US3601382A - Method and apparatus for avoiding of evaporation - Google Patents

Method and apparatus for avoiding of evaporation Download PDF

Info

Publication number
US3601382A
US3601382A US791325*A US3601382DA US3601382A US 3601382 A US3601382 A US 3601382A US 3601382D A US3601382D A US 3601382DA US 3601382 A US3601382 A US 3601382A
Authority
US
United States
Prior art keywords
cooling liquid
liquid
gas
cooling
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US791325*A
Other languages
English (en)
Inventor
Alfred Sandri
Anton Scherleitner
Stefan Ivessa
Karl Nutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waagner Biro AG
Original Assignee
Waagner Biro AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waagner Biro AG filed Critical Waagner Biro AG
Application granted granted Critical
Publication of US3601382A publication Critical patent/US3601382A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/12Safety or protection arrangements; Arrangements for preventing malfunction for preventing overpressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • a circulating pump pumps a constant amount of cooling liquid through a system which includes in addition to the boiler and the pump a heat exchanger in which the liquid is cooled after leaving the boiler and a reservoir which receives the cooled liquid from the heat exchanger and which supplies the liquid to the circulating pump.
  • a compensating or equalizing expansion tank communicates with the reservoir and maintains over a liquid which is in this latter tank a cushion ofa noncorrosive gas. As the temperature of the liquid rises, the pressure of the gas in this cushion also rises, so that the pressure of the liquid rises, thus raising the boiling point thereof in such a way as to prevent vaporizing of the liquid.
  • the liquid is continuously circulated during the off-blow as well as during the blow periods of each cycle, so that by the time the end of an off-blow has been reached, the cooling liquid has been cooled down to the temperature which it had initially at the beginning of the blow period.
  • the invention concerns a method and an apparatus for preventing (avoiding) of evaporation or vaporizing of a cool-. ing liquid in the walls of a cooling stack or boiler receiving waste gas from a steel plant converter and similar metallurgical furnaces or heating plants with intermittent operation.
  • the invention is characterized in that the pressure of the cooling liquid flowing in the cooling circuit is increased during a rise in the temperature thereof, e.g. to two or three times its valve, by compressing of a gas cushion, and that on falling of the heat yield from the converter and during the off-blowinterval the temperature of the cooling liquid in the cooling circuit and thus also its pressureis returned to about its initial value by continued circulation of the liquid by circulating pumps adjusted to operatecontinuously at a constant capacity.
  • a further characteristic of the invention is that when there is a change inthe cycle increasing heating beyond the mean heat yield during a blowing-stage, in order to prevent abnormally high pressures in the circuit, a portion of the cooling liquid at high temperature isremoved and replaced by cold cooling liquid supplied to the circuit by refeeder pumps.
  • the cooling liquid is taken from a reservoir to which an expansion or compensating tank is connected.
  • the cooling liquid flows through the walls of the stack or broiler and thereafter transmits at lest a portion of the heat absorbed there to a cooling unit coupled to the outlet side, and then returns to the reservoir.
  • the circulating amount is selected as a function of the exit temperature of the cooling liquid from the stack or boiler, in such a way that the cooling fluid does not vaporize at any place within the cooling circuit.
  • the apparatus according to the invention is characterized in that the cooling circuit,consisting preferably of circulating pump, cooled stack or chimney, cooling heat exchanging unit and reservoir, is connected to an expansion or compensating tank having connected thereto feeder lines for the cooling liquid and for a noncorrosive gas, preferably nitrogen, for pressure control.
  • the invention is schematically, and by way of example, il- 1 lustrated in a. single FIGURE.
  • the FIGURE shows a circuit diagram of a cooling stack or boiler used with steel plant converters and connected with further schematically illustrated structure of the invention.
  • the waste gases of a steel plant converter 8 are cooled in a boiler of cooling stack.
  • a cooling liquid in particular water, flows through the interiorof tubes which form at least part of the walls of the stack or boiler.
  • the cooling liquid is taken from a reservoir 7.
  • the liquid is withdrawn from the reservoir 7 by means of a circulating pump 4 which is adjusted to operate at a constant capacity.
  • a second circulating pump which may work in parallel with the first pump, is provided.
  • the cooling liquid heated in the boiler or cooling stack 5 is, at least partially, cooled ina cooling unit 6 and then returned to the reservoir 7.
  • the circulating amount of cooling liquid is held constanL
  • the pressure within the installation is held between the limits of from 3 to atm.
  • the temperature of the cooling liquid in the reservoir 7 increases and thus, as explained below, its pressure also increases.
  • the increase of pressure of a liquid in a manner known per se rises to a higher temperature, so that the heat absorption capacity of the liquid increases without evaporation thereof.
  • the increase of the feed water temperature in the reservoir is compensated, so that the evaporation or vaporizing of the cooling liquid within the cooling circuit is safely prevented even at the time of the maximum heat yield (blowing peak).
  • An expansion or compensating tank 1, into which the feeder line 2 of the cooling liquid opens, is connected by conduit 24 to the reservoir 7.
  • an increase in volume of the. cooling liquid due to the heating thereof occurs, thus resulting in a rise of the liquid level in the expansion tank 1.
  • the gas cushion 11 over the liquid conveniently nitrogen gas, is compressed to an increasing extent.
  • For the gas cushion only such gases are conveniently used, which do not cause corrosion within the tubes.
  • the supply of the cooling liquid takes place by way of a refeeder pump 10 which is actuated as a function of the liquid level in the expansion tank 1 and, if necessary, of the temperature of the liquid in the reservoir 7.
  • the controlling impulse is hereby deduced from the impulse transducer 9.
  • the gas pressure cushion ll formed by a noncorrosive gas, as for example nitrogen.
  • this pressure cushion 11 open feeder lines 3 and removal'lines 19 for the pressure gas.
  • the water of the cooling circuit in particular in the reservoir 7, is gradually warmed.
  • the cooling liquid is cooled in the surface cooler or heat-exchanger 6.
  • This cooling unit has a lesser cooling. capacity than that required to cool the liquid immediately back down to its initial temperature, but removes heat during the entire operating time, in contrast to the cooling chimney 5.
  • the cooling liquid will have at the end of the off-blow interval about the same temperature as at the beginning of the blowing.
  • the cooling liquid heated during the blowing stage is gradually accumulated in the reservoir 7. As long as the cold cooling liquid is not yet entirely displaced from the reservoir 7, the temperature at the entrance of the boiler stays constant, e.g. at about 45 C.
  • the temperature at the cooling liquid entrance of the boiler increases.
  • the exit temperature of the cooling liquid from the boiler increases and at the blowing peak reaches a maximum value of about 110 C. Together with the temperature the pressure of the cooling liquid also increases from about 3 to maximally 10 atm. In this way it is provided, that the exit temperature from the boiler is always a certain amount lower than the boiling point of the cooling liquid. Since the circulating pumps 4 continue to run with constant capacity after the end of the blowing stage, that is during the off-blow interval, too, the cooling unit 6 stays in operation, and the cooling liquid in the reservoir is recooled to its initial value.
  • the invention is not restricted to the use with cooling chimneys or boilers after steel plant converters. It can be used with any intermittent heat source as long as a heat utilization with regard to the steam production does not seem to be economical.
  • cooling liquid is circulated from a reservoir through the pipes around said passage, and is cooled by the heat exchanger before returning to the reservoir, while liquid expanding out of the reservoir by the increasing volume of the heated cooling liquid is maintained in engagement with the gas cushion.
  • the gas of the gas cushion is a noncorrosive gas such as nitrogen.
  • a cooling circuit means for directing a cooling liquid along a path where waste gas from the heating installation flows to absorb heat from the waste gas and to give up heat at a part of the cooling circuit means, a compensating tank com municating with said cooling circuit means and enclosing part of the cooling liquid and a gas cushion situated thereover in the tank, so that as the temperature of the cooling liquid rises its volume increases and the pressure of the gas cushion rises to raise the pressure of the cooling liquid and thus raise its boiling point, and a pair of supply means respectively communicating with the gas and liquid in the compensating tank for respectively supplying gas and cooling liquid thereto.
  • cooling circuit means includes a circulating pump, cooling tubes pro- .vided with cooling liquid by said circulating pump and situated cooling the cooling liquid, a reservoir communicating with said heat-exchanger means for receiving the cooled liquid therefrom and also communicating with said circulating pump for supplying cooled liquid thereto, and said compensating tank communicating with said reservoir.
  • a gas flow control means communicates with the gas cushion for controlling the flow of gas to and from the latter, and control means operatively connected with said gas flow control means and responding automatically to the level of cooling liquid in the tank for withdrawing or supplying the gas to the gas cushion when the liquid level reaches a given upper limit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
US791325*A 1968-01-18 1969-01-15 Method and apparatus for avoiding of evaporation Expired - Lifetime US3601382A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT50068A AT287755B (de) 1968-01-18 1968-01-18 Verfahren und Einrichtung zur Vermeidung der Verdampfung der Kühlflüssigkeit im Kühlkreislauf eines Kühlkamins von Stahlwerkskonvertern

Publications (1)

Publication Number Publication Date
US3601382A true US3601382A (en) 1971-08-24

Family

ID=3492248

Family Applications (1)

Application Number Title Priority Date Filing Date
US791325*A Expired - Lifetime US3601382A (en) 1968-01-18 1969-01-15 Method and apparatus for avoiding of evaporation

Country Status (6)

Country Link
US (1) US3601382A (es)
JP (1) JPS4816945B1 (es)
AT (1) AT287755B (es)
BE (1) BE727052A (es)
CA (1) CA958886A (es)
LU (1) LU57788A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024903A (en) * 1974-05-20 1977-05-24 Nippon Kokan Kabushiki Kaisha Evaporative cooling method by natural circulation of cooling water
US4099019A (en) * 1976-08-24 1978-07-04 Joetsu Denro Kogyo Co., Ltd. Electric furnace waste heat recovery method and apparatus
US5505434A (en) * 1993-12-31 1996-04-09 Outokumpu Engineering Contractors Oy Method and apparatus for improving heat and dust recovery in a waste heat boiler
US20040244847A1 (en) * 2001-04-02 2004-12-09 Franciscus Roffelsen Method for feeding a closed liquid system
WO2006008329A1 (en) * 2004-07-23 2006-01-26 Foster Wheeler Energia Oy A method of and an apparatus for protecting a heat exchanger and a steam boiler provided with an apparatus for protecting a heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098695U (ja) * 1983-12-13 1985-07-05 株式会社 呉竹精昇堂 墨摺機

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3214153A (en) * 1963-11-15 1965-10-26 Heraeus Gmbh W C Cooling water supply system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3214153A (en) * 1963-11-15 1965-10-26 Heraeus Gmbh W C Cooling water supply system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024903A (en) * 1974-05-20 1977-05-24 Nippon Kokan Kabushiki Kaisha Evaporative cooling method by natural circulation of cooling water
US4099019A (en) * 1976-08-24 1978-07-04 Joetsu Denro Kogyo Co., Ltd. Electric furnace waste heat recovery method and apparatus
US5505434A (en) * 1993-12-31 1996-04-09 Outokumpu Engineering Contractors Oy Method and apparatus for improving heat and dust recovery in a waste heat boiler
US20040244847A1 (en) * 2001-04-02 2004-12-09 Franciscus Roffelsen Method for feeding a closed liquid system
WO2006008329A1 (en) * 2004-07-23 2006-01-26 Foster Wheeler Energia Oy A method of and an apparatus for protecting a heat exchanger and a steam boiler provided with an apparatus for protecting a heat exchanger
US20080264612A1 (en) * 2004-07-23 2008-10-30 Jorma Pellikka Method of and an Apparatus for Protecting a Heat Exchanger and a Steam Boiler Provided with an Apparatus for Protecting a Heat Exchanger
US8117995B2 (en) 2004-07-23 2012-02-21 Foster Wheeler Energia Oy Method of and an apparatus for protecting a heat exchanger and a steam boiler provided with an apparatus for protecting a heat exchanger

Also Published As

Publication number Publication date
CA958886A (en) 1974-12-10
BE727052A (es) 1969-07-01
AT287755B (de) 1971-02-10
JPS4816945B1 (es) 1973-05-25
LU57788A1 (es) 1969-05-13

Similar Documents

Publication Publication Date Title
US4549401A (en) Method and apparatus for reducing the initial start-up and subsequent stabilization period losses, for increasing the usable power and for improving the controllability of a thermal power plant
KR940001175A (ko) 가압수형 원자로에서 자동 안전장치로 증기 발생기 관의 파열을 줄이는 방법
US4309196A (en) Coal gasification apparatus
US3009325A (en) Once-through vapor generating and superheating unit
US3601382A (en) Method and apparatus for avoiding of evaporation
RU2255388C2 (ru) Гидравлический аккумулятор и способ приготовления текучей среды под давлением
US4353213A (en) Side stream type condensing system and method of operating the same
JPH01127894A (ja) 原動所の水・蒸気回路における復水器
US4237701A (en) Method of and apparatus for improving the energy consumption of absorption cooling plants
JP3137278B2 (ja) 原子炉用蒸気発生器及びその改造方法
CN104854661A (zh) 核电站被动辅助给水系统的充水装置
US4656335A (en) Start-up control system and vessel for LMFBR
US3214153A (en) Cooling water supply system
US3284311A (en) Internal pressurization of a nuclear reactor of the pressurized water type
US4911107A (en) Standby cooling system for a fluidized bed boiler
CN112944321A (zh) 吹管期间提高锅炉给水温度的系统及其使用方法
US3314237A (en) Startup system for a once-through steam generator
JPS5814909A (ja) 脱気装置
KR900006249B1 (ko) 가압수형원자로 증기발생기의 증기누출방지방법과 그 장치
CN215337847U (zh) 一种循环加热恒温系统
KR100678308B1 (ko) 폐회로형 중유 가열 시스템
CN214332672U (zh) 一种蓄热换热一体化蒸汽过热系统
SU1084555A1 (ru) Аккумул тор перегретой воды
CN114543074B (zh) 直流燃煤发电机组启动系统
RU2039316C1 (ru) Система пассивного отвода тепла