N NaOH.
  • Hypotonic lysis is used to release enzyme from the red blood cells rather than digitonin or saponin to prevent any substantial release of enzyme from white cells which may remain in the treated blood sample. Any suitable lysing agent may be used so long as it causes no interference with the test reaction.
  • the concentration of the ingredients of the reaction mixture of example 3 may be varied without adverse effect on the screening procedure.
  • the concentration of phospho (enol) pyruvate (tricyclohexylammonium salt) may range from a low of% to a high of 3 times the concentration given in example 3, with a corresponding range in concentration of ADP from one-third to 10 times, and with a corresponding range of DPNH from one-fourth to 2 times, the concentrations given in example 3.
  • the concentration of magnesium sulfate may range from a low of one-fourth to a high of 5 times the concentration given in example 3, along with the corresponding ranges for the other ingredients in the reaction mixture.
  • the potassium phosphate buffer may range from a pH of 6.5 to 7.5 and from a low of one-tenth to a high of5 times the concentration given in example 3.
  • the physiologic saline solution for the suspension of the red blood cells may vary over a range of about one-fourth less to about one-fourth more than isotonic strength, so long as lysing of the red blood cells occurs in the resulting test mixture.
  • reaction may be allowed to proceed at room temperatures, with a corresponding increase in reaction time offrom 1% to 2 times.
  • reaction time alloted before commencement of spot testing may vary from a minimum of about l0 minutes to a maximum ofabout 30 minutes at 37C.
  • Various water soluble potassium phosphate salts may be used as a buffer.
  • Fresh blood may be used so long as it has not coagulated.
  • the free acid as well as other alkali salts of ethylene diamine tetraacetic acid may be used as an anticoagulant.
  • the following is an example for the detection of a GSSG-R deficiency in red blood cells.
  • one volume of blood usually 0.02 ml.
  • 10 parts of reaction mixture usually 0.20 ml.
  • Spots from the resulting test mixture are made on suitable filter paper every minutes and the disappearance of fluorescence is compared with a control sample over a suitable period of time up to 90 minutes, under longwave ultraviolet light of from about 340 to about 370 millimicrons.
  • a GSSG-R deficiency is detected by the persistence of fluorescence in a spot.
  • the reaction may be carried out at 37 C. or at room temperatures. Where room temperatures are used, the reaction time may be from 1% to 2 times the reaction time at 37 C.
  • the concentrations of the ingredients of the reaction mixture of example 4 may be varied without adversely affecting the test results.
  • the concentration of GSSG may range from a low of one-fourth to a high of times the concentration given in example 4, while the concentration of TPNH may vary over a corresponding range of a low of one-half to a high of 2 times the concentration given in example 4.
  • saponin may be substituted for digitonin, and the same ranges of concentrations may be used in example 4 as indicated for digitonin and saponin in examples l and 2.
  • concentration of phosphate buffer may vary from a low of 1/10 to a high of 10 times the concentration given in example 4, and from a pH OF 6.5 TO A pl-l of9.5 corresponding to the range in concentration.
  • Suitable lysing agents may be used instead ofdigitonin and saponin provided that no interference results with the test procedure.
  • Fresh blood may be used so long as it is not coagulated.
  • Various water soluble potassium phosphate salts may be used as a buffer.
  • any suitable absorbent material may be used to make spots from the test mixture, so long as the material permits substantial drying of the spots to halt the test reaction.
  • any water soluble salt may be used as a buffer provided that no interference occurs with the test reaction.
  • Fresh, uncoagulated blood may be used in each of the test procedures.
  • zymes associated with red blood cells by the use of the proper substrates for the particular enzymes sought, along with any required cofactors or coenzymes, where the presence or absence of any such enzyme results in the oxidation or reduction of a pyridine nucleotide, directly or indirectly.
  • a method for the detection of glucose-6-phosphate dehydrogenase deficiency in red blood cells of a blood sample consisting essentially of:
  • aqueous solution made up of 1 part of 0.0] molar aqueous solution of glucose-6-phosphate, l part of 0.0075 molar aqueous solution of oxidized triphosphopyridine nucleotide, 2 parts of an aqueous solution of a red blood cell lysing agent, 3 parts of 0.25 molar aqueous solution of potassium phosphate buffer at a pH of 7.4, and 3 parts of water;
  • aqueous solution of a red blood cell lysing agent is a saturated solution of digitonin.
  • a method for the detection of glucose-6-phosphate dehydrogenase deficiency in red blood cells of a blood sample consisting essentially of:
  • an aqueous solution made up of l part of an aqueous solution of ghucose-tS-phosphate having a molarity of from 0.002 to 0.3, 1 part of an aqueous solution of oxidized triphosphopyridine nucleotide having a molarity of from 0.001875 to 0.075, 2 parts of an aqueous solution ofa red blood cell lysing agent, 3 parts of potassium phosphate buffer having a molarity of from 0.025 to L25 and a pH of from 6.5 to 8, and 3 parts of water;
  • aqueous solution of a red blood ceil lysing agent is an aqueous solution of digitonin ranging from a one-tenth saturated to a saturated solution.
  • aqueous solution of a red blood cell lysing agent is an aqueous solution of saponin having a concentration ranging from a ll l0 percent to a 20 percent solution.
  • a method for the detection of galactose-l-phosphate uridyl transferase deficiency in red blood cells of a blood sample consisting essentially of:
  • an aqueous solution made up of one-thirtieth parts of an aqueous solution of uridine diphosphoglucose having a molarity of 9.5 l one-fifteenth parts of an aqueous solution of alpha-galactose-l-phosphate having a molarity of 2.7Xl0 one-tenth parts of an aqueous solution of oxidized triphosphopyridine nucleotide having a molarity of 6.6Xl0", one-third part of an aqueous solution of trisacetate buffer having a pH of 8.0 and a molarity of 0.75, two-fifteenths parts of an aqueous solution of a red blood cell lysing agent, and one-third parts of water;
  • aqueous solution of a red blood cell lysing agent is a saturated solution of digitonin.
  • aqueous solution of a red blood cell lysing agent is a 1 percent solution of saponin.
  • a method for the detection of galactose-l-phosphate uridyl transferase deficiency in red blood cells ofa blood sample consisting essentially of:
  • an aqueous solution made up of 1/30 parts of an aqueous solution of uridine diphosphoglucose having a molarity of from 2X l 0 to 9.5Xl0 one-fifteenth part of an aqueous solution of alpha-galactose-l-phosphate having a molarity of from 0.7 l0 to 2.7Xl0" one-tenth parts of an aqueous solution of oxidized triphosphopyridine nucleotide having a molarity of from l.6Xl0', to 6.6Xl0", 55 parts of an aqueous solution of tris-acetate buffer having a pH of from 6.2 to 9.2 and a molarity of from 0.075 to 7.2, two-fifteenths part of an aqueous solution of a red blood cell lysing agent, and one-third parts of water; allowing the resulting test mixture to react;
  • aqueous solution of red blood cell lysing agent is an aqueous solution of digitonin ranging from a one-tenth saturated to a saturated solution.
  • aqueous solution of a red blood cell lysing agent is an aqueous solution of saponin having a concentration ranging from a l/10 percent to a 20 percent solution.

Abstract

This screening method detects enzyme deficiencies in red blood cells by use of a reaction mixture containing a pyridine nucleotide, the reduced form of which fluoresces upon activation by long wave ultraviolet light but not the oxidized form, thereby detecting the presence or absence of enzyme deficiencies.

Description

United States Patent [72] Inventor [54] SCREENING PROCEDURE FOR ENZYME DEFICIENCIES 12 Claims, No Drawings [52] US. Cl 195/1035 [51] Int. Cl ...G01n 31/14 [50] Field of Search 424/94 [56] References Cited OTHER REFERENCES Chemical Abstracts, Vol. 53:94410 (1959) Radley et al., Fluorescence Analysis in U.V. Light, pp. 123, 152- 154, 270, 273- 274, 341, 412 and 415.
Lowry et all, Journal of Biological Chemistry," 22411047- 64,1957
Conn et al., Outlines of Biochemistry, pg. 158, 2nd Ed., 1966 Marks, Science," l27:l338-9(l958) Beutler, Journal of Clinical Investigation, 43(6):1302 (1964) Primary ExaminerA. Louis Monacell Assistant Examiner-Max D. Hensley Attorney-John Joseph Hall ABSTRACT: This screening method detects enzyme deficiencies in red blood cells by use of a reaction mixture containing a pyridine nucleotide, the reduced form of which fluoresces upon activation by long wave ultraviolet light but not the oxidized form, thereby detecting the presence or absence of enzyme deficiencies,
SCREENING PROCEDURE FOR ENZYME DEFICIENCIES BACKGROUND OF THE INVENTION This invention relates to a new type of mass screening procedure for the detection of enzyme deficiencies affecting red blood cells, and more particularly concerns the presence or absence of fluoresence in test samples upon being subjected to long range ultraviolet light, depending upon whether reduced or oxidized pyridine nucleotide is present in the test sample.
PRIOR ART Applicant knows of no prior art making use of fluorescence of a pyridine nucleotide under long wave ultraviolet light to screen for enzyme abnormalities in red blood cells. Generally, various dyes have been used in the past to detect such enzyme deficiencies. Detection of glucose-6-phosphate dehydrogenase deficiency through dye decolorization techniques requires anaerobic conditions, which are difficult to maintain and unsuitable for mass screening. Other tests require fresh blood samples or separation of the blood hemoglobin from the enzyme or special paper.
Where the enzyme deficiency is lack of galactose-lphosphate uridyl transferase, methylene blue has been used as a receptor dye but requires anaerobic conditions after gassing with carbon monoxide. The reaction is somewhat light sensitive, and it is necessary to use an illuminated water bath for the test.
With respect to screening for glutathione reductase deficiency, applicant knows of no method for screening for this enzyme deficiency in red blood cells.
The procedure described herein is extremely simple, does not require anaerobic conditions, requires only a minute quantity of a blood sample, can be carried out at room temperature or at 37C., the blood sample need not be freshly obtained, and is very easy to interpret.
SUMMARY OF THE INVENTION The invention comprises a new type of screening procedure for the detection of various enzymatic deficiencies of red blood cells. The sample to be tested, either of whole blood or of the red cells alone, is added to a reaction mixture containing pyridine nucleotide, a buffer, a red cell hemolyzing agent, and an enzyme substrate.
Depending upon the nature of the enzyme deficiency to be detected, the pyridine nucleotide in the reaction mixture is either in reduced or oxidized form.
The spots from the resulting test mixture are made on ordinary filter paper, immediately as a baseline or control spot, and after varying periods of time. The resulting test mixture may be kept at room temperature or incubated at 37 C. After the spots have dried on the filter paper, the spots are subjected to longwave ultraviolet light preferably at a wavelength of from 340 to 370 millimicrons.
Spots containing reduced pyridine nucleotide will persistently fluoresce under longwave ultraviolet light. Such fluorescence remains stable for several days at room temperature..-
Where the reaction mixture uses reduced pyridine nucleotide and where the reduced pyridine nucleotide is oxidized in the resulting test mixture, there is loss of fluorescence since oxidized pyridine nucleotide does not fluoresce upon subjection to longwave ultraviolet light.
In particular, my invention will detect deficiencies in red blood cells including glucose-6-phosphate dehydrogenase, hereinafter referred to as G-o-PD; pyruvate kinase, hereinafter referred to as PK; glutathione reductase, hereinafter referred to as GSSG-R; and glactose-l-phosphate uridyl transferase, hereinafter referred to as transferase.
In general, my invention is readily adaptable to the screening for many other enzymatic abnormalities, such as phosphogluconic dehydrogenase deficiency and triose phosphate isomerase deficiency.
Theoretically, any enzyme deficiency which results either in the reduction of pyridine nucleotide or oxidation of reduced pyridine nucleotide in a test mixture, can be detected by my new procedure.
Precise diagnosis of disorders resulting from such enzyme deficiencies is of great medical value, both from the viewpoint of genetic counseling and also from that of medical therapy. To assay all of these enzymes by known procedures hitherto, is costly, time consuming, and requires expensive and specialized laboratory facilities.
Accordingly, there is a great need for simple and rapid procedures which will differentiate the more common enzyme deficiencies in red blood cells from one another.
It is, therefore, an object of this invention to provide a rapid and relatively simple procedure for the detection of a G-6-PD deficiency in red blood cells.
Another object of this invention is to provide a rapid and relatively simple procedure for the detection of a GSSG-R deficiency in red blood cells.
Still another object of this invention is to provide a rapid and relatively simple procedure for the detection of a PK deficiency in red blood cells.
Yet another object of this invention is to provide a rapid and relatively simple procedure for the detection of transferase deficiency in red blood cells.
A yet further objection of this invention is to provide a rapid and relatively simple procedure for the detection of various enzyme deficiencies in red blood cells. I
These and other objects will be more readily understood by reference to the following specification and claims.
DESCRIPTION OF PREFERRED EMBODIMENTS The same general procedure is used for all screening procedures. In general, one part of whole blood or red cell suspension, usually 0.020 ml. is added to 10 parts of the reaction mixture, usually 0.200 ml. Immediately after this addition, a spot of the resulting test mixture may be made on filter paper, as a control baseline spot. After specified periods of incubation of the test mixture, additional spots from the test mixture are made on the filter paper. After the spots have dried, the filter paper is inspected in a darkened room under a convenient source of longwave ultraviolet light.
The detection of enzyme deficiency is based upon the fact that relatively minute quantities of reduced pyridine nucleotides will fluoresce intensely upon activation by longwave ultraviolet light at a wavelength of from about 340 to about 370 millimicrons.
In the case of the test for G-6-PD deficiency or transferase deficiency, the tests are based upon the reduction of pyridine nucleotide.
In the case of the test for PK deficiency or GSSG-R deficiency, the tests are based upon the oxidation of a reduced pyridine nucleotide.
Although there is some quenching of fluorescence in the presence of hemoglobin in the blood, two factors minimize this quenching. In the first place, the exciting ultraviolet wavelength used in my new procedure is below the maximum absorption band of hemoglobin, which is the Soret region. Further, the emission maximum for my new procedure is located at 465 millimicrons which is near an absorption minimum of hemoglobin.
Secondly, when the resulting test mixture is spotted on ordinary filter paper, there is some chromatographic separation of the blood hemoglobin from the pyridine nucleotides, and consequently, considerable intensification of fluorescence results.
In all of these test procedures, the volume of the blood sample to be tested in relation to the reaction mixture may vary over a range from a minimum of one part of blood sample to 20 parts of reaction mixture, up to a maximum of one part of blood sample to 5 parts of reaction mixture.
Where an incubator is not immediately available, such as in a field screening program, the test reaction may be allowed to proceed at room temperatures.
The following is an example for the detection of G-tS-PD deficiency in red blood cells, illustrating the use of my new screening procedure.
EXAMPLE 1 Ingredient in Water solution Concentration Amount in mi.
Glucose-fi-phosphate 0.0l M 010 Triphosphopyridine nucleotide 0.0075 M J0 Digitonin, saturated solution 0.20 Potassium phosphate buffer, 0.25 M 0.30
Water Total 1 00 ml The basis for the test is that when G-G-PD is present in the blood sample, glucose-o-phosphate is oxidized during the reaction sequence to fi-phosphogluconate, and the triphosphopyridine nucleotide, hereinafter referred to as TPN, is reduced to reduced triphosphopyridine nucleotide, hereinafter referred to as TPNH. Since the blood sample also contains -phosphogluconic dehydrogenase, the 6- phosphogluconate formed in the reaction is oxidized by 6- phosphogluconic dehydrogenase, thereby reducing additional TPN to TPNH. When activated by longwave ultraviolet light, the TPN H fluoresces brightly.
ln the test procedure, one volume of whole blood, usually 0.02 ml. in amount, is added to 10 volumes of the reaction mixture, usually 0.20 ml., and. the resulting test mixture is incubated for 5 to minutes at 37 C.. A spot is made from the resulting test mixture on any suitable filter paper, such as Whatman No. 1. If normal G-6-PD activity is present, the spot on the filter paper will fluoresce brightly under activation by longwave ultraviolet light. Where there is G--PD deficient blood, no appreciable fluorescence appears upon subjecting the spot to longwave ultraviolet light of from about 340 to about 370 millimicrons.
Once a test spot has been made on filter paper, and dried, fluorescence is easily detectable for several days thereafter.
The test procedure for the presence of G-6-PD may be varied in many ways without adversely affecting the results.
For example, instead of incubating the resulting test mixture at 37 C., the reaction may be allowed to proceed at room temperatures with equivalent results after a period of 10 to minutes.
Instead of filter paper, any suitable absorbent material may be used to make spots from the test mixture, so long as the material permits substantial drying of the spots to halt the test reaction.
Instead of disodium ethylene diamine tetra-acetic acid, the free acid as well as other alkali salts of this acid may be used as an anticoagulant.
Since the reaction proceeds rapidly even at 0 C., the reaction time allotted before the commencement of spot testing may vary from a minimum of2 minutes to a maximum of 10 to l5 minutes at 37 C. These reaction times should be increased by a factor of about 1.5 where the reaction takes place at room temperatures.
For example, instead of the 0.20 ml. of a saturated solution of digitonin, 0.20 ml. of a 1 percent solution oisaponin may be substituted as an alternative ingredient in the reaction mixture. When this substitution is made, the resulting test mixture need be incubated only about 5 minutes at 37 C.
The concentrations of TPN and glucose-lS-phosphate may be varied without substantially altering the results of this test procedure. For example, the concentration of glucose-6- phosphate in the reaction mixture may be varied over a range beginning with a low of one-fifth to a high of 30 times the concentration given in example i, with a corresponding range of TPN concentration varying over a low of one-fourth to a high of 10 times the concentration given in example 1.
The potassium phosphate buffer may vary in pH from a low of 6.5 to a high of 8 and in a concentration range from a low of one-tenth to a high of five times the concentration given in example l. Suitable phosphate bufi'ers other than potassium may be used.
The digitonin solution need not be saturated so long as there is sufficient digitonin present in the reaction mixture to effectively lyse the red blood cells. The concentration of digitonin may vary from a one-tenth saturated solution to a fully saturated solution. Where saponin is used, the concentration may range from a 1/10 percent solution to a 20 percent solution. Other suitable lysing agents may be used so long as no interference occurs with the test reaction.
The following is an example for the detection of the absence of the enzyme, galactose-l-phosphate uridyl transferase. The lack of this enzyme in the blood causes galactosemia, which if untreated, results in cirrhosis of the liver, blindness. and mental retardation. If this enzyme deficiency is detected early, a galactose-free diet will prevent these abnormalities.
EXAMPLE 2 A blood sample for testing is collected in heparin. The reaction mixture for this test comprises the following:
The basis for detection is that when whole blood is added to the above reaction mixture, uridine diphosphoglucose (UDPG) and alpha galactose-l-phosphate (Gal-l-P) react to form alpha-glucose-l-phosphate in the presence of transferase. The alpha-glucose-l phosphate is transformed by phosphoglucomutase, which is present in the hemolysate, to alpha-g]ucose-o-phosphate, which in turn mutarotates spontaneously and with the help of phosphohexose isomerase to beta-glucose-o-phosphate. Glucose-G-phosphate dehydrogenase, present in the hemolysate, oxidizes beta-glucose-6 phosphate to -phosphogluconate which in turn is oxidized to ribulose-S-phosphate. Both of these steps result in the reduction of TPN to TPNH, which fluoresces under longwave ultraviolet light. Substantially no fluorescence occurs in tests derived from transferase deficient blood samples.
In the test procedure, one volume of heparinized whole blood, usually 0.02 ml., is added to 10 volumes, usually 0.2 ml. of reaction mixture. The pipette used to add the blood to the reaction mixture is left in the tube, and the resulting test mixture is incubated aerobically at 37 C. At the end of two hours, a spot, a few microliters of test solution, is made on Whatman No. l filter paper and is allowed to dry at room temperature. Such drying usually takes about 5 minutes. The spot is examined within 24 hours after drying under longwave ultraviolet light of from about 340 to about 370 millimicrons.
Under such longwave ultraviolet light, spots resulting from normal blood fluoresce brightly, while spots from blood deficient in transferase have no appreciable fluorescence. After drying, the spots are relatively stable up to one week at room temperatures.
The test procedure may be varied in several ways without adversely affecting the results.
Streaks of capillary blood may be dried on filter paper or other suitable absorbent material and placed into a suitable container holding an appropriate volume, (about times the blood volume) of the reaction mixture. While the filter paper is immersed in the reaction mixture, the reaction mixture is incubated for 2 to 3 hours at 37 C. After incubation, a spot is made from the resulting test mixture on filter paper or other suitable absorbent material that permits drying of spots. The spot so made is allowed to dry at room temperature, which usually takes about 5 minutes. Thereafter, the resulting spot is examined under longwave ultraviolet light for fluorescence in the same manner as before.
So long as it has not coagulated, fresh whole blood may be used instead of heparinized blood for the test.
The test may be carried out at room temperatures, with a corresponding decrease in reaction rate of from one-half to one-third the rate at 37 C.
Any suitable absorbent material may be used instead of filter paper so long as it permits drying of the spot made on it.
The time of incubation at 37 C. may vary from 1 to 3 hours without adversely affecting the results.
Instead of whole blood, a 50 percent suspension of red cells in 0.9% NaCl solution may be used with results similar to that using whole blood.
EDTA may be omitted as an ingredient in the reaction mixture since it only helps enhance the development of fluorescence in the test mixture. Where blood for testing has been collected in EDTA to prevent coagulation, the reaction mixture must omit EDTA.
Blood samples collected in heparin may be stored as long as one week at room temperature and may still be used in this test procedure with results equivalent to fresh blood samples.
The digitonin solution concentration may be varied from a low of 1/10 saturation up to saturation, so long as there is sufficient digitonin to effectively lyse the red blood cells. Instead of digitonin, a l percent solution of saponin may be used with equivalent results. The concentration of saponin may vary from l/l0 to percent without adverse effect on the test procedure. Other suitable red blood cell lysing agents may also be used, so long as no interference occurs with the test reaction.
The concentration of UDPG, GallP, and TPN in the reaction mixture may be varied without substantially altering the results of the test procedure. Thus, each of the corresponding concentrations of UDPG, Gal-l-P, and TPN, may be varied over a range from a low of one-fourth to a high of 10 times the concentrations given in example 2.
The tris-acetate buffer may vary over a pH range of 6.2 to 9.2, and a concentration range from a low of one-tenth to a high of3 times the concentration given in example 2.
The following is an example for the detection ofa pyruvate kinase deficiency in red blood cells.
EXAMPLE 3 Anticoagulants such as heparin, ACD, or EDTA, or other suitable anticoagulants, may be used in the preparation of the blood sample to be tested. The anticoagulated blood sample is then centrifuged and the plasma and buffy coat are removed with careful aspiration or other suitable means. The white blood cells are removed since white cell pyruvate kinase activity may be normal even though the red blood cells are deficient in pyruvate kinase.
Four volumes of physiologic saline solution are added to the red blood cells to produce a 20 percent suspension of red blood cells. The resulting suspension of red blood cells is now ready for testing.
The following is a suitable reaction mixture for the text procedure:
Phospho (enol) pyruvate 0.03
(tricyclohexylammonium salt) 015 M (neutralized) The basis of this test procedure is that where pyruvate kinase is present in the blood sample, a phosphate group from phospho (cnol) pyruvate is transferred to adenosine diphosphate (ADP), forming pyruvate and adenosine triphosphate (ATP). Lactate dehydrogenase in the hemolysate catalyzes the reduction of pyruvate to lactate with the oxidation of the reduced diphosphopyridine nucleotide (DPNH) in the reaction mixture to diphosphopyridine nucleotide (DPN). Since DPNH fluoresces under longwave ultraviolet light and DPN does not, there is a gradual loss of the fluorescence in a test sample derived from normal blood.
in the test procedure, one volume of the red blood cell suspension, usually 0.02 ml., is added to 10 volumes of the reaction mixture, usually 0.20 ml., and the resulting test mixture is incubated at 37 C. for 30 minutes, after which spots from the test mixture are made on filter paper as previously described in preceding examples, dried, and examined under longwave ultraviolet light. Where the original blood sample contained red blood cells deficient in pyruvate kinase, bright fluorescence of spots derived from such a blood sample will persist, while spots derived from normal blood samples will have no appreciable fluorescence, after incubation.
The neutralized ingredients of the reaction mixture of example 3 may be neutralized to a pH of 7-8 with pH paper using approximately 0.2 N NaOH.
Hypotonic lysis is used to release enzyme from the red blood cells rather than digitonin or saponin to prevent any substantial release of enzyme from white cells which may remain in the treated blood sample. Any suitable lysing agent may be used so long as it causes no interference with the test reaction.
The concentration of the ingredients of the reaction mixture of example 3 may be varied without adverse effect on the screening procedure. The concentration of phospho (enol) pyruvate (tricyclohexylammonium salt) may range from a low of% to a high of 3 times the concentration given in example 3, with a corresponding range in concentration of ADP from one-third to 10 times, and with a corresponding range of DPNH from one-fourth to 2 times, the concentrations given in example 3.
The concentration of magnesium sulfate may range from a low of one-fourth to a high of 5 times the concentration given in example 3, along with the corresponding ranges for the other ingredients in the reaction mixture.
The potassium phosphate buffer may range from a pH of 6.5 to 7.5 and from a low of one-tenth to a high of5 times the concentration given in example 3.
The physiologic saline solution for the suspension of the red blood cells may vary over a range of about one-fourth less to about one-fourth more than isotonic strength, so long as lysing of the red blood cells occurs in the resulting test mixture.
Instead of incubation of the test mixture at 37 C. the reaction may be allowed to proceed at room temperatures, with a corresponding increase in reaction time offrom 1% to 2 times.
The reaction time alloted before commencement of spot testing may vary from a minimum of about l0 minutes to a maximum ofabout 30 minutes at 37C.
Other water soluble magnesium salts may be used instead of magnesium sulfate so long as no interference occurs with the reaction.
Various water soluble potassium phosphate salts may be used as a buffer.
Fresh blood may be used so long as it has not coagulated.
Instead of disodium ethylene diamine tetra-acetic acid, the free acid as well as other alkali salts of ethylene diamine tetraacetic acid may be used as an anticoagulant.
The following is an example for the detection of a GSSG-R deficiency in red blood cells.
EXAMPLE 4 Ingredient in water Concentration solution Amount in ml.
Glutathione (oxidized) 0.033 M 0.l TPNN 0.0!5 0.l Potzstium phosphate bufler 9H 7 l 0.25 M 0.6 Digirooin, saturated solution 0.2
Total 1 ml.
The basis for this test procedure is that where glutathione reductase is present in the blood hemolysate, oxidized glutathione ((3550) is reduced to glutathione (GSH) and TPNH is oxidized to TPN. Since TPNH fluoresces when activated with longwave ultraviolet light and TPN does not so fluoresce, a gradual loss of fluorescence takes place as the reaction proceeds, where the blood sample is normal.
in the test procedure, one volume of blood, usually 0.02 ml., is added to 10 parts of reaction mixture, usually 0.20 ml. Spots from the resulting test mixture are made on suitable filter paper every minutes and the disappearance of fluorescence is compared with a control sample over a suitable period of time up to 90 minutes, under longwave ultraviolet light of from about 340 to about 370 millimicrons. A GSSG-R deficiency is detected by the persistence of fluorescence in a spot.
The reaction may be carried out at 37 C. or at room temperatures. Where room temperatures are used, the reaction time may be from 1% to 2 times the reaction time at 37 C.
The concentrations of the ingredients of the reaction mixture of example 4 may be varied without adversely affecting the test results. The concentration of GSSG may range from a low of one-fourth to a high of times the concentration given in example 4, while the concentration of TPNH may vary over a corresponding range of a low of one-half to a high of 2 times the concentration given in example 4.
As in examples I and 2, saponin may be substituted for digitonin, and the same ranges of concentrations may be used in example 4 as indicated for digitonin and saponin in examples l and 2. The concentration of phosphate buffer may vary from a low of 1/10 to a high of 10 times the concentration given in example 4, and from a pH OF 6.5 TO A pl-l of9.5 corresponding to the range in concentration.
Other suitable lysing agents may be used instead ofdigitonin and saponin provided that no interference results with the test procedure.
Fresh blood may be used so long as it is not coagulated.
Various water soluble potassium phosphate salts may be used as a buffer.
lnstead of disodium ethylene diamine tetra-acetic acid, the free acid as well as other alkali salts of ethylene diamine tetraacetic acid may be used as an anticoagulant.
instead of filter paper, any suitable absorbent material may be used to make spots from the test mixture, so long as the material permits substantial drying of the spots to halt the test reaction.
Although I have described preferred embodiments of my invention, it is understood that the scope of the invention is not limited thereby, but numerous variations in reagents and procedures are possible without departing from the spirit and scope of the invention as claimed hereinafter.
For example, any water soluble salt may be used as a buffer provided that no interference occurs with the test reaction.
Fresh, uncoagulated blood, may be used in each of the test procedures.
The screening procedures disclosed herein are applicable to screening for the presence or absence of various other .en-
zymes associated with red blood cells by the use of the proper substrates for the particular enzymes sought, along with any required cofactors or coenzymes, where the presence or absence of any such enzyme results in the oxidation or reduction of a pyridine nucleotide, directly or indirectly.
I claim:
1. A method for the detection of glucose-6-phosphate dehydrogenase deficiency in red blood cells of a blood sample, consisting essentially of:
adding one part of the blood sample to 10 parts of an aqueous solution made up of 1 part of 0.0] molar aqueous solution of glucose-6-phosphate, l part of 0.0075 molar aqueous solution of oxidized triphosphopyridine nucleotide, 2 parts of an aqueous solution of a red blood cell lysing agent, 3 parts of 0.25 molar aqueous solution of potassium phosphate buffer at a pH of 7.4, and 3 parts of water;
allowing the resulting test mixture to react;
making a spot from the resulting test mixture on filter paper;
subjecting said spot after drying to longwave ultraviolet light having a wavelength of from about 340 to about 370 millimicrons whereby visible fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells containing glucose-6-phosphate dehydrogenase and no fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells deficient in glucose-6-phosphate dehydrogenase.
2. A method according to claim I in which the aqueous solution of a red blood cell lysing agent is a saturated solution of digitonin.
3. A method according to claim 1 in which the aqueous solution of a red blood cell lysing agent is a l percent solution of saponin.
4. A method for the detection of glucose-6-phosphate dehydrogenase deficiency in red blood cells of a blood sample, consisting essentially of:
adding one part of the blood sample to 10 parts of an aqueous solution made up of l part of an aqueous solution of ghucose-tS-phosphate having a molarity of from 0.002 to 0.3, 1 part of an aqueous solution of oxidized triphosphopyridine nucleotide having a molarity of from 0.001875 to 0.075, 2 parts of an aqueous solution ofa red blood cell lysing agent, 3 parts of potassium phosphate buffer having a molarity of from 0.025 to L25 and a pH of from 6.5 to 8, and 3 parts of water;
allowing the resulting test mixture to react at room temperature; making a spot from the resulting test mixture on filter paper;
and
subjecting said spot after drying to longwave ultraviolet light of from about 340 to about 370 millimicrons wavelength whereby visible fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells containing glucose-6-phosphate dehydrogenase and no fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells deficient in glucose-6-phosphate dehydrogenase.
5. A method according to claim 4 in which the aqueous solution of a red blood ceil lysing agent is an aqueous solution of digitonin ranging from a one-tenth saturated to a saturated solution.
6. A method according to claim 4 in which the aqueous solution of a red blood cell lysing agent is an aqueous solution of saponin having a concentration ranging from a ll l0 percent to a 20 percent solution.
7. A method for the detection of galactose-l-phosphate uridyl transferase deficiency in red blood cells of a blood sample, consisting essentially of:
adding one part of the blood sample to 10 parts of an aqueous solution made up of one-thirtieth parts of an aqueous solution of uridine diphosphoglucose having a molarity of 9.5 l one-fifteenth parts of an aqueous solution of alpha-galactose-l-phosphate having a molarity of 2.7Xl0 one-tenth parts of an aqueous solution of oxidized triphosphopyridine nucleotide having a molarity of 6.6Xl0", one-third part of an aqueous solution of trisacetate buffer having a pH of 8.0 and a molarity of 0.75, two-fifteenths parts of an aqueous solution of a red blood cell lysing agent, and one-third parts of water;
allowing the resulting test mixture to react;
making a spot from the resulting test mixture on filter paper;
subjecting said spot after drying to longwave ultraviolet light at a wavelength of from about 340 to about 370 millimicrons whereby visible fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells containing galactose-l-phosphate uridyl transferase and no fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells deficient in galactose-lphosphate uridyl transferase.
8. A method according to claim 7 in which the aqueous solution of a red blood cell lysing agent is a saturated solution of digitonin.
9. A method according to claim 7 in which the aqueous solution of a red blood cell lysing agent is a 1 percent solution of saponin.
10. A method for the detection of galactose-l-phosphate uridyl transferase deficiency in red blood cells ofa blood sample, consisting essentially of:
adding one part of the blood sample to from to parts of an aqueous solution made up of 1/30 parts of an aqueous solution of uridine diphosphoglucose having a molarity of from 2X l 0 to 9.5Xl0 one-fifteenth part of an aqueous solution of alpha-galactose-l-phosphate having a molarity of from 0.7 l0 to 2.7Xl0" one-tenth parts of an aqueous solution of oxidized triphosphopyridine nucleotide having a molarity of from l.6Xl0', to 6.6Xl0", 55 parts of an aqueous solution of tris-acetate buffer having a pH of from 6.2 to 9.2 and a molarity of from 0.075 to 7.2, two-fifteenths part of an aqueous solution of a red blood cell lysing agent, and one-third parts of water; allowing the resulting test mixture to react;
making a spot from the resulting test mixture on filter paper;
and
subjecting said spot after drying to ultraviolet light of from about 340 to about 370 millimicrons wavelength whereby visible fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells containing galactose-lphosphate uridyl transferase and no fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells deficient in galactose- 1 -phosphate uridyl transferase.
11. A method according to claim 10 in which the aqueous solution of red blood cell lysing agent is an aqueous solution of digitonin ranging from a one-tenth saturated to a saturated solution.
12. A method according to claim 10 in which the aqueous solution of a red blood cell lysing agent is an aqueous solution of saponin having a concentration ranging from a l/10 percent to a 20 percent solution.
It i i i l

Claims (11)

  1. 2. A method according to claim 1 in which the aqueous solution of a red blood cell lysing agent is a saturated solution of digitonin.
  2. 3. A method according to claim 1 in which the aqueous solution of a red blood cell lysing agent is a 1 percent solution of saponin.
  3. 4. A method for the detection of glucose-6-phosphate dehydrogenase deficiency in red blood cells of a blood sample, consisting essentially of: adding one part of the blood sample to 10 parts of an aqueous solution made up of 1 part of an aqueous solution of ghucose-6-phosphate having a molarity of from 0.002 to 0.3, 1 part of an aqueous solution of oxidized triphosphopyridine nucleotide having a molarity of from 0.001875 to 0.075, 2 parts of an aqueous solution of a red blood cell lysing agent, 3 parts of potassium phosphate buffer having a molarity of from 0.025 to 1.25 and a pH of from 6.5 to 8, and 3 parts of waTer; allowing the resulting test mixture to react at room temperature; making a spot from the resulting test mixture on filter paper; and subjecting said spot after drying to longwave ultraviolet light of from about 340 to about 370 millimicrons wavelength whereby visible fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells containing glucose-6-phosphate dehydrogenase and no fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells deficient in glucose-6-phosphate dehydrogenase.
  4. 5. A method according to claim 4 in which the aqueous solution of a red blood cell lysing agent is an aqueous solution of digitonin ranging from a one-tenth saturated to a saturated solution.
  5. 6. A method according to claim 4 in which the aqueous solution of a red blood cell lysing agent is an aqueous solution of saponin having a concentration ranging from a 1/10 percent to a 20 percent solution.
  6. 7. A method for the detection of galactose-1-phosphate uridyl transferase deficiency in red blood cells of a blood sample, consisting essentially of: adding one part of the blood sample to 10 parts of an aqueous solution made up of one-thirtieth parts of an aqueous solution of uridine diphosphoglucose having a molarity of 9.5 X 10 3 , one-fifteenth parts of an aqueous solution of alpha-galactose-1-phosphate having a molarity of 2.7 X 10 2, one-tenth parts of an aqueous solution of oxidized triphosphopyridine nucleotide having a molarity of 6.6 X 10 3, one-third part of an aqueous solution of tris-acetate buffer having a pH of 8.0 and a molarity of 0.75, two-fifteenths parts of an aqueous solution of a red blood cell lysing agent, and one-third parts of water; allowing the resulting test mixture to react; making a spot from the resulting test mixture on filter paper; subjecting said spot after drying to longwave ultraviolet light at a wavelength of from about 340 to about 370 millimicrons whereby visible fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells containing galactose-1-phosphate uridyl transferase and no fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells deficient in galactose-1-phosphate uridyl transferase.
  7. 8. A method according to claim 7 in which the aqueous solution of a red blood cell lysing agent is a saturated solution of digitonin.
  8. 9. A method according to claim 7 in which the aqueous solution of a red blood cell lysing agent is a 1 percent solution of saponin.
  9. 10. A method for the detection of galactose-1-phosphate uridyl transferase deficiency in red blood cells of a blood sample, consisting essentially of: adding one part of the blood sample to from 5 to 20 parts of an aqueous solution made up of 1/30 parts of an aqueous solution of uridine diphosphoglucose having a molarity of from 2 X 10 3 to 9.5 X 10 2, one-fifteenth part of an aqueous solution of alpha-galactose-1-phosphate having a molarity of from 0.7 X 10 2 to 2.7 X 10 1 , one-tenth parts of an aqueous solution of oxidized triphosphopyridine nucleotide having a molarity of from 1.6 X 10 3, to 6.6 X 10 2, 1/3 parts of an aqueous solution of tris-acetate buffer having a pH of from 6.2 to 9.2 and a molarity of from 0.075 to 7.2, two-fifteenths part of an aqueous solution of a red blood cell lysing agent, and one-third parts of water; allowing the resulting test mixture to react; making a spot from the resulting test mixture on filter paper; and subjecting said spot after drying to ultraviolet light of from about 340 to about 370 millimicrons wavelength whereby visible fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells containing galactose-1-phosphate uridyl transferase and no fluorescence of said spot is produced by said ultraviolet light when said spot originates from a blood sample having red blood cells deficient in galactose-1-phosphate uridyl transferase.
  10. 11. A method according to claim 10 in which the aqueous solution of red blood cell lysing agent is an aqueous solution of digitonin ranging from a one-tenth saturated to a saturated solution.
  11. 12. A method according to claim 10 in which the aqueous solution of a red blood cell lysing agent is an aqueous solution of saponin having a concentration ranging from a 1/10 percent to a 20 percent solution.
US641733A 1967-05-08 1967-05-08 Screening procedure for enzyme deficiencies Expired - Lifetime US3616254A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US64173367A 1967-05-08 1967-05-08

Publications (1)

Publication Number Publication Date
US3616254A true US3616254A (en) 1971-10-26

Family

ID=24573630

Family Applications (1)

Application Number Title Priority Date Filing Date
US641733A Expired - Lifetime US3616254A (en) 1967-05-08 1967-05-08 Screening procedure for enzyme deficiencies

Country Status (1)

Country Link
US (1) US3616254A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980002296A1 (en) * 1979-04-16 1980-10-30 Massachusetts Inst Technology Enzymatic method for detecting cancer in mammalian tissue
US4334017A (en) * 1979-04-16 1982-06-08 Massachusetts Institute Of Technology Method for detecting cancer in mammalian tissue
WO1995033072A1 (en) * 1994-06-01 1995-12-07 Isolab, Inc. Assay for enzyme activity using a microfluorometric assay
US5587296A (en) * 1993-08-25 1996-12-24 Iatron Laboratories, Inc. Reagent for assaying glucose
EP1422509A1 (en) * 2002-11-01 2004-05-26 Streck Laboratories, Inc. Lysing Reagent and Method of Lysing Red Blood Cells for Hematology

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980002296A1 (en) * 1979-04-16 1980-10-30 Massachusetts Inst Technology Enzymatic method for detecting cancer in mammalian tissue
US4334017A (en) * 1979-04-16 1982-06-08 Massachusetts Institute Of Technology Method for detecting cancer in mammalian tissue
US5587296A (en) * 1993-08-25 1996-12-24 Iatron Laboratories, Inc. Reagent for assaying glucose
WO1995033072A1 (en) * 1994-06-01 1995-12-07 Isolab, Inc. Assay for enzyme activity using a microfluorometric assay
US5538857A (en) * 1994-06-01 1996-07-23 Isolab, Inc. Assay for enzyme activity from a red blood sample using a direct microfluorometric assay
US5719035A (en) * 1994-06-01 1998-02-17 Isolab, Inc. Assay for enzyme activity from a red blood sample using a direct microfluorometric assay
EP1422509A1 (en) * 2002-11-01 2004-05-26 Streck Laboratories, Inc. Lysing Reagent and Method of Lysing Red Blood Cells for Hematology
US20040142318A1 (en) * 2002-11-01 2004-07-22 Streck Laboratories, Inc. Hematology reagent and methods
US7247484B2 (en) 2002-11-01 2007-07-24 Streck, Inc. Hematology reagent and methods

Similar Documents

Publication Publication Date Title
Black et al. Determination of bilirubin UDP-glucuronyl transferase activity in needle-biopsy specimens of human liver
Watanabe et al. Determination of hypoxanthine in fish meat with an enzyme sensor
Masaru et al. A direct method for the estimation of ornithine carbamoyltransferase activity in serum
US4211844A (en) Bilirubin-specific fungal enzyme preparation
Lippi et al. A new colorimetric ultramicromethod for serum glutamicoxalacetic and glutamic-pyruvic transaminase determination
US4097338A (en) Fluorimetric demonstration and determination of a reduced coenzyme or derivative in an aqueous system
Fossati et al. A step forward in enzymatic measurement of creatinine
US4001089A (en) Method for determination of triglycerides and glycerol
US3616254A (en) Screening procedure for enzyme deficiencies
Van Noorden et al. A sensitive cytochemical staining method for glucose-6-phosphate dehydrogenase activity in individual erythrocytes: I. Optimalization of the staining procedure
Idahl et al. Measurements of serum glucose using the luciferin/luciferase system and a liquid scintillation spectrometer
US3087794A (en) Chemical test for differentiating leucocytes from erythrocytes
Colin-Neiger et al. Assessment of the Mulder and Van Doorn kinetic procedure and rapid centrifugal analysis of UDP-glucuronosyltransferase activities
US3616259A (en) Screening procedure for enzyme deficiencies
KR100449216B1 (en) Measurement method of test substance by chemiluminescence amount control
US3575812A (en) Method for the detection of virus
CA1060765A (en) Differential assay of creatine phosphokinase isoenzymes
US3326777A (en) Process for differentiating the isoenzymes of lactic dehydrogenase
US3660240A (en) Flavin co-enzyme assay
US4142938A (en) Determination of triglycerides and glycerol
US3862010A (en) Method of heat fractionating ldh into isoenzyme components
Tabata et al. A chemiluminometric method for NADPH and NADH using a two‐enzyme bioreactor and its application to the determination of magnesium in serum
US3388044A (en) Process for differentiating the isoenzymes of lactic dehydrogenase
US3293146A (en) Composition for detecting guanase and process for diagnosing viral hepatitis therewith
Kaplan et al. A simple spot screening test for fast detection of red cell NADH-diaphorase deficiency