US3613827A - Device for attenuating noise emitted by the jet of a jet engine - Google Patents
Device for attenuating noise emitted by the jet of a jet engine Download PDFInfo
- Publication number
- US3613827A US3613827A US53224A US3613827DA US3613827A US 3613827 A US3613827 A US 3613827A US 53224 A US53224 A US 53224A US 3613827D A US3613827D A US 3613827DA US 3613827 A US3613827 A US 3613827A
- Authority
- US
- United States
- Prior art keywords
- jet
- blading
- nozzle
- lift
- trailing edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/54—Nozzles having means for reversing jet thrust
- F02K1/56—Reversing jet main flow
- F02K1/62—Reversing jet main flow by blocking the rearward discharge by means of flaps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/46—Nozzles having means for adding air to the jet or for augmenting the mixing region between the jet and the ambient air, e.g. for silencing
Definitions
- the object of the invention is an improved silencer device which promotes mixing between the internal and external flows and introduces substantial improvements compared with the known devices both as far as the attenuation of the noise level is concerned and as far as concerns the jet engine performance.
- a blading system with a lift profile designed by virtue of the lift effect to produce a series of marginal vortices at the level of and at the periphery of the blading.
- the blading in question is constituted by a series of radial blades distributed around a central body, although other arrangements can equally well be adopted, for example a louvre arrangement.
- FIG. I is a schematic perspective view of a jet engine nozzle equipped with the silencer in accordance with the invention.
- FIGS. 2, 3, and 4 are diagrams illustrating a variant embodiment with a reverse thrust system, FIGS. 3 and 4 respectively providing views in axial section and elevation (in the latter case on tee rear of the nozzle).
- the jet engine nozzle 1 contains a central body 2 from which extend radial blades 3 which advantageously project to the rear of the exit plane of the nozzle.
- These blades are not assembled on simple symmetrical profiled arms designed in order to reduce drag; in other words, they are true blades or aerofoils which have a top camber and bottom camber and give rise to an aerodynamic lift Rz due to the jet flow. It is this lift which in fact produces, as with an aerofoil, marginal or tip vortices illustrated schematically by the arrows 4 and extending through vortex zones 5.
- This kind of silencer has an obvious advantage because of its simplicity and robustness. It can easily be designed to be wholly or partially retracted in cruising flight.
- the blades have a variable camber.
- Each blade is made up on the one hand by a fixed front element 3a at the leading edge and situated in the body of the jet, the direction of which latter is indicated by the arrow F, and on the other hand by a movable trailing edge flap 3b articulated about a radial axis 6.
- FIG. 3 illustrates a reverse thrust system of conventional kind in which a grid of deflector blades 7 is located in a lateral duct 8 which can be closed off during nonnal operation and uncovered on landing when it is desired to produce reverse thrust for braking, by forward deflection of the jet.
- the trailing edge flaps 3b are deployed through about in relation to the fixed part 3a, into the position C shown in full line in FIG. 2, and virtually close off the exit section of the nozzle 1, as shown in FIG. 4.
- the hot gases are then forced to escape through the lateral duct 8 (FIG. 3) and are deflected forward by the blade grid 7.
- a device for attenuating the noise emitted by the jet comprising a blading fitted in said exit section and having blades shaped with a lift-producing profile and designed, by virtue of said lift, to create a series of tip vortices level with and at the periphery of the blading.
- a device as claimed in claim-1 in which the blading is constituted by a series of radial blades distributed about a central body.
- a device as claimed in claim I in which the blading projects towards the rear of the exit plane of the nozzle.
- each blade comprising on the one hand a fixed leading edge element and on the other hand a movable flap at the trailing edge.
- trailing edge flap can be disposed in projection of the fixed leading edge element, the assembly then being located in the body of the jet and the blade lift being virtually zero, the silencing effect being produced by deploying the trailing edge flap through a given angle in relation to the fixed part of the blade.
- trailing edge flaps can be deployed through approximately 90 in relation to the leading edge element in order to close off the exit section of the jet engine nozzle at least to a substantial extent.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Silencers (AREA)
- Control Of Turbines (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR6924196A FR2053736A5 (zh) | 1969-07-16 | 1969-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3613827A true US3613827A (en) | 1971-10-19 |
Family
ID=9037526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US53224A Expired - Lifetime US3613827A (en) | 1969-07-16 | 1970-07-08 | Device for attenuating noise emitted by the jet of a jet engine |
Country Status (5)
Country | Link |
---|---|
US (1) | US3613827A (zh) |
DE (1) | DE2035403C3 (zh) |
FR (1) | FR2053736A5 (zh) |
GB (1) | GB1307867A (zh) |
NL (1) | NL7010373A (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3830431A (en) * | 1973-03-23 | 1974-08-20 | Nasa | Abating exhaust noises in jet engines |
US4175640A (en) * | 1975-03-31 | 1979-11-27 | Boeing Commercial Airplane Company | Vortex generators for internal mixing in a turbofan engine |
US4298089A (en) * | 1976-12-23 | 1981-11-03 | The Boeing Company | Vortex generators for internal mixing in a turbofan engine |
US5197855A (en) * | 1991-07-01 | 1993-03-30 | United Technologies Corporation | Engine exhaust/blade interaction noise suppression |
US5203164A (en) * | 1990-06-06 | 1993-04-20 | Paulson Allen E | Method and apparatus for quieting a turbojet engine |
US5517865A (en) * | 1991-06-13 | 1996-05-21 | General Electric Company | Vortex suppression for an eductor |
US6606854B1 (en) * | 1999-01-04 | 2003-08-19 | Allison Advanced Development Company | Exhaust mixer and apparatus using same |
US20040031258A1 (en) * | 2002-03-20 | 2004-02-19 | Dimitri Papamoschou | Jet engine noise suppressor |
US11105297B2 (en) * | 2019-01-24 | 2021-08-31 | Airbus Operations Sas | Turbofan comprising a set of rotatable blades for blocking off the bypass flow duct |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4439104A (en) * | 1981-06-15 | 1984-03-27 | The Garrett Corporation | Compressor inlet guide vane and vortex-disturbing member assembly |
US4844695A (en) * | 1988-07-05 | 1989-07-04 | Pratt & Whitney Canada Inc. | Variable flow radial compressor inlet flow fences |
US5373691A (en) * | 1993-06-23 | 1994-12-20 | Allied-Signal Inc. | Inlet guide vane dewhistler |
US7926256B2 (en) * | 2008-10-27 | 2011-04-19 | General Electric Company | Inlet system for an EGR system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2934889A (en) * | 1956-02-14 | 1960-05-03 | United Aircraft Corp | Noise abatement means |
US2944623A (en) * | 1955-09-02 | 1960-07-12 | Jr Albert G Bodine | Jet engine noise reducer |
GB885093A (en) * | 1959-05-01 | 1961-12-20 | Alec David Young | Improvements in or relating to jet propulsion nozzles |
US3153319A (en) * | 1952-07-25 | 1964-10-20 | Young Alec David | Jet noise suppression means |
-
1969
- 1969-07-16 FR FR6924196A patent/FR2053736A5/fr not_active Expired
-
1970
- 1970-07-08 US US53224A patent/US3613827A/en not_active Expired - Lifetime
- 1970-07-10 GB GB3353570A patent/GB1307867A/en not_active Expired
- 1970-07-14 NL NL7010373A patent/NL7010373A/xx unknown
- 1970-07-16 DE DE2035403A patent/DE2035403C3/de not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3153319A (en) * | 1952-07-25 | 1964-10-20 | Young Alec David | Jet noise suppression means |
US2944623A (en) * | 1955-09-02 | 1960-07-12 | Jr Albert G Bodine | Jet engine noise reducer |
US2934889A (en) * | 1956-02-14 | 1960-05-03 | United Aircraft Corp | Noise abatement means |
GB885093A (en) * | 1959-05-01 | 1961-12-20 | Alec David Young | Improvements in or relating to jet propulsion nozzles |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3830431A (en) * | 1973-03-23 | 1974-08-20 | Nasa | Abating exhaust noises in jet engines |
US4175640A (en) * | 1975-03-31 | 1979-11-27 | Boeing Commercial Airplane Company | Vortex generators for internal mixing in a turbofan engine |
US4298089A (en) * | 1976-12-23 | 1981-11-03 | The Boeing Company | Vortex generators for internal mixing in a turbofan engine |
US5203164A (en) * | 1990-06-06 | 1993-04-20 | Paulson Allen E | Method and apparatus for quieting a turbojet engine |
US5517865A (en) * | 1991-06-13 | 1996-05-21 | General Electric Company | Vortex suppression for an eductor |
US5197855A (en) * | 1991-07-01 | 1993-03-30 | United Technologies Corporation | Engine exhaust/blade interaction noise suppression |
US6606854B1 (en) * | 1999-01-04 | 2003-08-19 | Allison Advanced Development Company | Exhaust mixer and apparatus using same |
US20040031258A1 (en) * | 2002-03-20 | 2004-02-19 | Dimitri Papamoschou | Jet engine noise suppressor |
US7293401B2 (en) * | 2002-03-20 | 2007-11-13 | The Regents Of The University Of California | Jet engine noise suppressor |
US11105297B2 (en) * | 2019-01-24 | 2021-08-31 | Airbus Operations Sas | Turbofan comprising a set of rotatable blades for blocking off the bypass flow duct |
Also Published As
Publication number | Publication date |
---|---|
FR2053736A5 (zh) | 1971-04-16 |
GB1307867A (en) | 1973-02-21 |
DE2035403A1 (de) | 1971-02-04 |
NL7010373A (zh) | 1971-01-19 |
DE2035403B2 (de) | 1979-10-25 |
DE2035403C3 (de) | 1980-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6793175B1 (en) | Supersonic external-compression diffuser and method for designing same | |
US3989406A (en) | Method of and apparatus for preventing leading edge shocks and shock-related noise in transonic and supersonic rotor blades and the like | |
US3355125A (en) | Flap systems for aircraft | |
US6293494B1 (en) | Aircraft air inlet with airflow guide to prevent flow separation | |
US2916230A (en) | Supersonic airfoil | |
US3090584A (en) | Aircraft | |
US4372110A (en) | Noise suppressor for turbo fan jet engines | |
US3613827A (en) | Device for attenuating noise emitted by the jet of a jet engine | |
US20050211824A1 (en) | Turbine engine arrangements | |
KR102518099B1 (ko) | 흡입구 흐름 제한기 | |
US3756542A (en) | Aircraft having an auxiliary lift device | |
US2387708A (en) | Spill for aircraft | |
JPH05193587A (ja) | 円弧輪郭を有する航空機エンジンナセル | |
US2680948A (en) | Variable area tail pipe for jet engines | |
US2991961A (en) | Jet aircraft configuration | |
US3104522A (en) | Air intakes for air aspirating aircraft engines | |
US7735776B2 (en) | Air inlet for a turbofan engine | |
US3900177A (en) | Jet propulsion powerplant | |
CA2666190C (en) | Nacelle drag reduction device for a turbofan gas turbine engine | |
US3352514A (en) | Jet propelled aircraft with variable area jet nozzle | |
US20080179465A1 (en) | Aircraft With Low Noise, Such as During Take-Off and Landing | |
US20220274687A1 (en) | Propulsion unit with improved boundary layer ingestion | |
US3285537A (en) | Vertical take off and landing aircraft | |
CN114394224A (zh) | 基于三维科恩达效应的鼓包增升装置及其设计方法 | |
USRE24917E (en) | Aircraft high lift supercirculation system |