US3607758A - Functional fluid compositions - Google Patents

Functional fluid compositions Download PDF

Info

Publication number
US3607758A
US3607758A US20395A US3607758DA US3607758A US 3607758 A US3607758 A US 3607758A US 20395 A US20395 A US 20395A US 3607758D A US3607758D A US 3607758DA US 3607758 A US3607758 A US 3607758A
Authority
US
United States
Prior art keywords
methyl
damage
butyl
fluid
compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US20395A
Inventor
Frank H Langenfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Application granted granted Critical
Publication of US3607758A publication Critical patent/US3607758A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M3/00Liquid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single liquid substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/302Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/304Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/024Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • C10M2211/042Alcohols; Ethers; Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/042Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds between the nitrogen-containing monomer and an aldehyde or ketone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/043Mannich bases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/049Phosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/061Metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/02Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids

Definitions

  • compositions comprising amide of an acid of phosphorus and a small amount of water exhibit the ability to inhibit and control damage to mechanical members in contact with said compositions.
  • the compositions have many uses, among which are their use as hydraulic fluids.
  • This invention relates to functional fluid compositions having an ability to inhibit and control damage to mechanical members in contact with said fluid compositions, to functional fluid compositions which exhibit an improved tendency to resist fluid degradation and more particularly to compositions comprising certain functional fluids and an additive amount, sufficient to inhibit and control damage, of water.
  • cavitation which can be described as a phenomenon which results in the formation and subsequent violent collapse of vapor-filled bubbles in a fluid subjected to requisite pressure changes.
  • Bubbles can be formed when the fluid pressure is at or below its bubble point pressure and when fluid temperature peaks above fluid bubble point temperature; above the bubble point pressure, the bubbles collapse.
  • Pressure changes sufficient to cause cavitation can occur in several ways; for example, a fluid flowing through a restriction, such as a partially closed valve, can encounter at the point of highest velocity a pressure far lower than both the bubble point and the valve outlet pressures thus resulting in bubble formation.
  • metal contaminants can reduce the oxidative stability of fluid thereby adversely affecting fluid performance.
  • damage to the fluid can manifest itself in numerous ways, among which are (a) viscosity change, (b) increase in acid number, formation of insoluble materials, (d) increased chemical reactivity and (e) discoloration.
  • lt is, therefore, an object of this invention to provide functional fluid compositions having an ability to inhibit and control damage.
  • damage herein defined to include damage to a functional fluid and to mechanical members in contact with said fluid
  • damage inhibiting amounts of water can be effectively controlled and inhibited in the functional fluid systems described by the incorporation of damage inhibiting amounts of water into the functional fluid.
  • the incorporation of water in functional fluids produces a functional fluid composition having the ability to inhibit damage without completely affecting adversely other essential properties of such fluids such as viscosity, oxidative and thermal stability, corrosion resistance in the presence of metal parts and the lubricating qualities of the functional fluid.
  • the concentration of water in afunctional fluid is adjusted in terms of the particular system and the functional fluid which is utilized in this system to provide functional fluid com positions of this invention which contain an additive amount of water sufficient to inhibit and control damage.
  • the concentration of water in the composition can vary from 0.20 volume percent to about 5 volume percent, the particular concentration being that amount which will effectively inhibit and control damage.
  • the preferred additive concentration range in the functional fluid compositions of this invention is from 0.30 volume percent to about 2 volume percent of water, and even more preferably from 0.35 volume percent to about 1.5 volume percent of water.
  • compositions of this invention are prepared by incorporating a damage inhibiting amount of water into an amide of an acid of phosphorus, the base stock of the func tional fluid.
  • the process for preparing a functional fluid having the ability to inhibit and control damage to mechanical members in contact with the functional fluid is accomplished by adding water to a functional fluid to obtain a concentration of water in the functional fluid of from 0.20 volume percent to about 5 volume percent.
  • water is added to the composition with sufficient agitation to incorporate additive amounts of water.
  • the functional fluids to which water is added to provide the functional fluid compositions of this invention, include functional fluids comprising a major amount of a base stock which is an amide of an acid of phosphorus, or a blend of an amide of an acid of phosphorus and/or esters of an acid of phosphorus and/or aromatic ether compounds and/or esters of polyhydric compounds with halogenated blending agents, representative of which are halodiphenyl ethers, halobenzenes, halonaphthalenes, haloalkylated benzenes, perhalodienes and perhalocyclicdienes.
  • the above base stock can be utilized to prepare functional fluid compositions of this invention when utilized in major amounts, it is preferred to use such base stock at a concentration of at least about 60 weight percent and even more preferably at concentrations of 65, 75, and weight percent or the above concentrations at a corresponding volume percent.
  • base stock that is utilized to prepare a functional fluid composition of this invention when the base stock that is utilized to prepare a functional fluid composition of this invention is to be utilized in, for example, hydraulic systems which require the utmost of purity, such as certain types of high-response aircraft hydraulic systems, it is preferred to have a base stock which has an acid number of 0.50 or less, even more preferably 0.35 or less and still more preferably 0.15 or less. Acid number" is herein defined as the number of milligrams of potassium hydroxide required to neutralize 1 gram of sample.
  • compositions of this invention when amides of an acid of phosphorus are utilized as a base stock to prepare functional fluid compositions of this invention, it is preferred that such base stocks have acid numbers within the limits as set forth above when such base stocks are to be utilized in high-response aircraft hydraulic systems.
  • the compositions of this invention when incorporated initially in aircraft hydraulic systems should be within the acid number limits as set forth above.
  • Typical examples of the amides of an acid of phosphorus which are suitable as base stocks for preparing the functional fluid compositions of this invention are those represented by the structure wherein Y is oxygen, sulfur or and Y, is oxygen, sulfur or R, R R R R and R are each independently selected form the group consisting of alkyl, alkoxyalkyl, aralkyl, aroxyalkyl, aroxyaryl, alkoxyaryl and the members of the above group further substituted with halogen and/or alkyl, X is selected from the group consisting of sulfur and oxygen and a and b are whole numbers having a value of O to 1 and the sum of a+b is from I to 2.
  • Y is oxygen, sulfur or and Y, is oxygen, sulfur or R
  • R R R R R and R are each independently selected form the group consisting of alkyl, alkoxyalkyl, aralkyl, aroxyalkyl, aroxyaryl, alkoxyaryl and the members of the above group further substituted with
  • alkyl radical is as follows: methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-amyl, isoamyl, Z-methylbutyl, 2,2-dimethyl propyl, lmethyl butyl, diethyl methyl, l,2-dimethyl propyl, tert-amyl, n-hexyl, l-methylamyl, l-ethyl butyl, 1,2,2-trimethyl propyl, 3,3-dimethyl butyl, l,1,2,-trimethyl propyl, 2-methyl amyl, l,1-dimethyl butyl, l-ethyl 2-methyl propyl, 1,3-dimethyl butyl, isohexyl, 3-methylamyl, l,2-dimethyl butyl, l-methyl lethyl prop
  • n-decyl dodecyl radicals e.g. lauryl, tetradecyl radicals, e.g. myristyl, hexadecyl radicals, e.g. cetyl; and ctadecyl.
  • aralkyl radicals, aryl for the purpose of any aryl-containing radical is herein defined to include mono-, diand polynuclear hydrocarbons, such as phenyl, naphthyl and anthryl, e.g.
  • aryl and alkylaryl-substituted alkyl radicals are benzyl methylbenzyl, caprylbenzyl, diisobutylbenzyl, phenylethyl, phenylpropyl, phenyloctadecyl; xenyland alkylxenyl-substituted alkyl radicals, e.g. xenylmethyl, caprylxenylmethyl, xenylethyl, diisobutylxenylmcthyl; naphthyland alkylnaphthyl-substituted alkyl radicals, e.g.
  • oxygen-containing alkyl radicals e.g. alkoxy-substituted alkyl radicals
  • propoxyethyl radicals e.g. n-propoxyethyl, isopropoxyethyl
  • butoxyethyl radicals e.g. n-butoxyethyl, isobutoxyethyl, tertbutoxyethyl; octoxyethyl radicals, e.g. n-octoxyethyl, diisobutoxyethyl; dibutoxypropyl radicals, e.g. 2,3-di-n-butoxypropyl, 3,3-diisobutoxypropyl; dioctoxypropyl and 2,3-bis(diisobutoxy )propyl.
  • aroxysubstituted alkyl radicals are, for example, phenoxy-and alkylphenoxy-substituted alkyl radicals, e.g. phenoxymethyl, phenoxyethyl, cetylphenoxyethyl, and capryiphenoxyethyl.
  • aryl, alkoxyaryl, aroxyaryl and halo and alkyl-derivatives thereof are phenyl, cresyl, xylyl mesityl, ethylphenyl, diethylphenyl, isopropylphenyl, i-propylphenyl, tert-butylphenyl, di-tert-butyphenyl, isobutylphenyl, n-butylphcnyl, tert-amylphenyl, cyclohexylphenyl, methylcyclohexylphenyl, caprylphenyl, diisobutylphenyl, laurylphenyl, cctylphenyl, paraffin wax-substiuted phenyl, monochlorophenyl, polychlorophenyl, e.g.
  • radicals such as alkyl, aralkyl, alkoxyalkyl aroxyalkyl, aryl, aroxyaryl, alkoxyaryl and alkaryl can have all or part of the hydrogen replaced with halogen, such as fluorine, chlorine or bromine.
  • the preferred amides of an acid of phosphorus are those compounds wherein aand b have a value of l,Y and Y, are selected from oxygen and R3 1' 5 I I and N-
  • These base stocks are referred to generically as amides of phosphorus and include phosphoroamidates, phosphorodiamidates and phosphorotriamidates.
  • the preferred class of mono-, diand triphosphoroamidates are the diaryland/or substituted-aryl-N,N-dialhylphosphoroamidates aryland/or substituted-aryl-N,N-dialkyl-N',N-dialkylphosphorodiamidates and the N,N-dialkyl- N,N-dialkyl-N,N"-dialkylphosphorotriamidates.
  • Particularly preferred are the phosphorus dialkyl amides whereas the alkyl groups attached to nitrogen are different i.e. one is a linear alkyl group and the other is an isomeric alkyl group i.e. secondary or tertiary alkyl or one with a different number of carbon atoms.
  • the substituents attached to the aryl radical include by way of example halogen, alkyl, haloalkyl and aroxy.
  • the preferred substituents on the aryl group are halogen, alkyl and haloalkyl and with respect to the halogen atom, it is preferred that such halogen atom be chloro or bromo and occupy the meta position.
  • the mono-, diand triphosphoroamidates can be defined by the number of carbon atoms present in the alkyl group, the aryl group and the substituted aryl group, respectively, with with respect to the alkyl group, it is preferred to have from about one to about l8 carbon atoms, more preferably from about one to about eight carbon atoms and with respect to the number of carbon atoms present in the aryl and substituted-aryl group, it is preferred to have from six to about 16 carbon atoms, more preferably from six to about 12 carbon atoms.
  • Examples of the mono-, diand triphosphoroamidates are those compounds represented by the generic formula as set forth above utilizing alkyl, alkaryl, haloaryl, haloalkaryl and aroxyaryl radicals as illustrated above.
  • Typical examples of the amides of an acid of phosphorus are phenyl-methyl-N,N- dimethylphosphoroamidate, phenyl-methyl-N-methyl-n-butylphosphoroamidate, mixtures of phenylm-oresyl-N-methyl-N- butyl-phosphoroamidate and phenyl-p-cresyl-N,N- dimethylphosphoroamidate, mixtures of m-cresyl-p-cresyl-N- methyl-N-propylphosphoroamidate, di-m-cresyl-N,N- dimethylphosophoroamidate,di-p-cresy
  • EXAMPLE 1 A nickel specimen was immersed in about 800 cc. of phenyl N-butyl-N-methyl-N-butyl-N'-methyl phosphoroamidate containing 1.02 volume percent water, and a kilocycle vibration induced adjacent to the specimen. The temperature of the fluid was 85 C. and the test duration was 45 minutes. At the conclusion of the test the weight loss of the specimen was determined and it was found that the relative weight loss was 54%. Relative weight loss is defined to mean the total weight loss of the metal specimen when tested in a fluid containing the additive present divided by the weight loss of the metal specimen when the neat fluid is tested without any addi tive present, times 100. The volume of water that was added had a specific gravity of l at 24 C.
  • the volume percent of water added was determined by dividing the volume of water added by the total volume of the final fluid composition times 100.
  • the weight percent of water in the fluid composition is obtained by dividing the volume of water added by the product obtained by multiplying a volume of the final fluid composition times the density of the final fluid composition, times 100. In general, it has been found that the weight percent of water in the fluid composition at these low concentrations does not vary significantly from the volume percent of water in the fluid composition.
  • An improvement in the weight loss of the nickel test specimen is also obtained by substituting N-methyl-N-butyl- N'-methyl-N'-butyl-N"-methyl-N"-butylphosphorotriamidate, N-methyl-N-butyl'NQN tetramethylphosphorotriamidate, N-di-n-propyl-N', N"- tetramethylphosphorotriamidate, N,N '-di-n-propyl-N dimethylphosphorotriamidate, pbromophenyl-N-methyl-N- isobutyl-N'-methyl-N'-isoamylphosphorodiamidate, phenyl,methyl-N,N-dimethylphosphoroamidate, or dialpha,alpha,alpha-trifluoro-m-cresyl-N-methyl-N-n-butylphosphoroamidate for the amidate in Example I while maintaining the water in the same concentration range.
  • test method as employed to determine relative damage has been found to correlate quite well to actual test runs on simulated hydraulic system tests stands, such as the Fairey Test Stand, and has correlated quite well with the hydraulic system of commercial aircraft where damage levels have been determined.
  • Functional fluid compositions of this invention with additive water sufficient to inhibit and control damage have been evaluated in actual hydraulic systems in test stands and commercial aircraft and have been found to effectively inhibit damage and are far superior to the neat fluids without additive amounts of water.
  • damage in a hydraulic system and in particular aircraft hydraulic systems which is subject to cavitation damage can be determined by comparing under microscopic examination damaged areas of valves with similar valves which are subject to the phenomenon of wear, fatigue spalling, corrosion, machining and particle erosion. in addition, valves undergoing damage by the process of cavitation can be compared with known specimen which have been subjected to induced cavitation damage.
  • An example of this type of a comparison is a comparison of damaged metal tips in the vibrating probe with damaged valves from a hydraulic system.
  • a comparison of this type can demonstrate damage in a hydraulic system since the vibrating probe gives a characteristic damage spectrum which is exhibited by valves in a hydraulic system.
  • apparatus which determine the leakage rate through valves in hydraulic systems and in particular aircraft hydraulic systems. These apparatus are referred to as leak detectors and can determine leakage rates in aircraft hydraulic systems.
  • leakage rates can be continually monitored over a period of time.
  • aircraft hydraulic systems which are subject to cavitation damage will exhibit increased leakage rates over a period of time as the geometry of the valve is altered through cavitation damage.
  • aircraft hydraulic systems operating utilizing functional fluid compositions of this invention when compared to aircraft hydraulic systems not using functional fluid compositions of this invention exhibit reduced leakage rates as a function of time based upon the above comparison.
  • a type of leak detector for monitoring leakage rates is disclosed in application Ser. No. 630,667.
  • a determination of whether or not an aircraft hydraulic system is subject to cavitation damage can be made. Any one or a combination of the test methods illustrated above can be utilized.
  • the reduction in cavitation damage utilizing functional fluid compositions of this invention can be determined utilizing the above test methods.
  • cavitation damage in an aircraft hydraulic system can be determined and in addition the reduction in cavitation damage utilizing func tional fluid compositions of this invention can be determined. It has been found that a tremendous reduction in cavitation damage is observed when functional fluid compositions of this invention are compared to functional fluid compositions not having incorporated therein additive amounts of water when used in hydraulic systems subject to cavitation damage.
  • hydraulic systems and in particular aircraft hydraulic systems can have cavitation damage inhibited and controlled continually from the time of introduction of the functional fluid compositions of this invention into a hydraulic system.
  • a process for continually controlling cavitation damage in a hydraulic system which is subject to cavitation damage when operated using a hydraulic fluid comprising a major amount of an amide of an acid of phosphorus as a base stock having incorporated therein a damage inhibiting amount of additive water.
  • improved hydraulic pressure devices can be prepared in accordance with this invention which comprise in combination a fluid chamber and an actuating fluid composition in said chamber, said fluid comprising a major amount of one or more of the base stocks hereinbefore described and a damage inhibiting amount of water.
  • the parts which are so lubricated include the frictional surfaces of the source of power, namely the pump, valves, operating pistons and cylinders, fluid motors, and in some cases, for machine tools, the ways, tables and slides.
  • the hydraulic system may be of either the constant-volume or the variable volume type of system.
  • the pumps may be of various types, including centrifugal pumps, jet pumps, turbine vane, liquid piston gas compressors, piston-type pump, more particularly the variable-stroke piston pump, the variable-discharge or variable displacement piston pump, radial-piston pump, axial-piston pump, in which a pivoted cylinder block is adjusted at various angles with the piston assembly, for example, the Vickers Axial-Piston Pump, or in which the mechanism which drives the pistons is set at an angle adjustable with the cylinder block; gear-type pump, which may be spur, helical or herringbone gears, variations of internal gears, or a screw pump; or vane pumps.
  • piston-type pump more particularly the variable-stroke piston pump, the variable-discharge or variable displacement piston pump, radial-piston pump, axial-piston pump, in which a pivoted cylinder block is adjusted at various angles with the piston assembly, for example, the Vickers Axial-Piston Pump, or in which the mechanism which drives the pistons is set
  • the valves may be stop valves, reversing valves, pilot valves, throttling valves, sequence valves, relief valves, servo valves, nonreturn valves, poppet valves or unloading valves.
  • Fluid motors are usually constantor variable-discharge piston pumps caused to rotate by the pressure of the hydraulic fluid of the system with the power supplied by the pump power source. Such a hydraulic motor may be used in connection with a variabledischarge pump to form a variable-speed transmission. It is, therefore, especially important that the frictional parts of the fluid system which are lubricated by the functional fluid be protected from damage. Thus, damage brings about seizure of frictional parts, excessive wear and premature replacement of parts.
  • the fluid compositions of this invention when utilized as a functional fluid can also contain dyes, pour point depressants, metal deactivator, acid scavengers, antioxidants, defoamers in concentration sufficient to impart antifoam properties, such as from about 10 to about 100 parts per million, viscosity index improvers such as polyalkylacrylates, polalkylmethacrylates, polyurethanes, polyalkylene oxides and polyesters, lubricity agents and the like.
  • the preferred polymeric viscosity index improvers which may be employed in the compositions of this invention are the polymers of alkyl esters of alpha-beta unsaturated monocarboxylic acids having the formula wherein R and R" are each individually hydrogen or a C to C, alkyl group, and R is a c to C alkyl group.
  • illustration of the alkyl groups represented by R, R" and R' within their definitions as given above are for example methyl, ethyl, propyl, butyl, t-butyl, isopropyl, 2-ethylhexyl, hexyl, decyl, undecyl, dodecyl and the like.
  • polymers include, for example, poly(butylmethacrylates), poly(hexylmethacrylates), poly(oxtylacrylates), poly(dodecylacrylates) and polymers wherein the ester is a mixture of compounds obtained by esterifying the 01-3 unsaturated monocarboxylic acid with a mixture of monoalcohols containing from one to 12 carbon atoms.
  • the polyalkylmethacrylates and acrylates suitable for the purpose of this invention are in general those resulting from the polymerization of alkylmethacrylates or alkyl-acrylates in which the alkyl groups have from four to l2 carbon atoms.
  • the alkyl groups may be mixtures such as derived from a mixture of alcohols in which case there may be included some alkyl groups having as low as two carbon atoms and as high as about 18 carbon atoms.
  • the number of carbon atoms in the alkyl groups should preferably be such that the polymer is compatible with the particular fluid used. Usually it will be satisfactory for the alkyl group of the methacrylate polymer to be from about four to 10 carbon atoms.
  • the alkyl group may be branched chain or isoalkyl, but it is preferably normal alkyl.
  • the molecular weight of the polymerized alkylmethacrylate can be from 5,000 to about 40,000.
  • the total amount of viscosity index improver employed in the compositions of the instant invention can range from about 2 to about 20 parts per parts of the total composition.
  • the base stocks as aforedescribed can be utilized singly or as a fluid composition containing other base stocks in varying proportions.
  • Such other base stocks are, for example, the esters of phosphorus acid e.g. phosphates, phosphonates, phosphinates, etc., orthosilicates, organopolysiloxanes, polyesters, liquid polyphenyl ethers and thioethcrs, chlorinated biphenyls and the like.
  • Typical examples of these phosphate esters are for example, dibutylphenyl phosphate, triphenyl phosphate, tricresyl phosphate, tributyl phosphate, tri-2-ethylhexyl phosphate, trioctyl phosphate, and mixtures of the above phosphates such as mixture of tributyl phosphate and tricresyl phosphate, mixtures of isooctyl diphenyl phosphate and 2-ethylhexyl diphenyl phosphate, and mixtures of trialkyl phosphates and tricresyl phosphates and the like.
  • the particularly preferred phosphate esters are those which remain liquid at temperatures of about 30 C.
  • Typical examples of orthosilicates useful as base stocks include the tetraalkyl orthosilicates such as tetra-(octyl)orthosilicates, tetra(Z-ethylhexyl)orthosilicates and the tetra(isooctyl)orthosilicates and those in which the isooctyl radicals are obtained from isooctyl alcohol which is derived from the 0x0 process, and the (trialkoxysilico)trialkyl orthosilicates, otherwise referred to as hexa(alkoxy) disiloxanes, such as hexa(2-ethylbutoxy) disiloxane and hexa(2- ethylhexoxy) disiloxane.
  • hexa(alkoxy) disiloxanes such as hexa(2-ethylbutoxy) disiloxane and hexa(2-
  • esters and polyesters are di( 2-ethylhcxyl) azelate, di(2-ethylhexyl) sebacate, diisooctyl sebacate, 2- ethylhexyl 315:5 trimethylhexyl sebacate, diisooctyl azelate, di(3:5:5: trimethylhexyl) sebacate, di(1-methyl-4-ethyloctyl) sebacate, diisodecyl azelate, diisotridecyl azelate, di( 1- methyl-4-ethyloctyl) glutarate, di(Z-ethylhexyl) adipate, di(3- methylbutyl) azelate, di(315z5 trimethylhexyl) azelate, di(2- ethylhexyl) adipate, di(C oxo) adip
  • polyester compounds can be prepared by the reaction of an acid compound with a polyhydroxy compound which polyhydroxy compound can be trimethylolpropane, trimethylolethane, pentaerythritol, dipentaerythritol, tripentaerythritol and tetrapentaerythritol.
  • esters which are suitable as base stocks are prepared by polymerizing a dihydroxy compound with a dicarboxylic acid and reacting the terminal hydroxy and acid radical with a mixture of a monocarboxylic acid and a monohydric alcohol.
  • Specific examples of polymers which may be utilized as additives within the scope of this invention are polymers prepared by the polymerization of adipic acid and l,2-propune diol in the presence of minor amount of short-chain monocarboxylic acids and a monohydric alcohol to give molecular weights of the polymers thereby produced of from about 700 to about 40,000 or higher.
  • Typical examples of such base stocks are 2- to 7-ring ortho-, metaand parapolyphenyl ethers and mixtures thereof, 2- to 7-ring ortho-, metaand parapolyphenyl thioethers and mixtures thereof and mixed polyphenyl etherthioether compounds, dihalogenated diphenyl ethers, such as 4-bromo-3-chlorodiphenyl ethers and bisphenoxybiphenyl compounds and mixtures thereof.
  • the polyphenyl ethers contemplated are for example bis(mphenoxyphenyl) ether, m-bis(m-phenoxyphenoxy)benzene, m-bis(p-phenoxyphenoxy)benzene, o-bis-(o-phenoxyphenoao y)benzene, bis[m-(m-phenoxyphenoxy)phenyl] ether, bis[p- (p-phexoxyphenoxy)-phenyl] ether, m[(m-phenoxyphenoxy)(o-phenoxyphenXy)] ther, m-bis[m-(m-phenoxyphenoxy)phenoxy]benzene, p-bis[p-(m-phenoxylphenoxy)phenoxy]benzene, m-bis[m-p-phenoxyphenoxy1benzene and mixtures thereof with other polyphenyl ethers.
  • polyphenyl thioethers and mixed polyphenyl ethers and thioethers are 2-phenylmercapto-4'-phenoxydiphenyl sulfide, 2-phenoxy-3'-phenylmercaptodiphenyl sulfide, o-bis(phenylmercapto)benzene, phenylmercaptobiphenyl, bis(phenylmercapto)biphenyl, m-(m-chlorophenymercapto)-m-phenylmercapto-benzene, phenylmercapto(phenoxy)biphenyl, m-chlorodiphenyl sulfide, bis(o-phenylmercaptophenyl) sulfide, m-bis-(m-phenylmercaptophenylmercapto)benzene, l,2,3-tris(phenylmercapto)benzene, l-phenylmercapto-2,3-bis
  • halogenated biphenyl functional fluid base stocks which can be employed in minor amounts in the composition of this invention are those having from 20 to 61% by weight combined chlorine.
  • Typical examples of halogenated biphenyl compounds are those which contain chlorine or bromine or combinations thereof in amounts corresponding to mono-, di-, tri-, tetra-, pentaand hexahalobiphenyl.
  • Typical of such biphenyl compounds are the chlorinated biphenyls commercially available as products containing 32%, 42%, 48%, 54% and 60% by weight of combined chlorine.
  • halogenated biphenyl containing a stated percentage of combined halogen is used herein as including the directly halogenated products, halogenated products containing more than one specie of halogen in the same molecule and blends of one or more of such halogenated products whereby the halogen content is broadly within the range of about 30% to 60%, preferably within the range of about 30% to 42% by weight.
  • the base stocks of this invention can also contain other fluids which include in addition to the functional fluids described above fluids derived from coal products, and synthetic oils, e.g., alkylene polymers (such as polymers of propylene, butylene, etc., and the mixtures thereof), alkylene oxide-type polymers (e.g., propylene oxide polymers) and derivatives, including alkylene oxide polymers prepared by polymerizing the alkylene oxide in the presence of water or alcohols, e.g., ethyl alcohol, alkyl benzenes, (e.g., monoalkylbenzene such as dodecyl benzene, tetradecylbenzene, etc.), and dialkylbenzenes (e.g., n-nonyl-2-ethyl hexylbenzene); polyphenyls (e.g., biphenyls and terphenyls), hydrocarbon oils including mineral oils derived from petroleum sources and synthetic
  • synthetic hydrocarbon oils such as those derived from o igomerlzatlon ofolefins such as polyhutcnes and oils derived from high-ulpha-olefins of from eight to 20 carbon atoms by acid catalyzed dimerization and by oligomerization using trialuminum alkyls as catalysts; halogenated benzene, halogenated lower alkylbenzene and monohalogenated diphenyl ethers.
  • a method for controlling cavitation damage to mechanical members in a hydraulic system which comprises introducing and employing as the hydraulic fluid in said system a composition comprising a major amount of at least 60% by weight of an amide of an acid of phosphorus represented by the for mula wherein Y is oxygen, sulfur or and Y, is oxygen, sulfur or R, R R R R and R are each independently selected from the group consisting of alkyl, containing from one to 18 carbon atoms and aryl containing six to 16 carbon atoms, X is selected from the group consisting of sulfur and oxygen and a and b are whole numbers having a value of0 or 1, or mixtures thereof and a damage inhibiting amount of water in the range of from 0.2 to 5 volume percent.
  • the viscosity index improver is a polyalkylacrylate, a polyalkylmethacrylate, a polyurethane, or a polyalkylene oxide.

Abstract

COMPOSITIONS COMPRISING AMIDE OF AN ACID OF PHOSPHORUS AND A SMALL AMOUNT OF WATER EXHIBIT THE ABILITY TO INHIBIT AND CONTROL DAMAGE TO MECHANICAL MEMBERS IN CONTACT WITH SAID COMPOSITIONS. THE COMPOSITIONS HAVE MANY USES, AMONG WHICH ARE THEIR USE AS HYDRAULIC FLUIDS.

Description

United States Patent [72] Inventor Frank 11. Langenield St. Louis, Mo.
[22] Filed Mar. 17,1970
[4S] Patented Sept. 21, 1971 [73] Assignee Monsanto Company St. Louis, Mo.
Continuation-impart of application Ser. No. 682,546, Nov. 13, 1967, now Patent No. 3,513,097, which is a eontinuation-in-part of application Ser. No. 516,077, Dec. 23, 1965, now abandoned.
[54] FUNCTIONAL FLUID COMPOSITIONS 7 Claims, No Drawings [51] Int.Cl C0911 3/00, ClOm 3/38, C23f I l/08 [50] Field of Search 252/73-78, 49.9, 389
[56] References Cited UNITED STATES PATENTS 2,470,792 8/l 947 Schlesinger 252/78 3,513,097 5/1970 Langenfeld 252/78 Primary Examiner-Leon D. Rosdol Assistant Examiner-D. Silverstein Atl0rneys-Neal E. Willis, J. E. Maurer and William T. Black ABSTRACT: Compositions comprising amide of an acid of phosphorus and a small amount of water exhibit the ability to inhibit and control damage to mechanical members in contact with said compositions. The compositions have many uses, among which are their use as hydraulic fluids.
FUNCTIONAL FLUID COMPOSITIONS This application is a continuation-in-part of application Ser. No. 682,546, filed Nov. 13, l967, now US. Pat. No. 3,513,097, which is a continuation-in-part of application Ser. No. 516,077, filed Dec. 23, 1965, now abandoned.
This invention relates to functional fluid compositions having an ability to inhibit and control damage to mechanical members in contact with said fluid compositions, to functional fluid compositions which exhibit an improved tendency to resist fluid degradation and more particularly to compositions comprising certain functional fluids and an additive amount, sufficient to inhibit and control damage, of water.
Many different types of materials are utilized as functional fluids and functional fluids are used in many different types of applications. Thus, such fluids have been used as electronic coolants, diffusion pump fluids, lubricants, damping fluids, bases for greases, power transmission and hydraulic fluids, heat transfer fluids, heat pump fluids, refrigeration equipment fluids and as filter mediums for air conditioning systems. In many of these uses there have been reports of damage to the fluid during use and to mechanical members, especially metal lic members, in contact with the fluid as evidenced by a loss of weight of such members. Thus, damage has been reported in aircraft hydraulic systems, jet turbine control systems, and steam turbine control systems. Damage has also been observed on such materials as glass, Teflon, Mylar, Plexiglas and other members constructed from materials other than metals.
One particularly undesirable condition which exists during the use of a functional fluid and which can cause damage is cavitation, which can be described as a phenomenon which results in the formation and subsequent violent collapse of vapor-filled bubbles in a fluid subjected to requisite pressure changes. Bubbles can be formed when the fluid pressure is at or below its bubble point pressure and when fluid temperature peaks above fluid bubble point temperature; above the bubble point pressure, the bubbles collapse. Pressure changes sufficient to cause cavitation can occur in several ways; for example, a fluid flowing through a restriction, such as a partially closed valve, can encounter at the point of highest velocity a pressure far lower than both the bubble point and the valve outlet pressures thus resulting in bubble formation. As these bubbles reach a point of high pressure, for example on the discharge side of the valve, a violent collapse of the bubbles occurs thereby producing shock waves which can be severe enough to damage the fluid and mechanical members in contact with the fluid. As another example, cavitation conditions can occur when a surface is moved through or vibrated in a relatively stagnant liquid.
While there are many undesirable results caused by damage, one important aspect of the problem of damage is the effect on hydraulic systems and fluids experiencing such damage. For example, the structural mechanical parts in a hydraulic system, such as pumps and valves, exhibit a marked decrease in strength, and the geometry of the parts is altered. Such changes in the case of valves can cause faulty operations, excessive leakage or even hazardous conditions. As a result, damage necessitates premature overhaul of mechanical parts which is both costly and time consuming. In addition, as damage occurs the metal from metallic mechanical parts in contact with the functional fluid contaminates the fluids requiring premature draining of the fluids from the system, filter clogging and excessive filter replacement, and can cause a change in physical and chemical properties of the fluids. Also, metal contaminants can reduce the oxidative stability of fluid thereby adversely affecting fluid performance. In addition to any effects resulting from contamination by metal (or other) contaminant, such damage to the fluid can manifest itself in numerous ways, among which are (a) viscosity change, (b) increase in acid number, formation of insoluble materials, (d) increased chemical reactivity and (e) discoloration.
lt is, therefore, an object of this invention to provide functional fluid compositions having an ability to inhibit and control damage.
Further objects will be apparent from the following deseription of the invention.
It has now been found that damage, herein defined to include damage to a functional fluid and to mechanical members in contact with said fluid, can be effectively controlled and inhibited in the functional fluid systems described by the incorporation of damage inhibiting amounts of water into the functional fluid. It is an important part of this invention that the incorporation of water in functional fluids produces a functional fluid composition having the ability to inhibit damage without completely affecting adversely other essential properties of such fluids such as viscosity, oxidative and thermal stability, corrosion resistance in the presence of metal parts and the lubricating qualities of the functional fluid.
The concentration of water in afunctional fluid is adjusted in terms of the particular system and the functional fluid which is utilized in this system to provide functional fluid com positions of this invention which contain an additive amount of water sufficient to inhibit and control damage. Thus, for the functional fluid compositions of this invention comprised of amides of an acid of phosphorus, the concentration of water in the composition can vary from 0.20 volume percent to about 5 volume percent, the particular concentration being that amount which will effectively inhibit and control damage. The preferred additive concentration range in the functional fluid compositions of this invention is from 0.30 volume percent to about 2 volume percent of water, and even more preferably from 0.35 volume percent to about 1.5 volume percent of water. The compositions of this invention are prepared by incorporating a damage inhibiting amount of water into an amide of an acid of phosphorus, the base stock of the func tional fluid. Thus, the process for preparing a functional fluid having the ability to inhibit and control damage to mechanical members in contact with the functional fluid is accomplished by adding water to a functional fluid to obtain a concentration of water in the functional fluid of from 0.20 volume percent to about 5 volume percent. In carrying out the process, water is added to the composition with sufficient agitation to incorporate additive amounts of water.
The functional fluids, to which water is added to provide the functional fluid compositions of this invention, include functional fluids comprising a major amount of a base stock which is an amide of an acid of phosphorus, or a blend of an amide of an acid of phosphorus and/or esters of an acid of phosphorus and/or aromatic ether compounds and/or esters of polyhydric compounds with halogenated blending agents, representative of which are halodiphenyl ethers, halobenzenes, halonaphthalenes, haloalkylated benzenes, perhalodienes and perhalocyclicdienes.
Whereas the above base stock can be utilized to prepare functional fluid compositions of this invention when utilized in major amounts, it is preferred to use such base stock at a concentration of at least about 60 weight percent and even more preferably at concentrations of 65, 75, and weight percent or the above concentrations at a corresponding volume percent.
In general, when the base stock that is utilized to prepare a functional fluid composition of this invention is to be utilized in, for example, hydraulic systems which require the utmost of purity, such as certain types of high-response aircraft hydraulic systems, it is preferred to have a base stock which has an acid number of 0.50 or less, even more preferably 0.35 or less and still more preferably 0.15 or less. Acid number" is herein defined as the number of milligrams of potassium hydroxide required to neutralize 1 gram of sample. Thus, for example, when amides of an acid of phosphorus are utilized as a base stock to prepare functional fluid compositions of this invention, it is preferred that such base stocks have acid numbers within the limits as set forth above when such base stocks are to be utilized in high-response aircraft hydraulic systems. Thus, the compositions of this invention when incorporated initially in aircraft hydraulic systems should be within the acid number limits as set forth above.
The following base stocks are only illustrative of typical base stocks that can be utilized in preparing the functional fluid compositions of this invention and the instant invention can be practiced utilizing various modifications of the base stocks which are set forth below.
Typical examples of the amides of an acid of phosphorus which are suitable as base stocks for preparing the functional fluid compositions of this invention are those represented by the structure wherein Y is oxygen, sulfur or and Y, is oxygen, sulfur or R, R R R R and R are each independently selected form the group consisting of alkyl, alkoxyalkyl, aralkyl, aroxyalkyl, aroxyaryl, alkoxyaryl and the members of the above group further substituted with halogen and/or alkyl, X is selected from the group consisting of sulfur and oxygen and a and b are whole numbers having a value of O to 1 and the sum of a+b is from I to 2. These compounds within the generic formula can be prepared by the prior art methods for preparing amides of phosphorus.
Typical examples of alkyl radical are as follows: methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-amyl, isoamyl, Z-methylbutyl, 2,2-dimethyl propyl, lmethyl butyl, diethyl methyl, l,2-dimethyl propyl, tert-amyl, n-hexyl, l-methylamyl, l-ethyl butyl, 1,2,2-trimethyl propyl, 3,3-dimethyl butyl, l,1,2,-trimethyl propyl, 2-methyl amyl, l,1-dimethyl butyl, l-ethyl 2-methyl propyl, 1,3-dimethyl butyl, isohexyl, 3-methylamyl, l,2-dimethyl butyl, l-methyl lethyl propyl, 2-ethyl butyl, n-heptyl, l,l,2,3-tetramethyl propyl, l,2-dimethyl l-ethyl propyl, 1,1,2-trimethyl butyl, lisopropyl 2-methyl propyl, 1 methyl 2-ethyl butyl, l,l-diethyl propyl, 2-methyl hexyl, 1,1-dimethyl amyl, l-isopropyl butyl, l-ethyl 3-methyl butyl, 1,4-dimethyl amyl, isoheptyl, l-methyl l-ethyl butyl, 1-ethyl2-methylbutyl, l-methyl hexyl, l-propyl butyl, n-octyl, i-methyl heptyl, l,l-diethyl 2-methyl propyl, l,l,3,3-tetramethyl butyl, 1,1-diethyl butyl, 1,1-dimethyl hexyl, l-methyl l-ethyl amyl, l-methyl l-propyl butyl, 2-ethyl hexyl, 6methyl heptyl (iso-octyl), n-nonyl, l-methyl octyl, lethyl heptyl, l,l-dimethyl heptyl, l-ethyl l-propyl butyl, l,ldiethyl 3-methyl butyl, diisobutyl methyl, 3,5,5-trimethyl hexyl, 3,5-dimethyl heptyl, n-decyl, l-propyl heptyl, 1,1-diethyl hexyl, l,l-dipropyl butyl, 2-isopropyl S-methyl hexyl, decyl radicals, e.g. n-decyl, dodecyl radicals e.g. lauryl, tetradecyl radicals, e.g. myristyl, hexadecyl radicals, e.g. cetyl; and ctadecyl. Typical examples of aralkyl radicals, aryl for the purpose of any aryl-containing radical is herein defined to include mono-, diand polynuclear hydrocarbons, such as phenyl, naphthyl and anthryl, e.g. aryl and alkylaryl-substituted alkyl radicals, are benzyl methylbenzyl, caprylbenzyl, diisobutylbenzyl, phenylethyl, phenylpropyl, phenyloctadecyl; xenyland alkylxenyl-substituted alkyl radicals, e.g. xenylmethyl, caprylxenylmethyl, xenylethyl, diisobutylxenylmcthyl; naphthyland alkylnaphthyl-substituted alkyl radicals, e.g. naphthylmethyl, tert-amylnaphthylmethyl, naphthylethyl and octylnaphthylethyl. Typical examples of oxygen-containing alkyl radicals, e.g. alkoxy-substituted alkyl radicals, are propoxyethyl radicals, e.g. n-propoxyethyl, isopropoxyethyl;
butoxyethyl radicals, e.g. n-butoxyethyl, isobutoxyethyl, tertbutoxyethyl; octoxyethyl radicals, e.g. n-octoxyethyl, diisobutoxyethyl; dibutoxypropyl radicals, e.g. 2,3-di-n-butoxypropyl, 3,3-diisobutoxypropyl; dioctoxypropyl and 2,3-bis(diisobutoxy )propyl. Typical examples of aroxysubstituted alkyl radicals are, for example, phenoxy-and alkylphenoxy-substituted alkyl radicals, e.g. phenoxymethyl, phenoxyethyl, cetylphenoxyethyl, and capryiphenoxyethyl. Typical examples of aryl, alkoxyaryl, aroxyaryl and halo and alkyl-derivatives thereof are phenyl, cresyl, xylyl mesityl, ethylphenyl, diethylphenyl, isopropylphenyl, i-propylphenyl, tert-butylphenyl, di-tert-butyphenyl, isobutylphenyl, n-butylphcnyl, tert-amylphenyl, cyclohexylphenyl, methylcyclohexylphenyl, caprylphenyl, diisobutylphenyl, laurylphenyl, cctylphenyl, paraffin wax-substiuted phenyl, monochlorophenyl, polychlorophenyl, e.g. dichlorophenyl, trichlorophenyl, lauroxyphenyl xenyl, mono and polychloroxenyl, caprylxenyl, phenoxyphenyl, thiophenoxyphenyl, diisobutylphenoxyphenyl, naphthyl, monoand polychloronaphthyl, cetylnaphthyl, mcthylmonochlorophenyl radicals, methylpolychlorophenyl radicals, e.g. methyldichlorophenyl radicals and methyltrichlorophenyl radicals.
It is contemplated within the scope of this invention that the aforedescribed radicals such as alkyl, aralkyl, alkoxyalkyl aroxyalkyl, aryl, aroxyaryl, alkoxyaryl and alkaryl can have all or part of the hydrogen replaced with halogen, such as fluorine, chlorine or bromine.
The preferred amides of an acid of phosphorus are those compounds wherein aand b have a value of l,Y and Y, are selected from oxygen and R3 1' 5 I I and N- These base stocks are referred to generically as amides of phosphorus and include phosphoroamidates, phosphorodiamidates and phosphorotriamidates. The preferred class of mono-, diand triphosphoroamidates are the diaryland/or substituted-aryl-N,N-dialhylphosphoroamidates aryland/or substituted-aryl-N,N-dialkyl-N',N-dialkylphosphorodiamidates and the N,N-dialkyl- N,N-dialkyl-N,N"-dialkylphosphorotriamidates. Particularly preferred are the phosphorus dialkyl amides whereas the alkyl groups attached to nitrogen are different i.e. one is a linear alkyl group and the other is an isomeric alkyl group i.e. secondary or tertiary alkyl or one with a different number of carbon atoms. The substituents attached to the aryl radical include by way of example halogen, alkyl, haloalkyl and aroxy. The preferred substituents on the aryl group are halogen, alkyl and haloalkyl and with respect to the halogen atom, it is preferred that such halogen atom be chloro or bromo and occupy the meta position. In addition, the mono-, diand triphosphoroamidates can be defined by the number of carbon atoms present in the alkyl group, the aryl group and the substituted aryl group, respectively, with with respect to the alkyl group, it is preferred to have from about one to about l8 carbon atoms, more preferably from about one to about eight carbon atoms and with respect to the number of carbon atoms present in the aryl and substituted-aryl group, it is preferred to have from six to about 16 carbon atoms, more preferably from six to about 12 carbon atoms. Examples of the mono-, diand triphosphoroamidates are those compounds represented by the generic formula as set forth above utilizing alkyl, alkaryl, haloaryl, haloalkaryl and aroxyaryl radicals as illustrated above. Typical examples of the amides of an acid of phosphorus, that is, mono-, diand triamides of an acid of phosphorus, are phenyl-methyl-N,N- dimethylphosphoroamidate, phenyl-methyl-N-methyl-n-butylphosphoroamidate, mixtures of phenylm-oresyl-N-methyl-N- butyl-phosphoroamidate and phenyl-p-cresyl-N,N- dimethylphosphoroamidate, mixtures of m-cresyl-p-cresyl-N- methyl-N-propylphosphoroamidate, di-m-cresyl-N,N- dimethylphosophoroamidate,di-p-cresyl-N,N-
dimethylphosphoroamidate,di-m-bromophenyl-N-methyl-N- n-butylphosphoroamidate, di-m-chlorophenyl-N-methyl-N-nbutylphosphoroamidate, di-alpha,alpha,alpha-trifluoro-mcresyl-Nmethyl-N-n-butylphosphoroamidate, di-pbromophenyl-N-methyl-N-n-isoamylphosphoroamidate, di-pchlorophenyl-N-methyl-N-n-isoamylphosphoroamidate, pchlorophenyl-M-bromophenyl-N-methyl-N-nisoamylphosphoroamidate, phenyl-N-methyl-N-butyl-N'- methyl-N'-butylphosphorodiamidate, phenyl-N,N-di-n-butyl- N, N'-di-m-butylphosphorodiamidate, phenyl-N,N-dimethyl- N,N-dimethylphosphorodiamidate, m-chlorophenyl-N- methyl-N-n-butyl-N'-methyl-N-n-butylphosphorodiamidate, m-bromophenyl-N-methyl-N-n-butyl-Nmethyl-N'n-butyl-N -methyl-N'-n-butylphosphorodiamidate, p-chlorophenyl-N- methyl-N-isobutyl-N'-methyl-N'- isoamylphosphorodiamidate, p-bromophenyl-Nmethyl-N- isobutyl-N-methyl-N-isoamylphosphorodiamidate, N- methyl-N-butyl-N'-methyl-N-butyl-N"-methyl-N"-butylphosphorotriamidate, N-methyl-N-butyl-N',N- tetramethylphosphorotriamidate, N-di-n-propyl-N N"tetramethylphosphorotriamidate, and N,N'-di-n-propyl- N"n-dimethylphosphorotriamidate.
The invention can be better appreciated by the following nonlimiting examples.
EXAMPLE 1 A nickel specimen was immersed in about 800 cc. of phenyl N-butyl-N-methyl-N-butyl-N'-methyl phosphoroamidate containing 1.02 volume percent water, and a kilocycle vibration induced adjacent to the specimen. The temperature of the fluid was 85 C. and the test duration was 45 minutes. At the conclusion of the test the weight loss of the specimen was determined and it was found that the relative weight loss was 54%. Relative weight loss is defined to mean the total weight loss of the metal specimen when tested in a fluid containing the additive present divided by the weight loss of the metal specimen when the neat fluid is tested without any addi tive present, times 100. The volume of water that was added had a specific gravity of l at 24 C. The volume percent of water added was determined by dividing the volume of water added by the total volume of the final fluid composition times 100. The weight percent of water in the fluid composition is obtained by dividing the volume of water added by the product obtained by multiplying a volume of the final fluid composition times the density of the final fluid composition, times 100. In general, it has been found that the weight percent of water in the fluid composition at these low concentrations does not vary significantly from the volume percent of water in the fluid composition.
An improvement in the weight loss of the nickel test specimen is also obtained by substituting N-methyl-N-butyl- N'-methyl-N'-butyl-N"-methyl-N"-butylphosphorotriamidate, N-methyl-N-butyl'NQN tetramethylphosphorotriamidate, N-di-n-propyl-N', N"- tetramethylphosphorotriamidate, N,N '-di-n-propyl-N dimethylphosphorotriamidate, pbromophenyl-N-methyl-N- isobutyl-N'-methyl-N'-isoamylphosphorodiamidate, phenyl,methyl-N,N-dimethylphosphoroamidate, or dialpha,alpha,alpha-trifluoro-m-cresyl-N-methyl-N-n-butylphosphoroamidate for the amidate in Example I while maintaining the water in the same concentration range.
The test method as employed to determine relative damage has been found to correlate quite well to actual test runs on simulated hydraulic system tests stands, such as the Fairey Test Stand, and has correlated quite well with the hydraulic system of commercial aircraft where damage levels have been determined. Functional fluid compositions of this invention with additive water sufficient to inhibit and control damage have been evaluated in actual hydraulic systems in test stands and commercial aircraft and have been found to effectively inhibit damage and are far superior to the neat fluids without additive amounts of water.
It is believed that the cause of cavitation damage in aircraft hydraulic systems is by a pressure excursion process whereby the fluid pressure dips below fluid bubble point pressure. In the case where the fluid pressure dips below the fluid bubble point pressure, damage on the return side of the cycle, that is, the side where a high pressure is again encountered, is observed. The pressure excursion process for aircraft hydraulic systems appears to be initiated by simple acceleration of flow through a restricted passage from high to low-pressure. Damage has been observed in the valve porting areas on servo valves, electrical depressurizing valves in pumps, pressure regulating valves, poppet relief valves, solenoid valves, check valves (ball or poppet) and in general whenever a large pres sure drop exists across a short seating region, that is, for example, the seating region where a valve seats in the pump. The cavitation damage area that is seen in valve porting areas on microscopic analysis has the following appearance: jagged, cinderlike, irregular, rough, undermined, peak-valley and cavities. The damage observed by microscopic analysis does not exhibit coloration or pitting such as would be found by corrosion, gouges, scratches such as would be exhibited by machining, fatigue spalling such as would be observed by the sudden removal by large particles, particle erosion which would be exhibited by smooth and rounded edges or by wear wherein microscoring and metal transfer is observed. Thus, damage in a hydraulic system and in particular aircraft hydraulic systems which is subject to cavitation damage can be determined by comparing under microscopic examination damaged areas of valves with similar valves which are subject to the phenomenon of wear, fatigue spalling, corrosion, machining and particle erosion. in addition, valves undergoing damage by the process of cavitation can be compared with known specimen which have been subjected to induced cavitation damage. An example of this type of a comparison is a comparison of damaged metal tips in the vibrating probe with damaged valves from a hydraulic system. A comparison of this type can demonstrate damage in a hydraulic system since the vibrating probe gives a characteristic damage spectrum which is exhibited by valves in a hydraulic system.
In addition, apparatus have been invented which determine the leakage rate through valves in hydraulic systems and in particular aircraft hydraulic systems. These apparatus are referred to as leak detectors and can determine leakage rates in aircraft hydraulic systems. In addition, leakage rates can be continually monitored over a period of time. Thus, aircraft hydraulic systems which are subject to cavitation damage will exhibit increased leakage rates over a period of time as the geometry of the valve is altered through cavitation damage. it has been found that aircraft hydraulic systems operating utilizing functional fluid compositions of this invention when compared to aircraft hydraulic systems not using functional fluid compositions of this invention exhibit reduced leakage rates as a function of time based upon the above comparison. A type of leak detector for monitoring leakage rates is disclosed in application Ser. No. 630,667.
Utilizing the above methods a determination of whether or not an aircraft hydraulic system is subject to cavitation damage can be made. Any one or a combination of the test methods illustrated above can be utilized. The reduction in cavitation damage utilizing functional fluid compositions of this invention, in addition, can be determined utilizing the above test methods. Thus, it has been found that cavitation damage in an aircraft hydraulic system can be determined and in addition the reduction in cavitation damage utilizing func tional fluid compositions of this invention can be determined. It has been found that a tremendous reduction in cavitation damage is observed when functional fluid compositions of this invention are compared to functional fluid compositions not having incorporated therein additive amounts of water when used in hydraulic systems subject to cavitation damage. Therefore as a result of the excellent control of damage utilizing the compositions of this invention, hydraulic systems and in particular aircraft hydraulic systems can have cavitation damage inhibited and controlled continually from the time of introduction of the functional fluid compositions of this invention into a hydraulic system. Thus, included within this invention is a process for continually controlling cavitation damage in a hydraulic system which is subject to cavitation damage when operated using a hydraulic fluid comprising a major amount of an amide of an acid of phosphorus as a base stock having incorporated therein a damage inhibiting amount of additive water.
As a result of the excellent inhibition and control of damage utilizing the functional fluid compositions within the scope of this invention, improved hydraulic pressure devices can be prepared in accordance with this invention which comprise in combination a fluid chamber and an actuating fluid composition in said chamber, said fluid comprising a major amount of one or more of the base stocks hereinbefore described and a damage inhibiting amount of water. In such a system, the parts which are so lubricated include the frictional surfaces of the source of power, namely the pump, valves, operating pistons and cylinders, fluid motors, and in some cases, for machine tools, the ways, tables and slides. The hydraulic system may be of either the constant-volume or the variable volume type of system.
The pumps may be of various types, including centrifugal pumps, jet pumps, turbine vane, liquid piston gas compressors, piston-type pump, more particularly the variable-stroke piston pump, the variable-discharge or variable displacement piston pump, radial-piston pump, axial-piston pump, in which a pivoted cylinder block is adjusted at various angles with the piston assembly, for example, the Vickers Axial-Piston Pump, or in which the mechanism which drives the pistons is set at an angle adjustable with the cylinder block; gear-type pump, which may be spur, helical or herringbone gears, variations of internal gears, or a screw pump; or vane pumps. The valves may be stop valves, reversing valves, pilot valves, throttling valves, sequence valves, relief valves, servo valves, nonreturn valves, poppet valves or unloading valves. Fluid motors are usually constantor variable-discharge piston pumps caused to rotate by the pressure of the hydraulic fluid of the system with the power supplied by the pump power source. Such a hydraulic motor may be used in connection with a variabledischarge pump to form a variable-speed transmission. It is, therefore, especially important that the frictional parts of the fluid system which are lubricated by the functional fluid be protected from damage. Thus, damage brings about seizure of frictional parts, excessive wear and premature replacement of parts.
The fluid compositions of this invention when utilized as a functional fluid can also contain dyes, pour point depressants, metal deactivator, acid scavengers, antioxidants, defoamers in concentration sufficient to impart antifoam properties, such as from about 10 to about 100 parts per million, viscosity index improvers such as polyalkylacrylates, polalkylmethacrylates, polyurethanes, polyalkylene oxides and polyesters, lubricity agents and the like.
The preferred polymeric viscosity index improvers which may be employed in the compositions of this invention are the polymers of alkyl esters of alpha-beta unsaturated monocarboxylic acids having the formula wherein R and R" are each individually hydrogen or a C to C, alkyl group, and R is a c to C alkyl group. illustration of the alkyl groups represented by R, R" and R' within their definitions as given above are for example methyl, ethyl, propyl, butyl, t-butyl, isopropyl, 2-ethylhexyl, hexyl, decyl, undecyl, dodecyl and the like. These polymers include, for example, poly(butylmethacrylates), poly(hexylmethacrylates), poly(oxtylacrylates), poly(dodecylacrylates) and polymers wherein the ester is a mixture of compounds obtained by esterifying the 01-3 unsaturated monocarboxylic acid with a mixture of monoalcohols containing from one to 12 carbon atoms.
The polyalkylmethacrylates and acrylates suitable for the purpose of this invention are in general those resulting from the polymerization of alkylmethacrylates or alkyl-acrylates in which the alkyl groups have from four to l2 carbon atoms. The alkyl groups may be mixtures such as derived from a mixture of alcohols in which case there may be included some alkyl groups having as low as two carbon atoms and as high as about 18 carbon atoms. The number of carbon atoms in the alkyl groups should preferably be such that the polymer is compatible with the particular fluid used. Usually it will be satisfactory for the alkyl group of the methacrylate polymer to be from about four to 10 carbon atoms. The alkyl group may be branched chain or isoalkyl, but it is preferably normal alkyl. The molecular weight of the polymerized alkylmethacrylate can be from 5,000 to about 40,000. The total amount of viscosity index improver employed in the compositions of the instant invention can range from about 2 to about 20 parts per parts of the total composition.
It is also contemplated within the scope of this invention that the base stocks as aforedescribed can be utilized singly or as a fluid composition containing other base stocks in varying proportions. Such other base stocks are, for example, the esters of phosphorus acid e.g. phosphates, phosphonates, phosphinates, etc., orthosilicates, organopolysiloxanes, polyesters, liquid polyphenyl ethers and thioethcrs, chlorinated biphenyls and the like. Typical examples of these phosphate esters are for example, dibutylphenyl phosphate, triphenyl phosphate, tricresyl phosphate, tributyl phosphate, tri-2-ethylhexyl phosphate, trioctyl phosphate, and mixtures of the above phosphates such as mixture of tributyl phosphate and tricresyl phosphate, mixtures of isooctyl diphenyl phosphate and 2-ethylhexyl diphenyl phosphate, and mixtures of trialkyl phosphates and tricresyl phosphates and the like. The particularly preferred phosphate esters are those which remain liquid at temperatures of about 30 C.
Typical examples of orthosilicates useful as base stocks include the tetraalkyl orthosilicates such as tetra-(octyl)orthosilicates, tetra(Z-ethylhexyl)orthosilicates and the tetra(isooctyl)orthosilicates and those in which the isooctyl radicals are obtained from isooctyl alcohol which is derived from the 0x0 process, and the (trialkoxysilico)trialkyl orthosilicates, otherwise referred to as hexa(alkoxy) disiloxanes, such as hexa(2-ethylbutoxy) disiloxane and hexa(2- ethylhexoxy) disiloxane.
Typical examples of esters and polyesters are di( 2-ethylhcxyl) azelate, di(2-ethylhexyl) sebacate, diisooctyl sebacate, 2- ethylhexyl 315:5 trimethylhexyl sebacate, diisooctyl azelate, di(3:5:5: trimethylhexyl) sebacate, di(1-methyl-4-ethyloctyl) sebacate, diisodecyl azelate, diisotridecyl azelate, di( 1- methyl-4-ethyloctyl) glutarate, di(Z-ethylhexyl) adipate, di(3- methylbutyl) azelate, di(315z5 trimethylhexyl) azelate, di(2- ethylhexyl) adipate, di(C oxo) adipate, bis(diethylene glycol monobutyl ether) adipate, di(isooctyl/isodecyl) adipate, diisotridecyl adipate, triethylene glycol di(2-ethylhexanoate), hexanediol l,6-di(2-ethylhexanoate) and dipropylene glycol dipelargonate. Additional examples are mixtures of esters made form an aliphatic dibasic acid and a technical mixture of alcohols such as a mixture of alcohols obtained by the oxo process. Typical examples of polyester compounds can be prepared by the reaction of an acid compound with a polyhydroxy compound which polyhydroxy compound can be trimethylolpropane, trimethylolethane, pentaerythritol, dipentaerythritol, tripentaerythritol and tetrapentaerythritol.
Other esters which are suitable as base stocks are prepared by polymerizing a dihydroxy compound with a dicarboxylic acid and reacting the terminal hydroxy and acid radical with a mixture of a monocarboxylic acid and a monohydric alcohol. Specific examples of polymers which may be utilized as additives within the scope of this invention are polymers prepared by the polymerization of adipic acid and l,2-propune diol in the presence of minor amount of short-chain monocarboxylic acids and a monohydric alcohol to give molecular weights of the polymers thereby produced of from about 700 to about 40,000 or higher. Typical examples of such base stocks are 2- to 7-ring ortho-, metaand parapolyphenyl ethers and mixtures thereof, 2- to 7-ring ortho-, metaand parapolyphenyl thioethers and mixtures thereof and mixed polyphenyl etherthioether compounds, dihalogenated diphenyl ethers, such as 4-bromo-3-chlorodiphenyl ethers and bisphenoxybiphenyl compounds and mixtures thereof.
The polyphenyl ethers contemplated are for example bis(mphenoxyphenyl) ether, m-bis(m-phenoxyphenoxy)benzene, m-bis(p-phenoxyphenoxy)benzene, o-bis-(o-phenoxyphenoao y)benzene, bis[m-(m-phenoxyphenoxy)phenyl] ether, bis[p- (p-phexoxyphenoxy)-phenyl] ether, m[(m-phenoxyphenoxy)(o-phenoxyphenXy)] ther, m-bis[m-(m-phenoxyphenoxy)phenoxy]benzene, p-bis[p-(m-phenoxylphenoxy)phenoxy]benzene, m-bis[m-p-phenoxyphenoxy)phenoxy1benzene and mixtures thereof with other polyphenyl ethers.
Examples of polyphenyl thioethers and mixed polyphenyl ethers and thioethers are 2-phenylmercapto-4'-phenoxydiphenyl sulfide, 2-phenoxy-3'-phenylmercaptodiphenyl sulfide, o-bis(phenylmercapto)benzene, phenylmercaptobiphenyl, bis(phenylmercapto)biphenyl, m-(m-chlorophenymercapto)-m-phenylmercapto-benzene, phenylmercapto(phenoxy)biphenyl, m-chlorodiphenyl sulfide, bis(o-phenylmercaptophenyl) sulfide, m-bis-(m-phenylmercaptophenylmercapto)benzene, l,2,3-tris(phenylmercapto)benzene, l-phenylmercapto-2,3-bis(phenoxy)benzene, and the like.
The halogenated biphenyl functional fluid base stocks which can be employed in minor amounts in the composition of this invention are those having from 20 to 61% by weight combined chlorine. Typical examples of halogenated biphenyl compounds are those which contain chlorine or bromine or combinations thereof in amounts corresponding to mono-, di-, tri-, tetra-, pentaand hexahalobiphenyl. Typical of such biphenyl compounds are the chlorinated biphenyls commercially available as products containing 32%, 42%, 48%, 54% and 60% by weight of combined chlorine. The expression halogenated biphenyl containing a stated percentage of combined halogen is used herein as including the directly halogenated products, halogenated products containing more than one specie of halogen in the same molecule and blends of one or more of such halogenated products whereby the halogen content is broadly within the range of about 30% to 60%, preferably within the range of about 30% to 42% by weight.
The base stocks of this invention can also contain other fluids which include in addition to the functional fluids described above fluids derived from coal products, and synthetic oils, e.g., alkylene polymers (such as polymers of propylene, butylene, etc., and the mixtures thereof), alkylene oxide-type polymers (e.g., propylene oxide polymers) and derivatives, including alkylene oxide polymers prepared by polymerizing the alkylene oxide in the presence of water or alcohols, e.g., ethyl alcohol, alkyl benzenes, (e.g., monoalkylbenzene such as dodecyl benzene, tetradecylbenzene, etc.), and dialkylbenzenes (e.g., n-nonyl-2-ethyl hexylbenzene); polyphenyls (e.g., biphenyls and terphenyls), hydrocarbon oils including mineral oils derived from petroleum sources and synthetic hydrocarbon oils, examples ofwhich are mineral oils having a wide range of viscosities and volatilities such as napthenic base, paraffinic base and mixed base mineral oils;
synthetic hydrocarbon oils such as those derived from o igomerlzatlon ofolefins such as polyhutcnes and oils derived from high-ulpha-olefins of from eight to 20 carbon atoms by acid catalyzed dimerization and by oligomerization using trialuminum alkyls as catalysts; halogenated benzene, halogenated lower alkylbenzene and monohalogenated diphenyl ethers.
While this invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the following claims.
What is claimed is:
l. A method for controlling cavitation damage to mechanical members in a hydraulic system which comprises introducing and employing as the hydraulic fluid in said system a composition comprising a major amount of at least 60% by weight of an amide of an acid of phosphorus represented by the for mula wherein Y is oxygen, sulfur or and Y, is oxygen, sulfur or R, R R R R and R are each independently selected from the group consisting of alkyl, containing from one to 18 carbon atoms and aryl containing six to 16 carbon atoms, X is selected from the group consisting of sulfur and oxygen and a and b are whole numbers having a value of0 or 1, or mixtures thereof and a damage inhibiting amount of water in the range of from 0.2 to 5 volume percent.
2. The method of claim 1 wherein said hydraulic fluid composition also contains up to 20 percent by weight of a viscosity index improver.
3. The method of claim 2 wherein the viscosity index improver is a polyalkylacrylate, a polyalkylmethacrylate, a polyurethane, or a polyalkylene oxide.
4, The method of claim 1 wherein the amide is phenyl-N- methyl-N-butyl-N'-methyl'N'-butyl-phosphorodiamidate.
5. The method of claim 1 wherein the water is present within the range offrom 0.30 to about 2 volume percent.
6. The method of claim 2 wherein the amide is phcnyl-N- methyl-N'butyl-N-methyl-N'-butyl-phosphorodiamidate.
7. The method of claim 6 wherein the water is present within the range of from 0.30 to about 2 volume percent.

Claims (6)

  1. 2. The method of claim 1 wherein said hydraulic fluid composition also contains up to 20 percent by weight of a viscosity index improver.
  2. 3. The method of claim 2 wherein the viscosity index improver is a polyalkylacrylate, a polyalkylmethacrylate, a polyurethane, or a polyalkylene oxide.
  3. 4. The method of claim 1 wherein the amide is phenyl-N-methyl-N-butyl-N''-methyl-N''-butyl-phosphorodiamidate.
  4. 5. The method of claim 1 wherein the water is present within the range of from 0.30 to about 2 volume percent.
  5. 6. The method of claim 2 wherein the amide is phenyl-N-methyl-N-butyl-N''-methyl-N''-butyl-phosphorodiamidate.
  6. 7. The method of claim 6 wherein the water is present within the range of from 0.30 to about 2 volume percent.
US20395A 1970-03-17 1970-03-17 Functional fluid compositions Expired - Lifetime US3607758A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2039570A 1970-03-17 1970-03-17

Publications (1)

Publication Number Publication Date
US3607758A true US3607758A (en) 1971-09-21

Family

ID=21798399

Family Applications (1)

Application Number Title Priority Date Filing Date
US20395A Expired - Lifetime US3607758A (en) 1970-03-17 1970-03-17 Functional fluid compositions

Country Status (1)

Country Link
US (1) US3607758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905908A (en) * 1971-12-20 1975-09-16 Texaco Inc Lube oil containing oligomeric phosphorodiamidate
US5490886A (en) * 1994-10-14 1996-02-13 Fmc Corporation Methods for quenching metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905908A (en) * 1971-12-20 1975-09-16 Texaco Inc Lube oil containing oligomeric phosphorodiamidate
US5490886A (en) * 1994-10-14 1996-02-13 Fmc Corporation Methods for quenching metal

Similar Documents

Publication Publication Date Title
US3788992A (en) Functional fluid compositions
US3679587A (en) Functional fluid compositions containing perfluoro surfactants
CN1938408A (en) Lubricating oil composition for industrial machinery and equipment
US3637507A (en) Aircraft hydraulic fluid and method of controlling acid buildup therein with acid acceptor
US3956154A (en) Hydraulic fluid system
US3629114A (en) Functional fluid compositions
US3718596A (en) Functional fluid compositions
JPS6038440B2 (en) hydraulic fluid composition
US3597359A (en) Functional fluid compositions
US3707501A (en) Hydraulic fluids containing certain quaternary phosphonium salts of phosphorus acids
US3513097A (en) Functional fluid compositions
US3701732A (en) Functional fluid compositions
US2566623A (en) Hydraulic fluid composition
US3607758A (en) Functional fluid compositions
US4252662A (en) Functional fluids containing ammonium salts of phosphorus acids
US3701733A (en) Functional fluid compositions
US3609085A (en) Polyester functional fluid compositions
US3505230A (en) Functional ester base fluids containing corrosion inhibitors
Dresel Synthetic base oils
Murphy et al. Structural guides for synthetic lubricant development
US3778376A (en) Functional fluids
US3468802A (en) Corrosion inhibited hydraulic fluids
US2934501A (en) Fire-resistant functional fluid and lubricant composition
US3630916A (en) Functional fluid compositions
US3629120A (en) Functional fluid compositions