US3606669A - Method of making tracheal tube device - Google Patents

Method of making tracheal tube device Download PDF

Info

Publication number
US3606669A
US3606669A US3606669DA US3606669A US 3606669 A US3606669 A US 3606669A US 3606669D A US3606669D A US 3606669DA US 3606669 A US3606669 A US 3606669A
Authority
US
United States
Prior art keywords
tube
outer tube
inner
inner tube
outer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Mern S Kemble
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philip Morris USA Inc
Original Assignee
Philip Morris USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philip Morris USA Inc filed Critical Philip Morris USA Inc
Priority to US82777169A priority Critical
Application granted granted Critical
Publication of US3606669A publication Critical patent/US3606669A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0465Tracheostomy tubes; Devices for performing a tracheostomy; Accessories therefor, e.g. masks, filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0402Special features for tracheal tubes not otherwise provided for
    • A61M16/0427Special features for tracheal tubes not otherwise provided for with removable and re-insertable liner tubes, e.g. for cleaning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0402Special features for tracheal tubes not otherwise provided for
    • A61M16/0429Special features for tracheal tubes not otherwise provided for with non-integrated distal obturators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0488Mouthpieces; Means for guiding, securing or introducing the tubes
    • A61M16/0497Tube stabilizer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/4984Retaining clearance for motion between assembled parts

Abstract

A TRACHEAL TUBE DEVICE HAVING AN OUTER TUBE AND AN INNER TUBE INSERTABLE IN AND REMOVABLE WITH RESPECT TO THE OUTER TUBE IS MADE BY A METHOD IN WHICH THE OUTER TUBE IS CAST IN INITIALLY STRAIGHT FORM FROM A THERMOPLASTIC MATERIAL AND BEFORE COOLING IS BENT INTO THE DESIRED RADIUS AND UPON COOLING THE TUBE IS RELATIVELY RIGID AND STIFF IN THE PRE-SET CURVED FORM, THE INNER TUBE LIKEWISE BEING CAST IN A STRAIGHT FORM BUT OF AN ELASTOMERIC MATERIAL WHICH REMAINS FLEXIBLE WHEN COOLED. IN USE THE INNER TUBE IS INSERTED IN THE OUTER TUBE AND READILY CONFORMS TO THE RADIUS AND SHAPE THEREOF. THE INNER TUBE IS DISPOSABLE AND IS EASILY REMOVED AND REPLACED BY A NEW STERILE TUBE.

Description

Sept. 2, 1971 M. s. KEMBLE METHOD OF MAKING TRACHEAL TUBE DEVICE Filed May 26, 1969 United States Patent 3,606,669 METHOD OF MAKING TRACHEAL TUBE DEVICE Mern S. Kemble, Clarion, Pa., assignor to Philip Morris Incorporated, New York, N.Y. Filed May 26, 1969, Ser. No. 827,771 Int. Cl. B23p 19/00; 1529c 17/02; A61b 17/24 US. Cl. 29- 434 4 Claims ABSTRACT OF THE DISCLOSURE A tracheal tube device having an outer tube and an inner tube insertable in and removable with respect to the outer tube is made by a method in which the outer tube is cast in initially straight form from a thermoplastic material and before cooling is bent into the desired radius and upon cooling the tube is relatively rigid and stiff in the pre-set curved form; the inner tube likewise being cast in a straight form but of an elastomeric material which remains flexible when cooled. In use the inner tube is inserted in the outer tube and readily conforms to the radius and shape thereof. The inner tube is disposable and is easily removed and replaced by a new sterile tube.

BACKGROUND 'OF THE IINVENTION The present invention concerns devices employed in tracheotomy. Instruments of that general character are adapted to be inserted into the throat or trachea of a patient to provide an airway while surgical operations are performed in the area and for treatment thereof in conjunction with the operation and subsequently, including a the removal of mucus and foreign matter. Such instruments may be employed also in the treatment of chronic conditions. A great variety of such instruments, sometimes called trachea tubes, have been proposed over a long period of time. In some instances the instrument tube and shaped to facilitate the initial insertion of the tube into the throat.

An. early patent showing a tracheotomy instrument comprising inner and outer tubes is Hartstein 507,813 granted Oct. 31, 1893. In this instance the outer and inner tubes are each evidently formed initially with a fixed .pre-set radius which is the same for both. Representative later patents are Nichols 2,765,792 and 3,088,466;'Cohen 2,786,469; Koenig 3,169,529 and Stebleton 3,334,631.

These later patents contain various statements regarding making the tubes of plastic and in some such as in the patents to Koenig and Stebleton and the later patent to Nichols reference is made to the material being resilient or soft and flexible. Stebleton proposes a silicone rubber which is flexible and will bend, although the patent also describes the tubes as having a pre-set curvature. The patent to Cohen contains a general statement that the outer tube can be made of polyethylene which at elevated temperatures can be bent.

GENERAL DESCRIPTION OF THE PRESENT INVENTION The present invention concerns a tracheal tube device and method of making it marked by simplicity and economy of manufacture and convenience in packaging and use. The outer tube is initially cast in straight uncurved Patented Sept. 21, 1971 'ice form of a thermoplastic material which is immediately bent while soft and flexible into the desired radius and upon cooling becomes stiff and rigid with the pre-set radius. This method eliminates intricate and expensive mold construction.

The inner tube is likewise cast as a straighttube but of an elastomeric plastic material and with a thinner wall than the outer tube and in use it may be inserted in the outer tube and readily conforms in shape thereto. Similarly to the outer tube the mold for the inner tube may be of simplified economical construction. The need for insuring that the radius conforms in casting to that of the outer tube, as is the case where both tubes are cast with a pre-set radius, is therefore eliminated. In fact in the present case there is no need for extreme accuracy as to the radius of the outer tube since the inner tube can readily conform thereto and variations in the curvature of the outer tube are of no concern. Also the straight inner tubes simplify the packaging of a number thereof in a container.

Although the prior art contains many proposals or suggestions regarding the use of various plastic materials and various references to flexible tubes and pre-set shapes, no prior disclosure is known of the combination of the steps and features and attendant advantages described above.

Further features and advantages will be made apparent from consideration of a specific embodiment of the article and its method of manufacture and use. Accordingly in connection with the description thereof to follow, reference should be had to the accompanying drawings, in which:

FIG. 1 is a cross sectional view of the outer tube as originally cast or molded;

FIG. 2 is a cross sectional view of the inner tube as molded;

FIG. 3 is an assembly view partly in section showing the outer tube bent into its final normal shape with the inner tube inserted therein;

FIG. 4 is an end view looking from the right in FIG. 3; and

'FIG. 5 is a plan view of an obturator normally employed in connection with the insertion of the tracheal device in the patients throat.

The outer tube 10 includes a flange or plate portion 11 having a pair of slot openings 12 therein for reception of a band adapted to encircle the patients neck for holding the tracheal device in position in the usual manner. The inner tube 15 is provided with a stop means limiting the extent of insertion in the outer tube such a means comprising in the present case an enlarged diameter portion 16 having a shoulder 17 limiting the insertion of the inner tube. The inner tube is provided with an annular flange 18 whereby it may be grasped for ready withdrawal of the inner tube.

The outer tube may be comprised of various materials the essential characteristics being that it is capable of being molded in a straight shape as shown in FIG. 1 and thereafter while heated bent into a curved shape such as that indicated in FIG. 3 and upon cooling being sufficiently rigid and stiff to enable insertion in the throat of a patient and retain its shape. The selected material must of course be inert to human body substances. Various thermoplastic materials are available which are adapted to serve the necessary requirements. Among these are certain polyolefins such as polyethylene or polypropylene. Other materials are polystyrene, nylon, silicone rubbers and various other natural and synthetic rubbers of appropriate grades. Linear polyethylene is particularly well suited for the purpose.

As in the case of the outer tube the inner tube may be composed of various plastic materials but of the clastomeric type and molded in a straight shape capable of being readily inserted in the outer tube while in position in the patients throat and conforming to the shape and curvature of the outer tube and also readily withdrawn for sterilization or usually replacement by a new inner tube. Grades or modified forms of the materials mentioned above for the outer tube can be obtained which will serve. A material particularly well adapted for the inner tube is ethyl vinyl acetate.

The tracheal device may be made in various sizes in accordance with common practice. Preferably the tubes have a slight taper increasing in diameter from the inner end to the outer exposed area. The wall thickness of the outer tube will vary depending particularly on the character of the material employed, the material and wall thickness being selected to provide the required rigidity and stiffness described above. As a specific example with linear polyethylene the wall thickness is preferably in the neighborhood of about .080 of an inch.

As heretofore described, after the outer tube is molded in the straight form shown in FIG. 1 and in broken line in FIG. 3 it is bent on a suitable radius to the curved shape indicated in FIG. 3 which normally would be about 90. The bending is of course performed while the material is hot and conveniently may be done immediately following the casting of the tube, although in some instances depending upon circumstances including the particular material it may be performed after preheating the outer tube. In any event it is essential that the tube have substantial rigidity and stiffness when cooled in the final form particularly against any tendency to collapse.

As heretofore described casting the outer tube in initially a straight form eliminates intricate and expensive mold construction and operations. The casting may of course be performed by injection molding and among other advantages it avoids any fins or ridges on the outer surface of the outer tube such as commonly occurs with split molds. It is of course very desirable that the outer surface be completely smooth for insertion in the patients throat.

The inner tube preferably is tapered, gradually increasing in size from the inner end to the enlarged portion 16 and generally conforming to the inner diameter and taper of the outer tube. However, to insure a close seal the extreme inner end of the outer tube has a decreased inner diameter portion indicated at 22 and the inner end of the inner tube has an outer diameter sufficient to result in a tight squeeze and a fluid seal at the inner end to the enlarged portion 16, although generally accomplished since the inner tube is relatively thin walled and flexible. The remainder of the inner tube 15 from the inner end of the enlarged portion 16, although generally corresponding to the tapered diameter of the outer tube, may be substantially smaller than the inner diameter of the outer tube since a seal is provided at the inner end area 22. The wall thickness of the inner tube, as in the case of the outer tube, may vary dependent upon the material selected. In general it may be relatively thin since it is not subject to any substantial stress. In a specific example employing ethyl vinyl acetate the wall thickness was about .035 of an inch.

The inner tube is readily insertable in the outer tube after the outer tube has been stationed in the patients mouth. Being flexible the inner tube readily follows the curvature of the outer tube and it can be easily withdrawn. Although normally the same tube may be sterilized and reinserted, it is contemplated that it will be discarded and replaced by a fresh sterile tube. This may be economically done since the inner tube is composed of a minimum of material. Being cast in a straight form a number of the inner tubes may be packaged in a single container for distribution.

Commonly the tracheal device is accompanied by an obturator 25 such as that shown in FIG. 5 having a flexible slender stem 26 and an inner bulb portion having a conical forward shape 27 whereby it will extend out the inner end of the outer tube a sufficient distance to form a closed end and seal when the outer tube with the obturator therein is initially inserted in the patients throat. The obturator will of course include a suitable handle portion such as that shown at 28 for ready manual withdrawal and replacement of the obturator with an inner tube 15.

Since various changes in carrying out the method of fabricating the tracheal device and certain modifications in the article may be made without departing from the scope of the invention it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.

I claim:

1. A method of producing a tracheal device comprised of outer and inner telescopic tubes comprising casting an outer tube initially in straight form of moldable plastic material which is relatively rigid when cool, while heated bending said outer tube into the curved shape suitable for tracheal use, casting the inner tube in straight form of a plastic material which remains flexible when cool and is freely capable of insertion in and withdrawal from the outer curved tube, and inserting said flexible tube into said rigid tube.

2. A method of producing a tracheal device in accordance with claim 1 in which the outer tube is comprised of a thermoplastic material.

3. A method of producing a tracheal device in accordance with claim 2 in which the outer tube is cast from heated thermoplastic material and while still heated and plastic is bent into the curved shape.

4. A method of producing a tracheal device in accordance with claim 1 in which the inner tube is comprised of ethyl vinyl acetate.

References Cited UNITED STATES PATENTS 1,876,744 9/1932 Babb 264295 2,508,347 5/1950 Marsh 29434 3,011,211 12/1961 Barns 2642l0 3,013,308 12/1961 Armour 2945l 3,085,293 4/1963 Kritchever 264-210 2,765,792 10/1956 Nichols 128-351 3,334,631 8/1967 Stebleton 128351 3,419,004 12/1968 Berman 128351X 3,508,554 4/1970 Sheridan 128-348 CHANNING L. PACE, Primary Examiner US. Cl. X.R.

l28-35l; 2642l0, 295, 339

US3606669D 1969-05-26 1969-05-26 Method of making tracheal tube device Expired - Lifetime US3606669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US82777169A true 1969-05-26 1969-05-26

Publications (1)

Publication Number Publication Date
US3606669A true US3606669A (en) 1971-09-21

Family

ID=25250117

Family Applications (1)

Application Number Title Priority Date Filing Date
US3606669D Expired - Lifetime US3606669A (en) 1969-05-26 1969-05-26 Method of making tracheal tube device

Country Status (1)

Country Link
US (1) US3606669A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866609A (en) * 1972-04-05 1975-02-18 Charles Howard Sparks Apparatus for growing graft tubes in place
US3964488A (en) * 1974-11-13 1976-06-22 Wallace H. Ring Tracheal tube
US4033353A (en) * 1975-10-16 1977-07-05 International Paper Company Tracheostomy tube
US4315505A (en) * 1980-04-07 1982-02-16 Shiley, Inc. Tracheostomy tube with disposable inner cannula
US4335723A (en) * 1976-11-26 1982-06-22 The Kendall Company Catheter having inflatable retention means
US4502482A (en) * 1983-05-23 1985-03-05 Deluccia Victor C Endotracheal tube complex
DE3720482A1 (en) * 1987-06-20 1988-12-29 Dirk Dipl Ing Bergmann Tracheotomy tube
DE3813705A1 (en) * 1987-07-02 1989-01-12 Wolfgang Dr Koehler Endotracheal cannula
WO1989000058A1 (en) * 1987-07-08 1989-01-12 Medipro Device for unblocking intubation tubes and tracheotomy cannulas in vivo
US4809693A (en) * 1982-12-22 1989-03-07 Marco Rangoni Tracheal intubation cannula with external valve
US4818459A (en) * 1984-02-15 1989-04-04 Tetra Pak Developpement S.A. Lid of a liquid pack with process and apparatus for producing the same
EP0371752A1 (en) * 1988-12-01 1990-06-06 Devi Cardiothoracic Unit Shetty Tracheostomy tube assemblies
US4963306A (en) * 1988-07-14 1990-10-16 Novoste Corporation Method for making fuseless soft tip angiographic catheter
US5024220A (en) * 1988-07-21 1991-06-18 Board Of Regents, The University Of Texas System Nasotracheal tube insertion connector
US5088991A (en) * 1988-07-14 1992-02-18 Novoste Corporation Fuseless soft tip angiographic catheter
US5119811A (en) * 1990-02-21 1992-06-09 Smiths Industries Public Limited Company Tracheal assembly having inner and outer tubes and surface materials
US5188100A (en) * 1991-09-09 1993-02-23 New York University Apparatus for facilitating tracheostomy tube replacement
US5242409A (en) * 1991-05-16 1993-09-07 Applied Medical Resources Corporation Flexible access device
US5546939A (en) * 1994-12-05 1996-08-20 French; Ronald Emergency tracheostomy apparatus
US5597185A (en) * 1994-11-18 1997-01-28 Naco Industries, Inc. One piece tubular elbow and process of manufacture
US20020069879A1 (en) * 1997-04-10 2002-06-13 Cook Daniel J. Retainer for laryngeal mask
US20040255953A1 (en) * 1997-04-10 2004-12-23 Cook Daniel J. Laryngeal mask
WO2005063325A1 (en) * 2003-12-30 2005-07-14 Mompo Orti Luis Blas Cannula for tracheotomized patients
US20070007763A1 (en) * 2005-07-07 2007-01-11 Deaton Randall A Adaptor fitting
WO2008015094A1 (en) * 2006-07-31 2008-02-07 Tracoe Medical Gmbh Tracheostomy cannula with inner cannula
US20080041392A1 (en) * 2006-08-18 2008-02-21 Cook Daniel J Laryngeal Mask with Esophageal Blocker and Bite Block
US20080066762A1 (en) * 2006-09-15 2008-03-20 Cook Daniel J Laryngeal Mask
US20080078398A1 (en) * 2006-09-15 2008-04-03 Cook Daniel J Methods of forming a laryngeal mask
US20080276936A1 (en) * 2007-05-11 2008-11-13 Cook Daniel J Self-Pressurizing Supraglottic Airway
US20090090356A1 (en) * 2007-10-03 2009-04-09 Cook Daniel J Supralaryngeal Airway Including Instrument Ramp
US20090320853A1 (en) * 2008-06-27 2009-12-31 Mike Kenowski Tracheostomy Tube
WO2010094849A1 (en) * 2009-02-20 2010-08-26 Eric Bezicot Tracheal cannula
US20100300448A1 (en) * 2009-05-28 2010-12-02 Kenowski Michael A Tracheostomy Tube
US20100300449A1 (en) * 2009-05-28 2010-12-02 Chan Sam C Position Indicator for Tracheostomy Tube
US20110108037A1 (en) * 2009-11-12 2011-05-12 Jose Pablo Diaz Jimenez Enhancements introduced into prolonged tracheal cannulation processes
US20140326247A1 (en) * 2011-09-01 2014-11-06 Atos Medical Ab Automatic tracheostoma speech valve (astv) fixation brace
WO2015063459A1 (en) * 2013-10-29 2015-05-07 Indian Ocean Medical Inc. Airway tube
CN105477758A (en) * 2016-01-29 2016-04-13 青岛大学附属医院 Novel trachea cannula
CN105999501A (en) * 2016-06-15 2016-10-12 北京大学第三医院 Replacement sleeve for trachea cannula and using method
US10335023B2 (en) * 2016-01-07 2019-07-02 Glenn P. Gardner Endotracheal tube insertion device
USD858748S1 (en) * 2019-03-04 2019-09-03 Primed Halberstadt Medizintechnik Gmbh Neck plate for tracheal tube
USD858747S1 (en) * 2018-07-05 2019-09-03 Primed Halberstadt Medizintechnik Gmbh Tracheal tube

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866609A (en) * 1972-04-05 1975-02-18 Charles Howard Sparks Apparatus for growing graft tubes in place
US3964488A (en) * 1974-11-13 1976-06-22 Wallace H. Ring Tracheal tube
US4033353A (en) * 1975-10-16 1977-07-05 International Paper Company Tracheostomy tube
US4335723A (en) * 1976-11-26 1982-06-22 The Kendall Company Catheter having inflatable retention means
US4315505A (en) * 1980-04-07 1982-02-16 Shiley, Inc. Tracheostomy tube with disposable inner cannula
EP0107779A1 (en) * 1980-04-07 1984-05-09 Shiley Incorporated Tracheostomy tube with disposable inner cannula
US4809693A (en) * 1982-12-22 1989-03-07 Marco Rangoni Tracheal intubation cannula with external valve
US4502482A (en) * 1983-05-23 1985-03-05 Deluccia Victor C Endotracheal tube complex
US4818459A (en) * 1984-02-15 1989-04-04 Tetra Pak Developpement S.A. Lid of a liquid pack with process and apparatus for producing the same
DE3720482A1 (en) * 1987-06-20 1988-12-29 Dirk Dipl Ing Bergmann Tracheotomy tube
DE3813705A1 (en) * 1987-07-02 1989-01-12 Wolfgang Dr Koehler Endotracheal cannula
FR2617720A1 (en) * 1987-07-08 1989-01-13 Medipro Device for desobstructing intubation probes and in vivo tracheotomy cannulas
WO1989000058A1 (en) * 1987-07-08 1989-01-12 Medipro Device for unblocking intubation tubes and tracheotomy cannulas in vivo
US4963306A (en) * 1988-07-14 1990-10-16 Novoste Corporation Method for making fuseless soft tip angiographic catheter
US5088991A (en) * 1988-07-14 1992-02-18 Novoste Corporation Fuseless soft tip angiographic catheter
US5024220A (en) * 1988-07-21 1991-06-18 Board Of Regents, The University Of Texas System Nasotracheal tube insertion connector
EP0371752A1 (en) * 1988-12-01 1990-06-06 Devi Cardiothoracic Unit Shetty Tracheostomy tube assemblies
US5119811A (en) * 1990-02-21 1992-06-09 Smiths Industries Public Limited Company Tracheal assembly having inner and outer tubes and surface materials
US5242409A (en) * 1991-05-16 1993-09-07 Applied Medical Resources Corporation Flexible access device
US5188100A (en) * 1991-09-09 1993-02-23 New York University Apparatus for facilitating tracheostomy tube replacement
WO1993004719A1 (en) * 1991-09-09 1993-03-18 New York University Method and apparatus for facilitating tracheostomy tube replacement
US5597185A (en) * 1994-11-18 1997-01-28 Naco Industries, Inc. One piece tubular elbow and process of manufacture
US5546939A (en) * 1994-12-05 1996-08-20 French; Ronald Emergency tracheostomy apparatus
USRE36611E (en) * 1994-12-05 2000-03-14 French; Ronald Emergency tracheostomy apparatus
US8631796B2 (en) 1997-04-10 2014-01-21 Cookgas, L.L.C. Laryngeal mask
US20040255953A1 (en) * 1997-04-10 2004-12-23 Cook Daniel J. Laryngeal mask
US6892731B2 (en) * 1997-04-10 2005-05-17 Cookgas Retainer for laryngeal mask
US20050109344A1 (en) * 1997-04-10 2005-05-26 Cook Daniel J. Retainer for laryngeal mask
US7331347B2 (en) 1997-04-10 2008-02-19 Cookgas, Llc Retainer for laryngeal mask
US20020069879A1 (en) * 1997-04-10 2002-06-13 Cook Daniel J. Retainer for laryngeal mask
WO2005063325A1 (en) * 2003-12-30 2005-07-14 Mompo Orti Luis Blas Cannula for tracheotomized patients
US20070007763A1 (en) * 2005-07-07 2007-01-11 Deaton Randall A Adaptor fitting
EP2046431B1 (en) 2006-07-31 2015-07-15 Tracoe Medical Gmbh Tracheostomy cannula with inner cannula
WO2008015094A1 (en) * 2006-07-31 2008-02-07 Tracoe Medical Gmbh Tracheostomy cannula with inner cannula
US20080041392A1 (en) * 2006-08-18 2008-02-21 Cook Daniel J Laryngeal Mask with Esophageal Blocker and Bite Block
US7900632B2 (en) 2006-08-18 2011-03-08 Cookgas, L.L.C. Laryngeal mask with esophageal blocker and bite block
US20080066762A1 (en) * 2006-09-15 2008-03-20 Cook Daniel J Laryngeal Mask
US7784464B2 (en) 2006-09-15 2010-08-31 Cookgas, Llc Laryngeal mask
US20080078398A1 (en) * 2006-09-15 2008-04-03 Cook Daniel J Methods of forming a laryngeal mask
US7780900B2 (en) 2006-09-15 2010-08-24 Cookgas, Llc Methods of forming a laryngeal mask
US9320864B2 (en) 2007-05-11 2016-04-26 Cookgas, Llc Self-pressurizing supraglottic airway
US8978658B2 (en) 2007-05-11 2015-03-17 Cookgas, Llc Self-pressurizing supraglottic airway
US7934502B2 (en) 2007-05-11 2011-05-03 Cookgas, Llc Self-pressurizing supraglottic airway
US20080276936A1 (en) * 2007-05-11 2008-11-13 Cook Daniel J Self-Pressurizing Supraglottic Airway
US8622060B2 (en) 2007-05-11 2014-01-07 Cookgas, Llc Self-pressurizing supraglottic airway
US20110168183A1 (en) * 2007-05-11 2011-07-14 Cook Daniel J Self-Pressurizing Supraglottic Airway
US20090090356A1 (en) * 2007-10-03 2009-04-09 Cook Daniel J Supralaryngeal Airway Including Instrument Ramp
US20090320853A1 (en) * 2008-06-27 2009-12-31 Mike Kenowski Tracheostomy Tube
FR2942411A1 (en) * 2009-02-20 2010-08-27 Eric Bezicot tracheal cannula
WO2010094849A1 (en) * 2009-02-20 2010-08-26 Eric Bezicot Tracheal cannula
US20100300449A1 (en) * 2009-05-28 2010-12-02 Chan Sam C Position Indicator for Tracheostomy Tube
US20100300448A1 (en) * 2009-05-28 2010-12-02 Kenowski Michael A Tracheostomy Tube
US20110108037A1 (en) * 2009-11-12 2011-05-12 Jose Pablo Diaz Jimenez Enhancements introduced into prolonged tracheal cannulation processes
US8474450B2 (en) * 2009-11-12 2013-07-02 Jose Pablo Diaz Jimenez Enhancements introduced into prolonged tracheal cannulation processes
US20140326247A1 (en) * 2011-09-01 2014-11-06 Atos Medical Ab Automatic tracheostoma speech valve (astv) fixation brace
WO2015063459A1 (en) * 2013-10-29 2015-05-07 Indian Ocean Medical Inc. Airway tube
US10335023B2 (en) * 2016-01-07 2019-07-02 Glenn P. Gardner Endotracheal tube insertion device
CN105477758A (en) * 2016-01-29 2016-04-13 青岛大学附属医院 Novel trachea cannula
CN105999501A (en) * 2016-06-15 2016-10-12 北京大学第三医院 Replacement sleeve for trachea cannula and using method
USD858747S1 (en) * 2018-07-05 2019-09-03 Primed Halberstadt Medizintechnik Gmbh Tracheal tube
USD858748S1 (en) * 2019-03-04 2019-09-03 Primed Halberstadt Medizintechnik Gmbh Neck plate for tracheal tube

Similar Documents

Publication Publication Date Title
US3399668A (en) Disposable cholangiography catheter
USRE25788E (en) Medico-surgical tubes having integral connectors formed in their ends
US3610242A (en) Medico-surgical suction systems
US3312215A (en) Uterocervical cannula
US3204634A (en) Surgical catheter
US3380448A (en) Cervical-pudendal indwelling catheter set with tissue piercing means
US3402718A (en) Endotracheal tube with valved balloon having removable inflation means and balloon rupturing means associated therewith
US3606889A (en) Guard accessory for catheter
US3612038A (en) Preformable catheter package assembly and method of preforming
US3460541A (en) Endotracheal intubation tubes
US3375828A (en) Suction catheter
US3087493A (en) Endotracheal tube
US3322126A (en) Endotracheal catheter
US3402717A (en) Endotracheal tube with valved balloon having a removable inflation stylet insert therein
US3021942A (en) Needle package
US2547758A (en) Instrument for treating the male urethra
US3841304A (en) Inflatable leakage inhibitor
US4617015A (en) Visual pressure indicator for endotracheal cuff
US2512568A (en) Hypodermic injection device
CA2797832C (en) Apparatus for introducing a fecal management appliance
US3625793A (en) Balloon-type catheters and method of manufacture
EP1893272B1 (en) Insertion aid for percutaneous tracheostomy
US1213001A (en) Therapeutic apparatus.
US7331347B2 (en) Retainer for laryngeal mask
US3703174A (en) Method and apparatus for catheter injection