US3607500A - A molding fibrous webs - Google Patents

A molding fibrous webs Download PDF

Info

Publication number
US3607500A
US3607500A US830533A US3607500DA US3607500A US 3607500 A US3607500 A US 3607500A US 830533 A US830533 A US 830533A US 3607500D A US3607500D A US 3607500DA US 3607500 A US3607500 A US 3607500A
Authority
US
United States
Prior art keywords
article
temperature
fibers
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US830533A
Inventor
Nathan D Field
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Application granted granted Critical
Publication of US3607500A publication Critical patent/US3607500A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing

Definitions

  • Expanded, nonwoven fibrous articles are formed by heating in a shaped mold compressed fibrous webs impregnated with a thermoplastic resin binder.
  • the compressed webs may be economically shipped and the shaped articles generated at the point of destination.
  • This invention concerns bulky, nonwoven fibrous structures and, more particularly, the production of molded threedirnensional, lightweight, shaped articles of nonwoven fibers.
  • T of poly(ethylene terephthalate) is about 67 A
  • T the melting temperature of the thermoplastic resin binder, is meant the temperature at which the particular binder is sufi'rciently softened to be readily deformable to a new shape and retain its new shape.
  • this is the typical sticking point which is defined as temperature at which binder leaves a molten trail upon being rubbed across a heated metal blocki
  • this is the temperature at which a marked softening of the binder is noted.
  • the Starting Web B The Compressed Web C. The Molded Web A.
  • the Starting Web The starting material for the newprocess is an array, such as a web, of crimped thermoplastic fibers bonded at their crossover points by means of a thermoplastic resin.
  • the web may be prepared'from a wide variety of forms of fibers and filaments, such as continuous monofilaments, continuous mulown mill. Thus, because only thin wafers would be shipped,
  • This invention provides a process for producing a lightweight, three-dimensional,- shaped nonwoven article of thermoplastic fibers comprising the steps of:
  • T; T, T, T, and T,,, T, wherein T followed by the various subscripts indicates various temperatures, T,, being the melting temperature of the thennoplastic resin binder and T, being the glass-transition temperature of thermoplastic fibers. The symbol indicates is greater than.”
  • DETAILED DESCRlPTlON T the classical "glass-transition" temperature, also called the second-order transition temperature of the fiber, is the tifilaments, carded webs, warp sliver, top, roping, roving, tow, bulked tow, bulked continuous filament yarn, spun yarn, batts,
  • the fiber orientation in the web may be random, partly oriented (as in a carded web) or oriented, i.e., running perforated mold of the desired size, keeping all fibers parallel I during the operation, impregnating the block of parallel fibers with latex or a solution of the desired binder, removing excess binder from the fiber block, preferably by suction, and forcing hot air through the block from end to end to dry and/or cure the binder matrix.
  • the bonded fiber block is then removed from the mold and wafers or sheets of the parallel fibers-onend are cut from the block by slicing across the end of the block perpendicular to the axis of the fibers.
  • the desired angle of the filamentary structures may be achieved by varying the angle of the cut or by placing the strips in themold at an angle and then making the cut on a plane parallel to the face of the block, transversely to the filamentary structures.
  • the resulting bonded parallel fibers in the form of a self-supporting web may be cemented to one or more suitable backing materials depending on the particular end use desired.
  • Typical fibers useful in the present invention are of a thermoplastic nature and comprise, for instance, polyethylene terephthalate and nylon. Other polyesters that may be used are described in Supplement to Book of ASTM Standards" part 10 (1960), p. 53. Deniers may range from about 1.0 to about 45 and the fibers may have from about 3 to about 20 crimps per inch (1.2-7.9 per cm.) which may be of the sawtooth variety (as produced by the stufferbox crimper of Hitt, U.S. Pat. No. 2,311,174, issued Feb. 16, 1943) or the spiral variety (such as produced by Kilian, U.S. Pat. No. 3,050,821,
  • the compressed web is an expansible, flat, waferlike sheet resulting from compressing the starting material with the application of heat.
  • a useful process is to place the starting web between the platens of a press and compress it to wafer thinness. Heat is applied to raise the temperature of the fiber structure to a temperature less than T, of the binder resin but greater than T, of the fiber. The structure is then cooled to a temperature below T, of the fibers and the compressive force removed. The result is a thin waferlike web which has the potential to be rejuvenated to original thickness by the application of heat.
  • C. The Molded Web The compressed web is placed in a shaped mold such as the shape of an automobile seat cushion.
  • the wafer is then heated to a temperature greater than T, of the fibers and preferably, if a heat-stable structure is desired, greater than T of the binder resin. During this heating step, the wafer expands and assumes the inside shape of the mold. The structure is then cooled to at least a temperature below T,,, of the binder resin.
  • Example 1 This example shows the expansion of a wafer-thin expansible resin-impregnated fibrous material to the shape of a container.
  • Fibers of about denier per filament and having about 8 crimps per inch (per 2.54 cm.) of the sawtooth variety is cut to staple of about 2- inch length.
  • the staple is carded to a web which is cut transverse to the fiber orientation to 10-inch (25.4 cm.) lengths which are stacked on top of each other to fill a mold 10 inches by 16 inches by 24 inches (25.4 cm. by 40.6 cm. by 61 cm.).
  • the fibers are substantially all oriented in the same direction.
  • the mold is impregnated with a 10 percent methylene chloride solution of a polyurethane resin having a T,,, of about 165 C. to a pickup of 22 percent solids resin based on the weight of the resin-impregnated structure.
  • the structure is cured at 140 C. for 1 hour to cross-link the resin.
  • the density of the resin-impregnated web is about 1.33 pounds/foot (0.0213 gmjcc.) and it is sliced to pieces each being about 2.75 in. (6.99 cm.) high.
  • a piece is placed between wooden boards and compressed therebetween to a height of about 0.25 in. (0.64 cm.) while heating at 110 C. for 1 hour.
  • the cushion is only 0.75 in. 1.90 cm.) thick.
  • a section of the compressed wafer-thin web is cut into chips approximately 0.25 to 0.50 in. (0.635 to 1.27 cm.) wide. The chips are placed in the bottom of a 400 m1. beaker, and the beaker containing them is heated to a temperature of about 130 C. Upon heating, the fibrous material expands to fill the beaker and surprisingly, upon removal of the fibrous web from the beaker, the inside contour of the beaker is retained in the web.
  • EXAMPLE 11 This example illustrates the process of the present invention as applied to a fibrous structure the fibers of which are oriented in a single direction.
  • Poly(ethylene terephthalate) containing 0.3 percent by weight TiO is spun to fibers in general accordance with procedures described in Kilian (reference above) to produce asymmetric birefringence across their cross sections.
  • the yarn is heated and assumes a crimp of helical configuration and its T is about 70 C.
  • the fibers are cut to 2.5-inch (6.35 cm.) staple.
  • a blend is made comprising 30 percent by weight of this fiber with 70 percent by weight of 2.5 inch (6.35 cm.) commercially available stuffer-box crimp (sawtooth type) poly(ethy1ene terephthalate) having a T, of about 70 C.
  • the staple blend is gametted to a batt and cut transverse to its length in slices 10 in.
  • Example 2 (25.4 cm.) thick.
  • the slices are compressed in a mold and impregnated as in Example 1 with a binder resin comprising a copolyester of oly(ethylene terephthalate/azelate).
  • the resin is cured and has a T,,, of approximately 170 C.
  • the process is similar to the process described in Koller, supra.
  • the density of the fibrous structure upon release of the mold is 0.61 lb./ft. (0.0098 gm./cc.).
  • fibrous structure is compressed to l rinch (3.81 cm.) between the platens of the press.
  • the structure is heated while compressing to a temperature of C. and cooled in an ice chest.
  • the wafer-thin expansible structure is then placed in a cake mold of the form of a rabbit and expanded in the mold by heating to a temperature 185 C. for 10 minutes. It is then cooled to room temperature and removed from the mold.
  • the fibrous structure is of the shape of a rabbit.
  • This example also describes the utility of the present invention in making such articles of commerce as stuffed toys.
  • Example Ill Poly(ethylene terephthalate) is spun to filaments in accordance with the procedure Kilian, referenced above, to produce an asymmetric birefringence across their diameters.
  • the fibers are heated and assume a spiral crimp configuration of about 9.5 crimp per inch (3.7/cm.).
  • the T, of the fibers is about 70 C.
  • the fibers are cut to 2.5 in. (6.35 cm.) staple and gametted and crosslapped to a 5 oz./46 in. yard weight (1 10 gm./m.
  • the thin batting is pretreated at approximately 191 C. for 5 minutes in a forceddraft over, laminated in a stack of 10 layers by spraying a small amount of the above resin on one surface stacking and curing the entire structure at approximately 137 C. for 30 minutes.
  • the resin-impregnated fibrous structure is then compressed to one-tenth of its original height by compressing between thin aluminum plates for 30 minutes at approximately 137 C.
  • the wafer-thin expansible structure is then cooled, the plates removed, and it is cut to the dimensions of a housewife s eightsection aluminum muffin mold.
  • the sample is then placed on the mold and clamped with a screen.
  • the structure is heated in an oven at approximately 181 C. for 5 minutes.
  • the fibrous batting is found to have expanded permanently to the shape of the depression in the mold.
  • the expanded molded web is cut into four sections, one section is compressed flat at approximately 149 C. for 5 minutes and upon removal of the compressive force and heating to approximately 163 C. for 5 minutes, it expands, but not into the previously molded shape.
  • Another section is heated in the original mold at approximately 199 C. for 5 minutes and then compressed flat at approximately 149 C. and then cooled, It is 0.5 in. (1.27 cm.) thick. It is heated at approximately 163 C. for 5 minutes and surprisingly it expands into the previously molded shape.
  • thermoplastic fibers comprising heating a compressed plurality of crimped, thermoplastic fibers bonded with a thermoplastic resin binder at their crossover points, to a temperature T cooling the compressed fibers to temperature T removing the compressive force
  • thermoplastic resin binder heating the fibers in a shaped mold to a temperature T so as to form an expanded, fibrous article having the shape of the interior of said mold, and removing said article from said mold, wherein T T T, T, and T,,, 'I T, being the glass-transition temperature of said thermoplastic fibers, T being the melting temperature of said thermoplastic resin binder.
  • thermoplastic fibers consist essentially of a material selected from the group consisting of poly(ethylene terephthalate) and nylon' 5.
  • thermoplastic resin binder consists essentially of a material selected from the group consisting of polyacrylates, polymethacrylates, polyesters and polyurethanes.
  • thermoplastic resin binder consists essentially of the copolyester poly(ethylene terephthalate/azelate).
  • thermoplastic fibers bonded with a thermoplastic resin binder at their crossover points comprises a web of crimped thermoplastic fibers impregnated with said binder.

Abstract

Expanded, nonwoven fibrous articles are formed by heating in a shaped mold compressed fibrous webs impregnated with a thermoplastic resin binder. The compressed webs may be economically shipped and the shaped articles generated at the point of destination.

Description

United States Patent Inventor 4 Nathan D. Field Allentown, Pa. Appl. No. 830,533 Filed June 4, 1969 Patented Sept. 21, 1971 Assignee E. l. du Pont de Nemours and Company Wilmington, Del.
A MOLDING FIBROUS WEBS 11 Claims, No Drawings 11.8. CI 264/119, 264/120, 264/234, 264/257 Int. Cl D04h 1/60 Field of Search 264/1 19, 120, 257, 322, 234
Primary ExaminerRobert F. White Assistant Examiner- J. R. Hall Attorney-W. M. Moser ABSTRACT: Expanded, nonwoven fibrous articles are formed by heating in a shaped mold compressed fibrous webs impregnated with a thermoplastic resin binder. The compressed webs may be economically shipped and the shaped articles generated at the point of destination.
1 Field of the Invention This invention concerns bulky, nonwoven fibrous structures and, more particularly, the production of molded threedirnensional, lightweight, shaped articles of nonwoven fibers.
2. Description of the Prior Art Three-dimensional nonwoven structures of fibers such as nylon and polyester are currently used as filling materials in such articles of commerce as furniture cushions, pillows, sleeping bags, and the like. Among the many advantages of using synthetic fibers are that they are lightweight and nonallergenic. Although the qualities of bulkiness and low density, which are inherent in these articles, are desirable in the eyes of the consumer, they cause economic problems in shipping. The situation is somewhat analogous to the problems of a balloon manufacturer having to ship gas-filled balloons instead of deflated ones and finding his trucking costs prohibitive. A solution to the problem of shipping bulky, nonwoven fibrous webs, batts, and the like, was proposed by Coates et al. in U.S. Pat. No. 3,291,677, issued Dec. 13, 1966. His contribution was to physically compress the nonwoven structure, apply temperature at which the thermoplastic material changes from the rubbery state to the glassy state and also the temperature at which a discontinuity occurs in a graph showing temperature as a function of a thermodynamic variable such as heat capacity. The T, of poly(ethylene terephthalate) is about 67 A By T,,,, the melting temperature of the thermoplastic resin binder, is meant the temperature at which the particular binder is sufi'rciently softened to be readily deformable to a new shape and retain its new shape. For many binders, this is the typical sticking point which is defined as temperature at which binder leaves a molten trail upon being rubbed across a heated metal blocki For some highly cross-linked resins that have no true melting point, this is the temperature at which a marked softening of the binder is noted.
For convenience in understanding the present invention, reference will be made to three structures:
A. The Starting Web B. The Compressed Web C. The Molded Web A. The Starting Web The starting material for the newprocess is an array, such as a web, of crimped thermoplastic fibers bonded at their crossover points by means of a thermoplastic resin. The web may be prepared'from a wide variety of forms of fibers and filaments, such as continuous monofilaments, continuous mulown mill. Thus, because only thin wafers would be shipped,
space would be economized and, consequently, trucking costs would be relatively low.
oftentimes, as in the manufacture of auto seat cushions, it is desirable to have a fibrous filling product molded in some desirable three-dimensional shape. Molding techniques related to fibrous webs are well know in the art. In the normal course of events consistent with the technology described above, the customers would rejuvenate the wafer, then subject the rejuvenated web to compressive molding techniques to obtain the desired three-dimensional shape. It has now been found, however, that if the compressed, wafer-thin, fibrous sheet produced by the above technology is placed in a mold and rejuvenated in the mold, as by heating, the expanding wafer assumes the inside shape of the mold and this shape can be made permanent.
SUMMARY OF THE INVENTION This invention provides a process for producing a lightweight, three-dimensional,- shaped nonwoven article of thermoplastic fibers comprising the steps of:
a. compressing a low-density assembly of crimped thermoplastic fibers bonded at their crossover points with thermoplastic resin, with the application of heat to raise the temperature of the assembly to t,;
b. cooling the assembly to t, and then removing exterior compressive force;
c. placing the expansible fibrous assembly in a shaped mold;
d. heating the assembly to T thus expanding it to the inside shape of the mold so as to form an expanded, shaped, fibrous article; and
e. removing said article from the mold, preferably preceded by cooling below T,,,, wherein:
T; T, T, T,, and T,,, T,, wherein T followed by the various subscripts indicates various temperatures, T,,, being the melting temperature of the thennoplastic resin binder and T, being the glass-transition temperature of thermoplastic fibers. The symbol indicates is greater than."
DETAILED DESCRlPTlON T,,, the classical "glass-transition" temperature, also called the second-order transition temperature of the fiber, is the tifilaments, carded webs, warp sliver, top, roping, roving, tow, bulked tow, bulked continuous filament yarn, spun yarn, batts,
and the like. The fiber orientation in the web may be random, partly oriented (as in a carded web) or oriented, i.e., running perforated mold of the desired size, keeping all fibers parallel I during the operation, impregnating the block of parallel fibers with latex or a solution of the desired binder, removing excess binder from the fiber block, preferably by suction, and forcing hot air through the block from end to end to dry and/or cure the binder matrix. The bonded fiber block is then removed from the mold and wafers or sheets of the parallel fibers-onend are cut from the block by slicing across the end of the block perpendicular to the axis of the fibers. The desired angle of the filamentary structures may be achieved by varying the angle of the cut or by placing the strips in themold at an angle and then making the cut on a plane parallel to the face of the block, transversely to the filamentary structures. The resulting bonded parallel fibers in the form of a self-supporting web may be cemented to one or more suitable backing materials depending on the particular end use desired.
Typical fibers useful in the present invention are of a thermoplastic nature and comprise, for instance, polyethylene terephthalate and nylon. Other polyesters that may be used are described in Supplement to Book of ASTM Standards" part 10 (1960), p. 53. Deniers may range from about 1.0 to about 45 and the fibers may have from about 3 to about 20 crimps per inch (1.2-7.9 per cm.) which may be of the sawtooth variety (as produced by the stufferbox crimper of Hitt, U.S. Pat. No. 2,311,174, issued Feb. 16, 1943) or the spiral variety (such as produced by Kilian, U.S. Pat. No. 3,050,821,
issued Aug. 28, 1962) or even the type of crimp produced The compressed web is an expansible, flat, waferlike sheet resulting from compressing the starting material with the application of heat. A useful process is to place the starting web between the platens of a press and compress it to wafer thinness. Heat is applied to raise the temperature of the fiber structure to a temperature less than T, of the binder resin but greater than T, of the fiber. The structure is then cooled to a temperature below T, of the fibers and the compressive force removed. The result is a thin waferlike web which has the potential to be rejuvenated to original thickness by the application of heat. C. The Molded Web The compressed web is placed in a shaped mold such as the shape of an automobile seat cushion. The wafer is then heated to a temperature greater than T, of the fibers and preferably, if a heat-stable structure is desired, greater than T of the binder resin. During this heating step, the wafer expands and assumes the inside shape of the mold. The structure is then cooled to at least a temperature below T,,, of the binder resin.
The invention will be further illustrated by the following examples of preferred embodiments which are not intended to delimit the invention. Example 1 This example shows the expansion of a wafer-thin expansible resin-impregnated fibrous material to the shape of a container.
Commercial poly(ethylene terephthalate) fibers of about denier per filament and having about 8 crimps per inch (per 2.54 cm.) of the sawtooth variety is cut to staple of about 2- inch length. The staple is carded to a web which is cut transverse to the fiber orientation to 10-inch (25.4 cm.) lengths which are stacked on top of each other to fill a mold 10 inches by 16 inches by 24 inches (25.4 cm. by 40.6 cm. by 61 cm.). The fibers are substantially all oriented in the same direction.
The mold is impregnated with a 10 percent methylene chloride solution of a polyurethane resin having a T,,, of about 165 C. to a pickup of 22 percent solids resin based on the weight of the resin-impregnated structure. The structure is cured at 140 C. for 1 hour to cross-link the resin. The density of the resin-impregnated web is about 1.33 pounds/foot (0.0213 gmjcc.) and it is sliced to pieces each being about 2.75 in. (6.99 cm.) high. A piece is placed between wooden boards and compressed therebetween to a height of about 0.25 in. (0.64 cm.) while heating at 110 C. for 1 hour. 0n cooling to about room temperature and release of the compressive force imposed by the boards, the cushion is only 0.75 in. 1.90 cm.) thick. A section of the compressed wafer-thin web is cut into chips approximately 0.25 to 0.50 in. (0.635 to 1.27 cm.) wide. The chips are placed in the bottom of a 400 m1. beaker, and the beaker containing them is heated to a temperature of about 130 C. Upon heating, the fibrous material expands to fill the beaker and surprisingly, upon removal of the fibrous web from the beaker, the inside contour of the beaker is retained in the web.
EXAMPLE 11 This example illustrates the process of the present invention as applied to a fibrous structure the fibers of which are oriented in a single direction.
Poly(ethylene terephthalate) containing 0.3 percent by weight TiO is spun to fibers in general accordance with procedures described in Kilian (reference above) to produce asymmetric birefringence across their cross sections. The yarn is heated and assumes a crimp of helical configuration and its T is about 70 C. The fibers are cut to 2.5-inch (6.35 cm.) staple. A blend is made comprising 30 percent by weight of this fiber with 70 percent by weight of 2.5 inch (6.35 cm.) commercially available stuffer-box crimp (sawtooth type) poly(ethy1ene terephthalate) having a T, of about 70 C. The staple blend is gametted to a batt and cut transverse to its length in slices 10 in. (25.4 cm.) thick. The slices are compressed in a mold and impregnated as in Example 1 with a binder resin comprising a copolyester of oly(ethylene terephthalate/azelate). The resin is cured and has a T,,, of approximately 170 C. The process is similar to the process described in Koller, supra. The density of the fibrous structure upon release of the mold is 0.61 lb./ft. (0.0098 gm./cc.). The
4 /8 inch (10.48 cm.) thick fibrous structure is compressed to l rinch (3.81 cm.) between the platens of the press. The structure is heated while compressing to a temperature of C. and cooled in an ice chest. The wafer-thin expansible structure is then placed in a cake mold of the form of a rabbit and expanded in the mold by heating to a temperature 185 C. for 10 minutes. It is then cooled to room temperature and removed from the mold. The fibrous structure is of the shape of a rabbit.
This example also describes the utility of the present invention in making such articles of commerce as stuffed toys.
Example Ill Poly(ethylene terephthalate) is spun to filaments in accordance with the procedure Kilian, referenced above, to produce an asymmetric birefringence across their diameters. The fibers are heated and assume a spiral crimp configuration of about 9.5 crimp per inch (3.7/cm.). The T, of the fibers is about 70 C. The fibers are cut to 2.5 in. (6.35 cm.) staple and gametted and crosslapped to a 5 oz./46 in. yard weight (1 10 gm./m. web while spraying the top with a 16 percent by weight aqueous dispersion of a self-cross-linking acrylic resin made from acrylates, methacrylates, N-methylolmethacrylamide and a cross-linking agent, which has a T of 185 C. to give 8 percent by weight dry pickup. The resin is cured at C. for 2 minutes and then the opposite side of the web is sprayed in the same manner to give a total (both sides) of 16 percent by weight, solids resin based on the weight of the resin-impregnated web. The spray is at high pressure on the thin batting and excellent penetration of the resin into the center of the batting is effected so that a great majority of the fiber crossover points are coated with resin. The thin batting is pretreated at approximately 191 C. for 5 minutes in a forceddraft over, laminated in a stack of 10 layers by spraying a small amount of the above resin on one surface stacking and curing the entire structure at approximately 137 C. for 30 minutes. The resin-impregnated fibrous structure is then compressed to one-tenth of its original height by compressing between thin aluminum plates for 30 minutes at approximately 137 C. The wafer-thin expansible structure is then cooled, the plates removed, and it is cut to the dimensions of a housewife s eightsection aluminum muffin mold. The sample is then placed on the mold and clamped with a screen. The structure is heated in an oven at approximately 181 C. for 5 minutes. On cooling and removal, the fibrous batting is found to have expanded permanently to the shape of the depression in the mold. The expanded molded web is cut into four sections, one section is compressed flat at approximately 149 C. for 5 minutes and upon removal of the compressive force and heating to approximately 163 C. for 5 minutes, it expands, but not into the previously molded shape. Another section is heated in the original mold at approximately 199 C. for 5 minutes and then compressed flat at approximately 149 C. and then cooled, It is 0.5 in. (1.27 cm.) thick. It is heated at approximately 163 C. for 5 minutes and surprisingly it expands into the previously molded shape. This latter phenomenon illustrates the fact that the new molded structures themselves can be reheated above T,,, in the molded shape, cooled below T to temperature T compressed to wafer thinness, cooled to T followed by removal of compression, and reheated to temperature T causing them to resume their molded shape, wherein 1 claim:
1. A process for producing a shaped nonwoven article of thermoplastic fibers comprising heating a compressed plurality of crimped, thermoplastic fibers bonded with a thermoplastic resin binder at their crossover points, to a temperature T cooling the compressed fibers to temperature T removing the compressive force,
heating the fibers in a shaped mold to a temperature T so as to form an expanded, fibrous article having the shape of the interior of said mold, and removing said article from said mold, wherein T T T, T,, and T,,, 'I T, being the glass-transition temperature of said thermoplastic fibers, T being the melting temperature of said thermoplastic resin binder.
2. The process of claim 1 wherein T T,,,.
3. The process of claim 2 wherein said article is cooled below temperature T,,. before removal from said mold.
4. The process of claim 1 wherein said thermoplastic fibers consist essentially of a material selected from the group consisting of poly(ethylene terephthalate) and nylon' 5. The process of claim 1 wherein said thermoplastic resin binder consists essentially of a material selected from the group consisting of polyacrylates, polymethacrylates, polyesters and polyurethanes.
6. The process of claim 5 wherein said thermoplastic resin binder consists essentially of the copolyester poly(ethylene terephthalate/azelate).
7. The process of claim 1 wherein said plurality of crimped, thermoplastic fibers bonded with a thermoplastic resin binder at their crossover points comprises a web of crimped thermoplastic fibers impregnated with said binder.
8. The process of claim 7 wherein said fibers have about 9 crimps per inch and are about 2 inches in length.
9. The process of claim 1 including the further steps of heating said expanded, fibrous article above temperature cooling said article below temperature T,,,,
compressing said article at temperature T,,,
cooling said article to temperature T.,,
removing the compressive force, and
heating said article to temperature T, so as to cause said article to assume substantially the same shape it had before said further steps, wherein 10. The process of claim 2 including the further steps of cooling said article below temperature T,,,,
compressing said article at temperature T Cooling said article to temperature T,,
Removing the compressive force, and
heating said article to temperature T so as to cause said article to assume substantially the same shape it had before said further steps, wherein T T T,, T.,, and T T 11. The process of claim 3 including the further steps of compressing said article at temperature T cooling said article to temperature T removing the compressive force, and
heating said article to temperature T so as to cause said article to assume substantially the same shape it had before said further steps, wherein

Claims (10)

  1. 2. The process of claim 1 wherein T3>Tm.
  2. 3. The process of claim 2 wherein said article is cooled below temperature Tm before removal from said mold.
  3. 4. The process of claim 1 wherein said thermoplastic fibers consist essentially of a material selected from the group consisting of poly(ethylene terephthalate) and nylon.
  4. 5. The process of claim 1 wherein said thermoplastic resin binder consists essentially of a material selected from the group consisting of polyacrylates, polymethacrylates, polyesters and polyurethanes.
  5. 6. The process of claim 5 wherein said thermoplastic resin binder consists essentially of the copolyester poly(ethylene terephthalate/azelate).
  6. 7. The process of claim 1 wherein said plurality of crimped, thermoplastic fibers bonded with a thermoplastic resin binder at their crossover points comprises a web of crimped thermoplastic fibers impregnated with said binder.
  7. 8. The process of claim 7 wherein said fibers have about 9 crimps per inch and are about 2 inches in length.
  8. 9. The process of claim 1 including the further steps of heating said expanded, fibrous article above temperature Tm, cooling said article below temperature Tm, comPressing said article at temperature T5, cooling said article to temperature T4, removing the compressive force, and heating said article to temperature T6 so as to cause said article to assume substantially the same shape it had before said further steps, wherein T6>T5>Tg>T4, and Tm>T5.
  9. 10. The process of claim 2 including the further steps of cooling said article below temperature Tm, compressing said article at temperature T5, Cooling said article to temperature T4, Removing the compressive force, and heating said article to temperature T6 so as to cause said article to assume substantially the same shape it had before said further steps, wherein T6>T5>Tg>T4, and Tm>T5.
  10. 11. The process of claim 3 including the further steps of compressing said article at temperature T5, cooling said article to temperature T4, removing the compressive force, and heating said article to temperature T6 so as to cause said article to assume substantially the same shape it had before said further steps, wherein T6>T5>Tg>T4, and Tm>T5.
US830533A 1969-06-04 1969-06-04 A molding fibrous webs Expired - Lifetime US3607500A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83053369A 1969-06-04 1969-06-04

Publications (1)

Publication Number Publication Date
US3607500A true US3607500A (en) 1971-09-21

Family

ID=25257159

Family Applications (1)

Application Number Title Priority Date Filing Date
US830533A Expired - Lifetime US3607500A (en) 1969-06-04 1969-06-04 A molding fibrous webs

Country Status (1)

Country Link
US (1) US3607500A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258917A (en) * 1979-12-03 1981-03-31 The B. F. Goodrich Company Rotocasting process for producing rubbery reinforced articles
EP0148763A2 (en) * 1984-01-06 1985-07-17 The Wiggins Teape Group Limited Moulded fibre reinforced plastics articles
US4765915A (en) * 1985-05-23 1988-08-23 The Dow Chemical Company Porous filter media and membrane support means
US4950532A (en) * 1986-10-30 1990-08-21 Azdel, Inc. Process for producing glass fiber reinforced thermoplastic compression molded materials and said molded materials
US4957805A (en) * 1986-07-31 1990-09-18 The Wiggins Teape Group Limited Method of making laminated reinforced thermoplastic sheets and articles made therefrom
US4964935A (en) * 1986-07-31 1990-10-23 The Wiggins Teape Group Limited Method of making fibre reinforced thermoplastics material structure
US4969975A (en) * 1986-05-27 1990-11-13 The Wiggins Teape Group Limited Process for forming a sheet of material
US4978489A (en) * 1986-07-31 1990-12-18 The Wiggins Teape Group Limited Process for the manufacture of a permeable sheet-like fibrous structure
EP0404032A1 (en) * 1989-06-20 1990-12-27 Japan Vilene Company Bulk-recoverable nonwoven fabric, process for producing the same and method for recovering the bulk thereof
US5053449A (en) * 1988-08-03 1991-10-01 The Wiggins Teape Group Limited Plastics material
US5215627A (en) * 1986-07-31 1993-06-01 The Wiggins Teape Group Limited Method of making a water laid fibrous web containing one or more fine powders
US5242749A (en) * 1987-03-13 1993-09-07 The Wiggins Teape Group Limited Fibre reinforced plastics structures
US5368925A (en) * 1989-06-20 1994-11-29 Japan Vilene Company, Ltd. Bulk recoverable nonwoven fabric, process for producing the same and method for recovering the bulk thereof
FR2714678A1 (en) * 1994-01-03 1995-07-07 Kimberly Clark Co Method for thermoforming a nonwoven and article, similar to a fabric, thus obtained.
EP0708191A3 (en) * 1994-10-17 1996-11-06 Hoover Universal Method for making a vehicle seat component with improved resistance to permanent deformation
US6132657A (en) * 1998-06-29 2000-10-17 Polyeitan Composites Ltd. Process for producing polymeric materials
US6159881A (en) * 1994-09-09 2000-12-12 Kimberly-Clark Worldwide, Inc. Thermoformable barrier nonwoven laminate
CN113613857A (en) * 2019-03-19 2021-11-05 皮亚纳非织布有限公司 Self-expanding sheet molding
US11472132B2 (en) * 2019-03-19 2022-10-18 Piana Nonwovens, LLC. Self-rising board molding

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258917A (en) * 1979-12-03 1981-03-31 The B. F. Goodrich Company Rotocasting process for producing rubbery reinforced articles
EP0148763A2 (en) * 1984-01-06 1985-07-17 The Wiggins Teape Group Limited Moulded fibre reinforced plastics articles
EP0148763A3 (en) * 1984-01-06 1987-12-16 The Wiggins Teape Group Limited Moulded fibre reinforced plastics articles
US4765915A (en) * 1985-05-23 1988-08-23 The Dow Chemical Company Porous filter media and membrane support means
US4969975A (en) * 1986-05-27 1990-11-13 The Wiggins Teape Group Limited Process for forming a sheet of material
US5639324A (en) * 1986-07-31 1997-06-17 The Wiggins Teape Group Limited Method of making laminated reinforced thermoplastic sheets and articles made therefrom
US5558931A (en) * 1986-07-31 1996-09-24 The Wiggins Teape Group Limited Fibre reinforced thermoplastics material structure
US4957805A (en) * 1986-07-31 1990-09-18 The Wiggins Teape Group Limited Method of making laminated reinforced thermoplastic sheets and articles made therefrom
US4978489A (en) * 1986-07-31 1990-12-18 The Wiggins Teape Group Limited Process for the manufacture of a permeable sheet-like fibrous structure
US4964935A (en) * 1986-07-31 1990-10-23 The Wiggins Teape Group Limited Method of making fibre reinforced thermoplastics material structure
US5215627A (en) * 1986-07-31 1993-06-01 The Wiggins Teape Group Limited Method of making a water laid fibrous web containing one or more fine powders
US4950532A (en) * 1986-10-30 1990-08-21 Azdel, Inc. Process for producing glass fiber reinforced thermoplastic compression molded materials and said molded materials
US5242749A (en) * 1987-03-13 1993-09-07 The Wiggins Teape Group Limited Fibre reinforced plastics structures
US5053449A (en) * 1988-08-03 1991-10-01 The Wiggins Teape Group Limited Plastics material
US5368925A (en) * 1989-06-20 1994-11-29 Japan Vilene Company, Ltd. Bulk recoverable nonwoven fabric, process for producing the same and method for recovering the bulk thereof
EP0404032A1 (en) * 1989-06-20 1990-12-27 Japan Vilene Company Bulk-recoverable nonwoven fabric, process for producing the same and method for recovering the bulk thereof
FR2714678A1 (en) * 1994-01-03 1995-07-07 Kimberly Clark Co Method for thermoforming a nonwoven and article, similar to a fabric, thus obtained.
EP0665315A1 (en) * 1994-01-03 1995-08-02 Kimberly-Clark Corporation Thermoformable nonwoven fabric
US6159881A (en) * 1994-09-09 2000-12-12 Kimberly-Clark Worldwide, Inc. Thermoformable barrier nonwoven laminate
EP0708191A3 (en) * 1994-10-17 1996-11-06 Hoover Universal Method for making a vehicle seat component with improved resistance to permanent deformation
US6132657A (en) * 1998-06-29 2000-10-17 Polyeitan Composites Ltd. Process for producing polymeric materials
CN113613857A (en) * 2019-03-19 2021-11-05 皮亚纳非织布有限公司 Self-expanding sheet molding
US11472132B2 (en) * 2019-03-19 2022-10-18 Piana Nonwovens, LLC. Self-rising board molding
US20220363018A1 (en) * 2019-03-19 2022-11-17 Piana Nonwovens, LLC. Self-rising board molding

Similar Documents

Publication Publication Date Title
US3607500A (en) A molding fibrous webs
US2972554A (en) Pad and method of making same
CA1037216A (en) Cuspated sheets
US5364686A (en) Manufacture of a three-dimensionally shaped textile material and use thereof
JP4204716B2 (en) Self-supporting porous fiber assembly and method for producing the same
US20100147621A1 (en) Sound attenuating articles having rebulkable nonwoven webs and methods of forming same
JPH0248423B2 (en)
GB2322862A (en) Fibrous sound-proofing materials
CA2067948A1 (en) Porous honeycomb material and manufacture and use thereof
US3963813A (en) Cuspated sheet forming
US3894973A (en) Use of pneumacel in rebonded structures comprising polyurethane scrap
US5569525A (en) Ultra-bulky fiber aggregate and production method thereof
WO1988009406A1 (en) Molding process using polypropylene strands and fabric fibers to produce article
JP3492017B2 (en) FIBER STRUCTURE AND PROCESS FOR PRODUCING FIBER MOLDED PRODUCT USING THE SAME
US3328086A (en) Articles of composite structures of fibrous glass
US3291677A (en) Non-woven fabrics and a process for treating the same
JPH01207458A (en) Fiber molded article for heat molding and production thereof
CN1962402A (en) Production technique of structure of ripple mat
JP4441078B2 (en) Cushion material recycling law.
JPH0423657B2 (en)
JPH0785899B2 (en) Method of pressing thermoformable composite sheet
JPH01308623A (en) Manufacture of fiber molded form
JPH01165431A (en) Manufacture of fiber molding to be thermally molded
JPH02182213A (en) Nonwoven fabric mat
GB2052385A (en) Process for the manufacture of mats for motor vehicles and mats obtained thereby