US3612806A - Inductor for internal heating - Google Patents

Inductor for internal heating Download PDF

Info

Publication number
US3612806A
US3612806A US14544A US3612806DA US3612806A US 3612806 A US3612806 A US 3612806A US 14544 A US14544 A US 14544A US 3612806D A US3612806D A US 3612806DA US 3612806 A US3612806 A US 3612806A
Authority
US
United States
Prior art keywords
inductor
working surface
workpiece
loop
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US14544A
Inventor
John C Lewis
Wentworth Hamilton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Park Ohio Holdings Inc
Original Assignee
Park Ohio Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Park Ohio Industries Inc filed Critical Park Ohio Industries Inc
Application granted granted Critical
Publication of US3612806A publication Critical patent/US3612806A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces

Definitions

  • the present invention relates to heating, and, more particularly, to induction heating.
  • the present invention is applicable to heating the inner surfaces of small holes in metal workpieces, especially steel plates, and will-be described with particular reference thereto; although, those skilled in the art will immediately recognize that the invention has considerably broader applications. Thus, the present invention is also useful for heating interiors of metal tubes.
  • the present-invention is primarily concerned with liquidcooled solenoid-type coils,'bo th single turn and multiturn coils which are inserted in openings the surfaces of which must be heated. However, under special conditions and circumstances the invention also has use in other types of coils.
  • the present invention contemplates new and improved apparatus with a method for the operation thereof, which overcomes all the foregoing problems and others, and provides a composite internal inductor which is more efficient in operation.
  • an improved inductor which comprises a tubular member composite conductor having at least two surfaces, one of which surfaces is a working surface and adapted to be in closespaced relationship to the surface to be heated.
  • the working surface is made of a material of high electrical conductivity while the other surface is made of a material of much lower and preferably no electrical conductivity so that electrical current is concentrated in the working surface.
  • induction-heating apparatus including a high-frequency generator and tubular composite inductor electrically connected to the generator, the composite inductor having a working surface made of a highly electrically conductive material while the remainder of the conductor is made of a much less electrically conductive material, whereby electrical current is concentrated in the working surface so that induction heating of a metal workpiece placed near the working surface is more efficient.
  • the method comprises providing a source of high-frequency alter-. nating electric current, and passing the electrical current from the source through a composite conductor which has at least two surfaces, each made of a different material, with one material being more conductive than the other so that electric current is concentrated in a more conductive surface.
  • a metal workpiece is placed adjacent to the more conductive surface with a small airgap therebetween so that the inductor and the metal workpiece are inductively coupled whereby the work-. piece is efficiently heated by induction.
  • the principal object of the present invention is to provide an improved composite conductor to increase the efficiency of induction heating.
  • Another object of the present invention is to provide an improved composite intemal coil for inductively heating internal openings in metal workpieces.
  • a further object of the present invention is to provide an improved inductor for uniformly heating small recesses within metal workpieces by induction heating.
  • Yet another object of the present invention is the provision of a method for induction heating interior spaces within metal workpieces.
  • FIG. 1 is a pictorial drawing of an induction generator employing a composite coil in accordance with the present invention to heat the interior of a recess in a metal workpiece;
  • FIG. 2 is a perspective of a preferred embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the inductor shown in FIG. 2 and taken along the line 3-.3.
  • FIG. 1 a pictorial view of the present invention, shows a high-frequency generator 10 with a composite inductor 12, in accordance with the present invention, electrically connected thereto at 14 and 16, and a metal workpiece 18 having a circular opening 20, the walls of which it is desired to inductively heat.
  • High-frequency generator 10 can take the form of any commercially available high-frequency generator.
  • highfrequency generators of the motor-generator type, spark gap oscillator type or vacuum tube oscillator type can be employed.
  • spark gap oscillator type or vacuum tube oscillator type
  • one type of generator may be selected over the other to suit the particular circumstances.
  • the leads to the inductor l2 and the inductor itself are in the form of rectangular tubing or conduit so that a coolant can be circulated to cool the inductor and its leads. Provisions for cooling are especially important so as to remove the heat generated by the large currents which flow in the inductor.
  • workpiece 18 can be any metal which can be inductively heated.
  • the workpiece can be steel, iron, stainless steel, aluminum, brass, copper and most other metals.
  • the workpiece is depicted as being rectangular, but it will be appreciated by those skilled in the art that it can be of any size or shape.
  • workpiece 18 can be a tube in which it is desired to harden the inner surface while the exterior surface remains substantially unaffected.
  • the shape of opening 20 does not have to be circular, as the inductor, in accordance with the present invention, can be varied in shape to suit specific needs.
  • FIGS. 2 and 3 show a preferred embodiment of the present invention.
  • lnductor 50 is a single loop 52 formed from a rectangular conduit 54, as best seen in FIG. 3.
  • the diameter of 5 loop 52 is selected to fit the internal dimensions of the workpiece being heated, and not out of merely coil design considerations.
  • the conduit has three sides 56 made of a nonconductive material, such as plastic or nylon, and a fourth fiat side 58 made of a high conductive material, such as copper.
  • Side 58 functions as a working surface of the inductor, and its location on the inductor is selected so that it can be placed adjacent to the workpiece being inductively heated.
  • Inductor 50 is connected to a source of high-frequency electrical energy, not shown in the drawings by lead 60, and a coolant, such as water, is circulated through conduit 54 to cool inductor 50 during operation.
  • Composite inductors in accordance with the present invention can be made in any suitable manner.
  • the electrically conductive material can be joined with the electrically nonconductive material by any means that insures a leak-proof structure.
  • a tongue and groove can be employed, or the conductive surface can be affixed to the nonconductive portion by a curable adhesive.
  • copper will be employed as the conductive portion of the composite conductor.
  • plastic, glass and high-resistivity metals can be employed as the nonconductive portion of the composite inductor. Glasses and plastics which can be employed should have sufficient strength so as to resist the stresses caused by unequal expansion of the two different materials as the heat and cool is used. Examples of glasses that can be employed include crown and flint glasses. Plastics which can be employed,
  • nylons including nylons, fluoroplastics, acrylics, polyolefins, and vinyl polymers.
  • high-frequency electrical energy is applied to a composite conductor having a conductive working surface and a high resistivity or nonconductive, nonworking portion, whereby electrical current flows primarily or only in the working surface.
  • the working surface is placed adjacent, but not in contact, with the area of the workpiece to be heated so that the inductor and workpiece are inductively coupled to inductively heat the workpiece.
  • an inductor for inductively heating the inner cylindrical surface of an opening in a workpiece, said inductor comprising two leads adapted to be connected to a spaced highfrequency power source, and a single loop connected between said leads and having an outer surface with a diameter slightly less than the diameter of said inner cylindrical surface, said leads and said loop having internal coolant passageways, the improvement comprising, said loop formed from an electrical insulated annular channel terminating generally at said outer surface and an electrically conductive ribbon over said channel and forming said outer surface whereby said coolant passageway of said loop is formed by said channel and said ribbon.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

An inductor for internal induction heating wherein the outer working surface only is made of a high electrically conductive material, and the remainder thereof defining a water-cooling passage is made of a less conductive material so that highfrequency electrical current must flow in the working surface which is closely adjacent to the surface to be heated. A conduit having one side made of copper and all other sides made of plastic is employed so that high-frequency electrical current is concentrated in the copper side which functions as the working surface.

Description

United States Patent John C. Lewis;
Wentworth Hamilton, both of Ontario, Canada Feb. 26, 1970 Oct. 12, 1971 Park-Ohio Industries, Inc.
Cleveland, Ohio Inventors Appl. No. Filed Patented Assignee INDUCTOR FOR INTERNAL HEATING 1 Claim, 3 Drawing Figs.
U.S. Cl 2l9/l0.79 Int. Cl H051: 5/00, l-l05p 9/02 Field of Search 2l9/1O.79, 10.49
References Cited UNITED STATES PATENTS 5 /1954 Andrew 3,108,169 10/1963 Keller 2l9/l0.79 X 3,525,839 8/1970 Eannarino 2 l 9/l0.49 3,492,453 l/l970 Hurst 2 l 9/l0.49 3,249,406 5/1966 Crosby et al 2l9/lO.79
Primary ExaminerJ. V. Truhe Assistant Examiner-11. l-l. Bender Attorney-Meyer, Tilberry and Body ABSTRACT: An inductor for internal induction heating wherein the outer working surface only is made of a high electrically conductive material, and the remainder thereof defining a water-cooling passage is made of a less conductive material so that high-frequency electrical current must flow in the working surface which is closely adjacent to the surface to be heated. A conduit having one side made of copper and all other sides made of plastic is employed so that high-frequency electrical current is concentrated in the copper side which functions as the working surface.
PATENTED E 12 3,612.8 O6
INVENTOR. JO HN C. LEWIS BY Mam, 7M4; A? Bad;
ATTORNEYS INDUC'IOR FOR INTERNAL HEATING The present invention relates to heating, and, more particularly, to induction heating.
The present invention is applicable to heating the inner surfaces of small holes in metal workpieces, especially steel plates, and will-be described with particular reference thereto; although, those skilled in the art will immediately recognize that the invention has considerably broader applications. Thus, the present invention is also useful for heating interiors of metal tubes.
The present-invention is primarily concerned with liquidcooled solenoid-type coils,'bo th single turn and multiturn coils which are inserted in openings the surfaces of which must be heated. However, under special conditions and circumstances the invention also has use in other types of coils.
It is a well-known physical fact that electric current will take the path of least resistance. For example, in a laminated structure of two conductors, that conductor which provides the least amount of resistance will carry most of the electrical current that is passed through and along the laminated structure. In unitary structures of homogeneous composition, electric current will take the shortest path since the total resistance will be less for the shortest path. In solenoid coils this phenomenon manifests itself in that electrical current concentrations are greater in the interior of the coil than on the exterior, since the helical path about the interior diameter is shorter than the helical path of the exterior diameter.
Current concentration at the interior of solenoid coils is actually beneficial when a workpiece to be inductively heated is placed within the solenoid coil. Furthermore, when the diameter of the solenoid coil is substantially larger compared to the diameter or dimensions of the conductor forming the solenoid coil, the effects of current concentration are minimized. When designing internal coils (coils that are placed within the workpiece), however, the current distribution or concentration in the conductor has important ramifications. This is particularly true for internal coils of small dimensions in which the conductive path offered by the outer surface of the coil can be twice that of the inner surface. In such instances, the resistance offered by the outer surface can be twice that of the inner surface. The great differences in resistance of the two surfaces manifests itself by concentrating current on the inner surface producing inefficient internal heating.
Recognizing the effects of current concentration in internal coils, it has been suggested that the design of internal coils be altered to minimize losses associated therewith. For example, it has been suggested that rather than employing water-cooled conductors of circular cross section for inductors, that conductors with oblong cross sections be employed with the major axis being oriented parallel to the longitudinal axis of the induction coil. This suggestion merely minimizes the problem by reducing the relative differences between the inside and outside diameters of the internal induction coil. Although attempts were made to overcome the foregoing difficulties, none, as far as I am aware, was entirely successful when carried into practice commercially on an industrial scale.
The present invention contemplates new and improved apparatus with a method for the operation thereof, which overcomes all the foregoing problems and others, and provides a composite internal inductor which is more efficient in operation.
In accordance with the present invention, there is provided an improved inductor which comprises a tubular member composite conductor having at least two surfaces, one of which surfaces is a working surface and adapted to be in closespaced relationship to the surface to be heated. The working surface is made of a material of high electrical conductivity while the other surface is made of a material of much lower and preferably no electrical conductivity so that electrical current is concentrated in the working surface.
In accordance with a more limited aspect of the present invention, there is provided induction-heating apparatus including a high-frequency generator and tubular composite inductor electrically connected to the generator, the composite inductor having a working surface made of a highly electrically conductive material while the remainder of the conductor is made of a much less electrically conductive material, whereby electrical current is concentrated in the working surface so that induction heating of a metal workpiece placed near the working surface is more efficient.
There is also provided in accordance with the present invention a method for inductively heating metal workpieces. The method comprises providing a source of high-frequency alter-. nating electric current, and passing the electrical current from the source through a composite conductor which has at least two surfaces, each made of a different material, with one material being more conductive than the other so that electric current is concentrated in a more conductive surface. A metal workpiece is placed adjacent to the more conductive surface with a small airgap therebetween so that the inductor and the metal workpiece are inductively coupled whereby the work-. piece is efficiently heated by induction.
The principal object of the present invention is to provide an improved composite conductor to increase the efficiency of induction heating.
Another object of the present invention is to provide an improved composite intemal coil for inductively heating internal openings in metal workpieces.
A further object of the present invention is to provide an improved inductor for uniformly heating small recesses within metal workpieces by induction heating.
Yet another object of the present invention is the provision of a method for induction heating interior spaces within metal workpieces.
Other objects and advantages will become apparent from the following description taken in conjunction with the ac-' companying drawings in which:
FIG. 1 is a pictorial drawing of an induction generator employing a composite coil in accordance with the present invention to heat the interior of a recess in a metal workpiece;
FIG. 2 is a perspective of a preferred embodiment of the present invention; and, 7
FIG. 3 is a cross-sectional view of the inductor shown in FIG. 2 and taken along the line 3-.3.
Referring now to the drawings wherein the showings are for the purpose of illustrating preferred embodiments of the present invention only, and not for the purpose of limiting same, FIG. 1, a pictorial view of the present invention, shows a high-frequency generator 10 with a composite inductor 12, in accordance with the present invention, electrically connected thereto at 14 and 16, and a metal workpiece 18 having a circular opening 20, the walls of which it is desired to inductively heat.
High-frequency generator 10 can take the form of any commercially available high-frequency generator. Thus, highfrequency generators of the motor-generator type, spark gap oscillator type or vacuum tube oscillator type can be employed. Of course, if a highly specialized heat treatment requires the use of ultrahigh-frequency current, or necessitates high-power transfer efficiencies, one type of generator may be selected over the other to suit the particular circumstances.
The leads to the inductor l2 and the inductor itself are in the form of rectangular tubing or conduit so that a coolant can be circulated to cool the inductor and its leads. Provisions for cooling are especially important so as to remove the heat generated by the large currents which flow in the inductor.
workpiece 18 can be any metal which can be inductively heated. Thus, the workpiece can be steel, iron, stainless steel, aluminum, brass, copper and most other metals. As shown in FIG. 1, the workpiece is depicted as being rectangular, but it will be appreciated by those skilled in the art that it can be of any size or shape. For example, workpiece 18 can be a tube in which it is desired to harden the inner surface while the exterior surface remains substantially unaffected. Moreover, the shape of opening 20 does not have to be circular, as the inductor, in accordance with the present invention, can be varied in shape to suit specific needs.
FIGS. 2 and 3 show a preferred embodiment of the present invention. lnductor 50 is a single loop 52 formed from a rectangular conduit 54, as best seen in FIG. 3. The diameter of 5 loop 52 is selected to fit the internal dimensions of the workpiece being heated, and not out of merely coil design considerations. As best seen in FIG. 3, the conduit has three sides 56 made of a nonconductive material, such as plastic or nylon, and a fourth fiat side 58 made of a high conductive material, such as copper. Side 58 functions as a working surface of the inductor, and its location on the inductor is selected so that it can be placed adjacent to the workpiece being inductively heated. Inductor 50 is connected to a source of high-frequency electrical energy, not shown in the drawings by lead 60, and a coolant, such as water, is circulated through conduit 54 to cool inductor 50 during operation.
Composite inductors in accordance with the present invention can be made in any suitable manner. When the inductor is hollow for cooling purposes, the electrically conductive material can be joined with the electrically nonconductive material by any means that insures a leak-proof structure. Thus, a tongue and groove can be employed, or the conductive surface can be affixed to the nonconductive portion by a curable adhesive. Most generally, copper will be employed as the conductive portion of the composite conductor. As noted hereinbefore, plastic, glass and high-resistivity metals can be employed as the nonconductive portion of the composite inductor. Glasses and plastics which can be employed should have sufficient strength so as to resist the stresses caused by unequal expansion of the two different materials as the heat and cool is used. Examples of glasses that can be employed include crown and flint glasses. Plastics which can be employed,
although the invention is not limited thereto, including nylons, fluoroplastics, acrylics, polyolefins, and vinyl polymers.
in operation, high-frequency electrical energy is applied to a composite conductor having a conductive working surface and a high resistivity or nonconductive, nonworking portion, whereby electrical current flows primarily or only in the working surface. The working surface is placed adjacent, but not in contact, with the area of the workpiece to be heated so that the inductor and workpiece are inductively coupled to inductively heat the workpiece.
Although the present invention has been described in conjunction with the preferred embodiments, it is to be understood that modifications and variations may be restored to without departure from the spirit and scope of the invention, as those skilled in the art will readily understand. Such modifications and variations are considered within the purview and scope of the invention and appended claims.
Having thus described my invention I claim:
1. In an inductor for inductively heating the inner cylindrical surface of an opening in a workpiece, said inductor comprising two leads adapted to be connected to a spaced highfrequency power source, and a single loop connected between said leads and having an outer surface with a diameter slightly less than the diameter of said inner cylindrical surface, said leads and said loop having internal coolant passageways, the improvement comprising, said loop formed from an electrical insulated annular channel terminating generally at said outer surface and an electrically conductive ribbon over said channel and forming said outer surface whereby said coolant passageway of said loop is formed by said channel and said ribbon.

Claims (1)

1. In an inductor for inductively heating the inner cylindrical surface of an opening in a workpiece, said inductor comprising two leads adapted to be connected to a spaced high-frequency power source, and a single loop connected between said leads and having an outer surface with a diameter slightly less than the diameter of said inner cylindrical surface, said leads and said loop having internal coolant passageways, the improvement comprising, said loop formed from an electrical insulated annular channel terminating generally at said outer surface and an electrically conductive ribbon over said channel and forming said outer surface whereby said coolant passageway of said loop is formed by said channel and said ribbon.
US14544A 1970-02-26 1970-02-26 Inductor for internal heating Expired - Lifetime US3612806A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1454470A 1970-02-26 1970-02-26

Publications (1)

Publication Number Publication Date
US3612806A true US3612806A (en) 1971-10-12

Family

ID=21766092

Family Applications (1)

Application Number Title Priority Date Filing Date
US14544A Expired - Lifetime US3612806A (en) 1970-02-26 1970-02-26 Inductor for internal heating

Country Status (1)

Country Link
US (1) US3612806A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789180A (en) * 1972-12-26 1974-01-29 Park Ohio Industries Inc Modified inductor for inductively heating valve seats
US4207451A (en) * 1978-03-13 1980-06-10 Thermatool Corporation Multi-layered electrical induction coil subjected to large forces
US4698473A (en) * 1986-05-02 1987-10-06 General Motors Corporation Refractory metal-lined induction coil
EP1126747A2 (en) * 2000-02-19 2001-08-22 ALD Vacuum Technologies AG Heating device for metallic pieces
WO2002017682A2 (en) * 2000-08-22 2002-02-28 Depershmidt, Alexandr Nikolaevich Inductor for an induction heating device
WO2011146904A1 (en) 2010-05-21 2011-11-24 Illinois Tool Works Inc. Welding system comprising an induction heating system, induction heating system and method of heating a welding or cutting work piece
DE102012017130A1 (en) 2012-09-01 2014-03-06 Man Diesel & Turbo Se Method for welding of tubes of tube bundle in bores of tube sheets, involves positioning inductor outside bore, such that parallel minimum distance of five tube pitches is set between axis of tube and inner contour of inductor
US9913320B2 (en) 2014-05-16 2018-03-06 Illinois Tool Works Inc. Induction heating system travel sensor assembly
US10244588B2 (en) 2014-10-14 2019-03-26 Illinois Tool Works Inc. Hybrid induction heating/welding assembly
US10462853B2 (en) 2013-05-28 2019-10-29 Illinois Tool Works Inc. Induction pre-heating and butt welding device for adjacent edges of at least one element to be welded
US10638554B2 (en) 2014-12-23 2020-04-28 Illinois Tool Works Inc. Systems and methods for interchangeable induction heating systems
US10863591B2 (en) 2014-05-16 2020-12-08 Illinois Tool Works Inc. Induction heating stand assembly
US11076454B2 (en) 2014-05-16 2021-07-27 Illinois Tool Works Inc. Induction heating system temperature sensor assembly
US11197350B2 (en) 2014-05-16 2021-12-07 Illinois Tool Works Inc. Induction heating system connection box
US11510290B2 (en) 2014-05-16 2022-11-22 Illinois Tool Works Inc. Induction heating system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678371A (en) * 1952-01-16 1954-05-11 Gen Electric Heating inductor
US3108169A (en) * 1959-08-14 1963-10-22 Siemens Ag Device for floating zone-melting of semiconductor rods
US3249406A (en) * 1963-01-08 1966-05-03 Dow Corning Necked float zone processing of silicon rod
US3492453A (en) * 1968-09-17 1970-01-27 Combustion Eng Small diameter induction heater having fluid cooled coil
US3525839A (en) * 1968-08-21 1970-08-25 Teletype Corp Induction heating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678371A (en) * 1952-01-16 1954-05-11 Gen Electric Heating inductor
US3108169A (en) * 1959-08-14 1963-10-22 Siemens Ag Device for floating zone-melting of semiconductor rods
US3249406A (en) * 1963-01-08 1966-05-03 Dow Corning Necked float zone processing of silicon rod
US3525839A (en) * 1968-08-21 1970-08-25 Teletype Corp Induction heating device
US3492453A (en) * 1968-09-17 1970-01-27 Combustion Eng Small diameter induction heater having fluid cooled coil

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789180A (en) * 1972-12-26 1974-01-29 Park Ohio Industries Inc Modified inductor for inductively heating valve seats
US4207451A (en) * 1978-03-13 1980-06-10 Thermatool Corporation Multi-layered electrical induction coil subjected to large forces
US4698473A (en) * 1986-05-02 1987-10-06 General Motors Corporation Refractory metal-lined induction coil
EP1126747A2 (en) * 2000-02-19 2001-08-22 ALD Vacuum Technologies AG Heating device for metallic pieces
EP1126747A3 (en) * 2000-02-19 2003-12-10 ALD Vacuum Technologies AG Heating device for metallic pieces
WO2002017682A2 (en) * 2000-08-22 2002-02-28 Depershmidt, Alexandr Nikolaevich Inductor for an induction heating device
WO2002017682A3 (en) * 2000-08-22 2002-10-24 Depershmidt Alexandr Nikolaevi Inductor for an induction heating device
CN103038016B (en) * 2010-05-21 2015-12-09 伊利诺斯工具制品有限公司 The method comprising the welding system of heating system, heating system and welding or cut workpiece are heated
WO2011146904A1 (en) 2010-05-21 2011-11-24 Illinois Tool Works Inc. Welding system comprising an induction heating system, induction heating system and method of heating a welding or cutting work piece
CN103038016A (en) * 2010-05-21 2013-04-10 伊利诺斯工具制品有限公司 Welding system comprising an induction heating system, induction heating system and method of heating a welding or cutting work piece
US11072035B2 (en) 2010-05-21 2021-07-27 Illinois Tool Works Inc. Auxiliary welding heating system
DE102012017130A1 (en) 2012-09-01 2014-03-06 Man Diesel & Turbo Se Method for welding of tubes of tube bundle in bores of tube sheets, involves positioning inductor outside bore, such that parallel minimum distance of five tube pitches is set between axis of tube and inner contour of inductor
US10462853B2 (en) 2013-05-28 2019-10-29 Illinois Tool Works Inc. Induction pre-heating and butt welding device for adjacent edges of at least one element to be welded
US9913320B2 (en) 2014-05-16 2018-03-06 Illinois Tool Works Inc. Induction heating system travel sensor assembly
US10863591B2 (en) 2014-05-16 2020-12-08 Illinois Tool Works Inc. Induction heating stand assembly
US11076454B2 (en) 2014-05-16 2021-07-27 Illinois Tool Works Inc. Induction heating system temperature sensor assembly
US11197350B2 (en) 2014-05-16 2021-12-07 Illinois Tool Works Inc. Induction heating system connection box
US11510290B2 (en) 2014-05-16 2022-11-22 Illinois Tool Works Inc. Induction heating system
US10440784B2 (en) 2014-10-14 2019-10-08 Illinois Tool Works Inc. Reduced-distortion hybrid induction heating/welding assembly
US10244588B2 (en) 2014-10-14 2019-03-26 Illinois Tool Works Inc. Hybrid induction heating/welding assembly
US11172549B2 (en) 2014-10-14 2021-11-09 Illinois Tool Works Inc. High-productivity hybrid induction heating/welding assembly
US10638554B2 (en) 2014-12-23 2020-04-28 Illinois Tool Works Inc. Systems and methods for interchangeable induction heating systems

Similar Documents

Publication Publication Date Title
US3612806A (en) Inductor for internal heating
US3431379A (en) Method for induction heating
US3126937A (en) Forming method and apparatus therefor
US20060255029A1 (en) Flux guide induction heating device and method of inductively heating elongated and nonuniform workpieces
US5418811A (en) High performance induction melting coil
KR20100098410A (en) Controlled electric induction heating of an electrically conductive workpiece in a solenoidal coil with flux compensators
US2672544A (en) Apparatus for welding by means of electromagnetic induction heating
US2841678A (en) High-frequency inductor arrangement for continuous seam welding
US20080308550A1 (en) Magnetic flux guide for continuous high frequency welding of closed profiles
US3510619A (en) Apparatus for induction heating
US3755644A (en) High frequency induction heating apparatus
US3446930A (en) Cross-field inductor for heating electrically conducting workpieces
WO2014088423A1 (en) Apparatus and method for induction heating of magnetic materials
US2715170A (en) Method and means for inductively heating narrow elongated portions of cylindrical bodies
US2632840A (en) Means for inductively heating narrow elongated portions of cylindrical bodies
US3143628A (en) Two turn inductor block with integral quench
US2408190A (en) Magnetic induction heating of thinwalled nonmagnetic metallic tubes
US2763756A (en) Induction welding
US2256873A (en) Inside induction heater
US3038055A (en) Inductors for seam welding
US3122624A (en) Current concentrator for highfrequency seam welding
US2655589A (en) High-frequency inductor
US2652474A (en) Method of heating opposed edges of elongated members
US2394944A (en) Induction heating apparatus
US1980447A (en) Arc welding apparatus