US3601719A - Temperature-compensated waveguide resonator - Google Patents

Temperature-compensated waveguide resonator Download PDF

Info

Publication number
US3601719A
US3601719A US865110A US3601719DA US3601719A US 3601719 A US3601719 A US 3601719A US 865110 A US865110 A US 865110A US 3601719D A US3601719D A US 3601719DA US 3601719 A US3601719 A US 3601719A
Authority
US
United States
Prior art keywords
screw
waveguide
temperature
evanescent
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US865110A
Inventor
Kenneth George Hodgson
George Frederick Craven
Raymond Richard Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STC PLC
Original Assignee
International Standard Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Standard Electric Corp filed Critical International Standard Electric Corp
Application granted granted Critical
Publication of US3601719A publication Critical patent/US3601719A/en
Assigned to STC PLC reassignment STC PLC ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: INTERNATIONAL STANDARD ELECTRIC CORPORATION, A DE CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/219Evanescent mode filters

Definitions

  • ABSTRACT An evanescent H-mode rectangular waveguide resonator having a tuning screw mounted on one broad wall is temperature compensated by having said screw physically penetrate close to the opposite broad wall of said waveguide. Said penetration provides significant end-loading capacitance.
  • said screw is ofiset from the longitudinal centerline of said waveguide to achieve both the required tuning capacitance and the required penetration.
  • a silver-plated Swedish iron screw having a lower coefficient of expansion than the material of the waveguide, (i.e., copper) penetrates close to the opposite broad wall.
  • a temperaturecompensated resonator comprising a section of evanescent H- mode waveguide and capacitive screw-tuning means for providing significant end-loading capacitance.
  • FIG. I shows an evanescent mode rectangular waveguide DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • an evanescent I-I-mode waveguide resonator is defined as a length of rectangular waveguide which has a cutoff frequency above the frequency of the incident I-I-mode and has capacitive tuning screw means extending into the guide from a broad wall of the guide.
  • Evanescent mode waveguide cavities function on different principles, as described in Waveguide'Band-pass Filters using Evanescent Modes," G. F. Craven, Electronics Letters, Vol. 2, No. 7, July 1966, pp 25-26, and therefore their frequencytemperature dependence is also different.
  • energy present in the dominant H mode in propagating waveguide 1 is transferred to propagating waveguide 2 by evanescent mode cavity 3 having a capacitive tuning screw 4 on the longitudinal centerlines 5 of the guide.
  • the resonant frequency of an evanescent mode cavity is determined by the conjugate match condition, i.e., the capacitive reactance, of the obstacle in the guide, the screw 4, must be equal, but opposite in sign, to the inductive characteristic of the guide.
  • the resonant frequency, f, is then given by
  • the resonant frequency is independent, to a first order, of the guide length and merely depends on the cross-sectional dimensions. This, of course, assumes that the value of C, is temperature invariant, an assumption which simplifies the preliminary analysis. The effect ofthe variation of C,, with temperature will be considered later.
  • Equation (l) is derived on this basis and only the value of
  • wavelength AA is in the range This change is a result wholly of the change in the guide width and its effect on the guide characteristic impedance.
  • the area of the capacitance i.e., the cross-sectional area of the tuning screw, increases.
  • the gap, d, between the end of the screw and the bottom wall of the guide then changes to d (1+6) as a result of the difference between the length expansion of the screw and the height expansion of the guide, for an increase in temperature. Since the guide height is the greater, if the material employed in guide and screw is the same, e.g. copper or brass, the gap increases. Considered on its own the capacitance would then tend to decrease, with acorresponding effect on the resonant wavelength. This would offset the effect of temperature on guide dimensions and their consequent effect on resonant wavelength. r
  • The'distance d has to be quite small if the capacitance is to be significant. Obviously, the length of the screw and the guide height will then be nearly identical and, if they are of the same material, the expansions will be nearly identical. However, since the height is always marginally greater its expansion will always be greater and d will always increase. Thus, provided a suitable distance d is chosen and a suitable obstacle width is used, a certain degree of temperature compensation is obtained.
  • d can be reduced by offsetting the screw by a distance x from the guide center towards the guide sidewall, as shown in FIG. 2. The screw penetration will then have to be increased in order to achieve the desired susceptance. In this way an appropriate value of d can be obtained.
  • FIG. 3 An .altemative'arrangeme'nt is shown in FIG. 3, in which there is an olTset main tuning screw 4a penetratingclose to the opposite (bottom) guide wall, with a fine tuning screw 6 located at the guide centerline.
  • FIG. 4 A further alternative arrangement is shown in FIG. 4, in which there is an offset first main tuning screw 4b and a centerline second main tuning screw 4c. Temperature compensation is obtained by the relative penetration of the two screws.
  • the offset capacitive tuning screw is preferably made of amaterial having a lower temperature coefi'lcient of expansion from that of the material of the waveguide. This results in a greater change in d with temperature, thedifferential changes in screw length and waveguide height allowing compensation to be achieved with reasonable gaps betweenthe screw and number of conditions are shown in FIG. 5.
  • Curve A shows the behavior of a conventional resonant cavity constructed in 2 in. X in copper waveguide.
  • Curve B represents the corresponding behavior of a 4 GHz. evanescent cavity built in X-band copper guide of 0.9 in. X 0.4 in. with a 2 BA copper tuning screw, as in FIG. 1.
  • the value of d (0.042 in.) is in the range where some compensation is possible and some incidental compensation probably occurs.
  • Curve C shows the behavior of a similar evanescent mode waveguide resonator to that of FIG. I, having a 2 BA centrally located capacitive tuning screw with the same value for d but made from silver-plated Swedish iron.
  • Swedish iron has a lower coefficient of expansion 12Xl0"/C.) than copper (l6Xl0"/C.).
  • v v A ln curve D the 2 BA silver-plated Swedish iron screw has been located halfway between the guide center and the sidewall, as in FIG. 2. The value of d (0.028 in.) is then such I that overcompensation occurs.
  • the amount of offset of the main tuning screw and the choice of its size, .i.e., its cross-sectional area, are determined largely on an experimental basis and that for example offsetting the screw halfway between the tion of evanescent H-mode waveguide for providing significant end-loading capacitance, said tuning screw is of a material having a lower coefficient ofexpansion than that of the material of said section of evanescent H-mode waveguide.
  • a temperature-compensated resonator according to claim 1, wherein said waveguide section is made of copper and wherein said tuning screw is made of silver-plated Swedish iron.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

An evanescent H-mode rectangular waveguide resonator having a tuning screw mounted on one broad wall is temperature compensated by having said screw physically penetrate close to the opposite broad wall of said waveguide. Said penetration provides significant end-loading capacitance. In one preferred embodiment, said screw is offset from the longitudinal centerline of said waveguide to achieve both the required tuning capacitance and the required penetration. In another preferred embodiment, to further improve temperature compensation, a silver-plated Swedish iron screw having a lower coefficient of expansion than the material of the waveguide, (i.e., copper) penetrates close to the opposite broad wall.

Description

United States Patent [72] Inventors Kenneth George Hodgson Loughton; George Frederick Craven, Harlow; Raymond Richard Thomas, Harlow, all of, England [2]] Appl. No. 865,110 [22] Filed Oct. 9, I969 [45] Patented Aug. 24, I971 [73] Assignee International Standard Electric Corporation New York, N.Y.
[54] TEMPERATURE-COMPENSATED WAVEGUIDE RESONATOR 2 Claims, 5 Drawing Figs.
. [52] US. Cl 333/82 BT, 333/83 T,333/73 w [5l] 1nt.Cl H0lp 7/06,
H03n 13/00, HOlp 1/30 [50] Field of Search 333/82 ET, 834, 82,83 T, 73 W, 73
[56] References Cited UNITED STATES PATENTS 2,103,457 12/1937 Hansell 333/82 BT X 2,608,671 8/1952 Fremlin et al.. 333/82 BT X 2,749,523 6/1956 Dishal 333/73 W 2,943,280 6/1960 Brill 333/73 W 3,422,380 l/l969 Kurodaetal. 333/73W OTHER REFERENCES Ragen, G. L., Microwave Transmission Circuits," Mc- Graw Hill, 1948 pp. 489
Craven et al., Design of Microwave Filters With Quarter- Wave Couplings," Proc. IEE (London) Vol. 103 B, pp. L73- l77, 3-l956 Marcuvitz, N., Waveguide Handbook, Mc- Graw-Hill, I951 Primary ExaminerHerman Karl Saalbach Assistant Examiner-Wm. H. Punter Attorneys-C. Cornell Remsen, Jr., Walter J. Baum, Paul W. Hemniinger, Percy P. Lantzy, Philip M. Bolton, Isidore Togut and Charles L. Johnson, Jr.
ABSTRACT: An evanescent H-mode rectangular waveguide resonator having a tuning screw mounted on one broad wall is temperature compensated by having said screw physically penetrate close to the opposite broad wall of said waveguide. Said penetration provides significant end-loading capacitance. In one preferred embodiment, said screw is ofiset from the longitudinal centerline of said waveguide to achieve both the required tuning capacitance and the required penetration. In another preferred embodiment, to further improve temperature compensation, a silver-plated Swedish iron screw having a lower coefficient of expansion than the material of the waveguide, (i.e., copper) penetrates close to the opposite broad wall.
PATENTEB M1824 B71 SHEET 2 0F 2 I nvenlors law/very amoqsm 6501265 F (RAVEN By mono)? moms M Attorney TEMPERATURE-COMPENSATED WAVEGUIDE RESONATOR I BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to temperature compensation of waveguide resonators.
2. Description of the Prior Art I Conventional resonant waveguide cavities are relatively temperature sensitive and where high temperature-frequency stability is necessary, it becomes essential to employ as the manufacturing material a metal with a very low thermal coefficient of expansion, such as a nickel steel invar. This is a relatively expensive material which is also difficult to work. Said disadvantages add significantly to the cost of producing a resonator.
SUMMARY OF THE INVENTION It is an object of the invention to provide an improved 4 evanescent I'I-mode waveguide resonator.
According to the invention there is provided a temperaturecompensated resonator comprising a section of evanescent H- mode waveguide and capacitive screw-tuning means for providing significant end-loading capacitance.
A BRIEF DESCRIPTION OF THE DRAWINGS The above-mentioned and other objects of this invention will become apparent by reference to the following description in conjunction with the accompanying drawings, in which:
FIG. I shows an evanescent mode rectangular waveguide DESCRIPTION OF THE PREFERRED EMBODIMENTS For the purpose of this specification, an evanescent I-I-mode waveguide resonator is defined as a length of rectangular waveguide which has a cutoff frequency above the frequency of the incident I-I-mode and has capacitive tuning screw means extending into the guide from a broad wall of the guide.
Evanescent mode waveguide cavities function on different principles, as described in Waveguide'Band-pass Filters using Evanescent Modes," G. F. Craven, Electronics Letters, Vol. 2, No. 7, July 1966, pp 25-26, and therefore their frequencytemperature dependence is also different.
Referring to FIG. 1, energy present in the dominant H mode in propagating waveguide 1 is transferred to propagating waveguide 2 by evanescent mode cavity 3 having a capacitive tuning screw 4 on the longitudinal centerlines 5 of the guide.
The resonant frequency of an evanescent mode cavity is determined by the conjugate match condition, i.e., the capacitive reactance, of the obstacle in the guide, the screw 4, must be equal, but opposite in sign, to the inductive characteristic of the guide. The resonant frequency, f,, is then given by The resonant frequency is independent, to a first order, of the guide length and merely depends on the cross-sectional dimensions. This, of course, assumes that the value of C, is temperature invariant, an assumption which simplifies the preliminary analysis. The effect ofthe variation of C,, with temperature will be considered later.
The characteristic impedance of waveguide in the H rectangular guide is given by Who/m) where a guide width b guide height A free space wavelength A,, cutoff wavelength 2a A constant In the present application, AIA I and therefore 2,, is imaginary. Equation (l) is derived on this basis and only the value of |'Z,,l is required. Therefore will be dropped from the following mathematical analysis.
Rearranging equation (2) and introducing 8, the fractional change in dimensions resulting fromtemperature change, the resulting characteristic impedance Z, is given by from equation (I) the'modified resonant frequency is given by 7 Assuming that 8 is small and therefore squared and higher power terms can be neglected fjgiciliblh a) And, since )t=V/f where V velocity of light V21rC,,Ab(1+2S;
a a xox. 1{1-.1}]
v tum) Using the binomiel expansion of expand the second term in braces,
Bearing in mind that from equation l) wavelength AA, is in the range This change is a result wholly of the change in the guide width and its effect on the guide characteristic impedance.
The effect of capacitance change on the resonant wavelength is straightforward and evident from equation (la) Ax.,-Ac, 10
The way in which C, changes depends on the type of construction employed. In the construction shown in FIG. I, three effects occur. If the temperature increases,
a. the length of the tuning'screw increases,
b. the guide height increases,
c. the area of the capacitance, i.e., the cross-sectional area of the tuning screw, increases.
If the screw penetration is such that the end of the screw is remote from the opposite (bottom) guide wall, the end loading capacitance is negligible. The effect (a) will then predominate. The normalized reactance of a capacitive screw in waveguide varies in the following way X (1 Cot 6 (l l) where =21rllk (I inserted length of screw).
Thus as 6 increases with temperature the reactance will fall, i.e., the effective value of C, increases. This change will increase the resonant wavelength, i.e., the change in wavelength resulting from the efi'ects on capacitance and inductance will be cumulative.
loading capacitance is significant. The gap, d, between the end of the screw and the bottom wall of the guide then changes to d (1+6) as a result of the difference between the length expansion of the screw and the height expansion of the guide, for an increase in temperature. Since the guide height is the greater, if the material employed in guide and screw is the same, e.g. copper or brass, the gap increases. Considered on its own the capacitance would then tend to decrease, with acorresponding effect on the resonant wavelength. This would offset the effect of temperature on guide dimensions and their consequent effect on resonant wavelength. r
The relationship between the capacitance of a parallel plate capacitor and its various parameters is given by the wellknown expression.
C a (KA/d) where Y K dielectric constant A area d spacing of plates This simple relationship does not hold exactly in determining end-loading capacitance inevanescent waveguide, where d is the gap between the end of the capacitive screw and A is the cross-sectional area of the screw. For example, C. K. Mok (Electronics Letters, Vol. 4, No. 3, 9th Feb. 1968, pp. 43-44) shows that as the width (area) of a capacitive obstacle in evanescent waveguide increases it ultimately becomes an inductance. However, the area of the obstacle has an important effect and consequently this is a parameter which must be considered when the screw size to obtain an optimum penetration is chosen.
The'distance d has to be quite small if the capacitance is to be significant. Obviously, the length of the screw and the guide height will then be nearly identical and, if they are of the same material, the expansions will be nearly identical. However, since the height is always marginally greater its expansion will always be greater and d will always increase. Thus, provided a suitable distance d is chosen and a suitable obstacle width is used, a certain degree of temperature compensation is obtained.
The simplest way in which d can be reduced is by offsetting the screw by a distance x from the guide center towards the guide sidewall, as shown in FIG. 2. The screw penetration will then have to be increased in order to achieve the desired susceptance. In this way an appropriate value of d can be obtained.
An .altemative'arrangeme'nt is shown in FIG. 3, in which there is an olTset main tuning screw 4a penetratingclose to the opposite (bottom) guide wall, with a fine tuning screw 6 located at the guide centerline. 1
A further alternative arrangement is shown in FIG. 4, in which there is an offset first main tuning screw 4b and a centerline second main tuning screw 4c. Temperature compensation is obtained by the relative penetration of the two screws.
The offset capacitive tuning screw is preferably made of amaterial having a lower temperature coefi'lcient of expansion from that of the material of the waveguide. This results ina greater change in d with temperature, thedifferential changes in screw length and waveguide height allowing compensation to be achieved with reasonable gaps betweenthe screw and number of conditions are shown in FIG. 5. Curve A shows the behavior of a conventional resonant cavity constructed in 2 in. X in copper waveguide.
Curve B represents the corresponding behavior of a 4 GHz. evanescent cavity built in X-band copper guide of 0.9 in. X 0.4 in. with a 2 BA copper tuning screw, as in FIG. 1. The value of d (0.042 in.) is in the range where some compensation is possible and some incidental compensation probably occurs.
Curve C shows the behavior of a similar evanescent mode waveguide resonator to that of FIG. I, having a 2 BA centrally located capacitive tuning screw with the same value for d but made from silver-plated Swedish iron. Swedish iron has a lower coefficient of expansion 12Xl0"/C.) than copper (l6Xl0"/C.). v v A ln curve D, the 2 BA silver-plated Swedish iron screw has been located halfway between the guide center and the sidewall, as in FIG. 2. The value of d (0.028 in.) is then such I that overcompensation occurs. V
In curve E, a fine tuning screw (6 B of copper has een introduced at the center of the guide, as in'FIG. 3, and the main 2 BA tuning screw of silver-plated Swedish iron withdrawn slightly, the compensation is then nearly exact.
It should be emphasized that the amount of offset of the main tuning screw and the choice of its size, .i.e., its cross-sectional area, are determined largely on an experimental basis and that for example offsetting the screw halfway between the tion of evanescent H-mode waveguide for providing significant end-loading capacitance, said tuning screw is of a material having a lower coefficient ofexpansion than that of the material of said section of evanescent H-mode waveguide.
2. A temperature-compensated resonator, according to claim 1, wherein said waveguide section is made of copper and wherein said tuning screw is made of silver-plated Swedish iron.

Claims (2)

1. A temperature-compensated resonator comprising a section of evanescent H-mode waveguide and a single capacitive tuning screw on the broad longitudinal center line of said section of evanescent H-mode waveguide for providing significant end-loading capacitance, said tuning screw is of a material having a lower coefficient of expansion than that of the material of said section of evanescent H-mode waveguide.
2. A temperature-compensated resonator, according to claim 1, wherein said waveguide section is made of copper and wherein said tuning screw is made of silver-plated Swedish iron.
US865110A 1969-10-09 1969-10-09 Temperature-compensated waveguide resonator Expired - Lifetime US3601719A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86511069A 1969-10-09 1969-10-09

Publications (1)

Publication Number Publication Date
US3601719A true US3601719A (en) 1971-08-24

Family

ID=25344743

Family Applications (1)

Application Number Title Priority Date Filing Date
US865110A Expired - Lifetime US3601719A (en) 1969-10-09 1969-10-09 Temperature-compensated waveguide resonator

Country Status (1)

Country Link
US (1) US3601719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748604A (en) * 1971-04-21 1973-07-24 Bell Telephone Labor Inc Tunable microwave bandstop resonant cavity apparatus
US4112398A (en) * 1976-08-05 1978-09-05 Hughes Aircraft Company Temperature compensated microwave filter
WO2003010849A1 (en) * 2001-07-25 2003-02-06 Mcw Research Foundation, Inc. Cavity for epr spectroscopy having axially uniform field

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2103457A (en) * 1935-06-21 1937-12-28 Rca Corp Frequency control line and circuit
US2608671A (en) * 1946-02-08 1952-08-26 Int Standard Electric Corp Electron discharge device of the electron velocity modulation type
US2749523A (en) * 1951-12-01 1956-06-05 Itt Band pass filters
US2943280A (en) * 1957-05-31 1960-06-28 Bell Telephone Labor Inc Wave filter
US3422380A (en) * 1965-08-11 1969-01-14 Nippon Electric Co Temperature compensated multielement waveguide device having susceptance elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2103457A (en) * 1935-06-21 1937-12-28 Rca Corp Frequency control line and circuit
US2608671A (en) * 1946-02-08 1952-08-26 Int Standard Electric Corp Electron discharge device of the electron velocity modulation type
US2749523A (en) * 1951-12-01 1956-06-05 Itt Band pass filters
US2943280A (en) * 1957-05-31 1960-06-28 Bell Telephone Labor Inc Wave filter
US3422380A (en) * 1965-08-11 1969-01-14 Nippon Electric Co Temperature compensated multielement waveguide device having susceptance elements

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3Craven et al., Design of Microwave Filters With Quarter-Wave Couplings, Proc. IEE (London) Vol. 103 B, pp. 173 177, 3-1956 Marcuvitz, N., Waveguide Handbook, McGraw-Hill, 1951 *
3Ragen, G. L., Microwave Transmission Circuits, McGraw Hill, 1948 pp. 489 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748604A (en) * 1971-04-21 1973-07-24 Bell Telephone Labor Inc Tunable microwave bandstop resonant cavity apparatus
US4112398A (en) * 1976-08-05 1978-09-05 Hughes Aircraft Company Temperature compensated microwave filter
WO2003010849A1 (en) * 2001-07-25 2003-02-06 Mcw Research Foundation, Inc. Cavity for epr spectroscopy having axially uniform field

Similar Documents

Publication Publication Date Title
US3840828A (en) Temperature-stable dielectric resonator filters for stripline
US3737816A (en) Rectangular cavity resonator and microwave filters built from such resonators
US4292610A (en) Temperature compensated coaxial resonator having inner, outer and intermediate conductors
US4992759A (en) Filter having elements with distributed constants which associate two types of coupling
US4996506A (en) Band elimination filter and dielectric resonator therefor
US4179673A (en) Interdigital filter
US4477785A (en) Generalized dielectric resonator filter
US4211987A (en) Cavity excitation utilizing microstrip, strip, or slot line
EP0235123B1 (en) Narrow bandpass dielectric resonator filter
US4037182A (en) Microwave tuning device
US4028651A (en) Coupled-cavity microwave filter
US4757284A (en) Dielectric filter of interdigital line type
US3639857A (en) Planar-type resonator circuit
US4059815A (en) Coaxial cavity resonator
US4453139A (en) Frequency offset multiple cavity power combiner
US4603311A (en) Twin strip resonators and filters constructed from these resonators
US3601719A (en) Temperature-compensated waveguide resonator
US2937373A (en) Slotted waveguide aerials
US4083016A (en) Coupled-cavity microwave oscillator
US3267352A (en) Harmonic generators utilizing a basic multiplying element resonant at both the input and output frequencies
US3414847A (en) High q reference cavity resonator employing an internal bimetallic deflective temperature compensating member
KR960703278A (en) Resonators and filters using these resonators
US4371849A (en) Evanescent-mode microwave oscillator
US3577104A (en) Waveguide filter having sequence of thick capacitive irises
US2427106A (en) Attenuator for centimeter waves

Legal Events

Date Code Title Description
AS Assignment

Owner name: STC PLC,ENGLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL STANDARD ELECTRIC CORPORATION, A DE CORP.;REEL/FRAME:004761/0721

Effective date: 19870423

Owner name: STC PLC, 10 MALTRAVERS STREET, LONDON, WC2R 3HA, E

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:INTERNATIONAL STANDARD ELECTRIC CORPORATION, A DE CORP.;REEL/FRAME:004761/0721

Effective date: 19870423