US3600462A - Olefin polymer blend with dicarboxylic acid of block copolymer of alpha-methyl styrene and aliphatic conjugated diolefin - Google Patents
Olefin polymer blend with dicarboxylic acid of block copolymer of alpha-methyl styrene and aliphatic conjugated diolefin Download PDFInfo
- Publication number
- US3600462A US3600462A US757796A US3600462DA US3600462A US 3600462 A US3600462 A US 3600462A US 757796 A US757796 A US 757796A US 3600462D A US3600462D A US 3600462DA US 3600462 A US3600462 A US 3600462A
- Authority
- US
- United States
- Prior art keywords
- block copolymer
- dicarboxylic acid
- olefin polymer
- composition
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920001400 block copolymer Polymers 0.000 title abstract description 49
- 229920000098 polyolefin Polymers 0.000 title abstract description 49
- 239000000203 mixture Substances 0.000 title abstract description 41
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 title abstract description 37
- 150000001993 dienes Chemical class 0.000 title abstract description 17
- 125000001931 aliphatic group Chemical group 0.000 title description 11
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 title description 9
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 abstract description 16
- -1 POLYETHYLENE Polymers 0.000 abstract description 10
- 239000000758 substrate Substances 0.000 abstract description 8
- 239000004698 Polyethylene Substances 0.000 abstract description 7
- 229920000573 polyethylene Polymers 0.000 abstract description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 abstract description 6
- 229920006037 cross link polymer Polymers 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 4
- 239000011253 protective coating Substances 0.000 abstract description 3
- 239000012467 final product Substances 0.000 abstract description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 29
- 239000005977 Ethylene Substances 0.000 description 29
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 18
- 229920001577 copolymer Polymers 0.000 description 18
- 229920000642 polymer Polymers 0.000 description 18
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 14
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 13
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 10
- 125000005907 alkyl ester group Chemical group 0.000 description 9
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 229920001567 vinyl ester resin Polymers 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 229920001519 homopolymer Polymers 0.000 description 6
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 125000002843 carboxylic acid group Chemical group 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- 238000011925 1,2-addition Methods 0.000 description 1
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 1
- RMGHERXMTMUMMV-UHFFFAOYSA-N 2-methoxypropane Chemical compound COC(C)C RMGHERXMTMUMMV-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- CJSBUWDGPXGFGA-UHFFFAOYSA-N dimethyl-butadiene Natural products CC(C)=CC=C CJSBUWDGPXGFGA-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
- C08L23/0869—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen with unsaturated acids, e.g. [meth]acrylic acid; with unsaturated esters, e.g. [meth]acrylic acid esters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S525/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S525/911—Polymer from ethylenic monomers only, having terminal functional group other than unsaturation
Definitions
- a composition of matter comprising a blend of an olefin polymer such as polyethylene and a dicarboxylic acid of a block copolymer of wmethyl styrene and an aliphatic conjugated diolefin such as 1,3-butadiene has the characteristics of a cross-linked polymer.
- the composition of matter is prepared by blending or otherwise mixing the olefin polymer and the dicarboxylic acid block copolymer in relative proportions such that the final product has at least about 0.5 percent by weight dicarboxylic acid block copolymer.
- the composition of matter is useful for providing a protective coating on a substrate of metal or the like.
- This invention relates to polymer blends. In one aspect, this invention relates to polyolefin-containing blends which can be crosslinked. In another aspect, this invention relates to polyolefin-containing coatings which can be crosslinked by the application of heat.
- the inability to cross-link olefin polymers that are substantially saturated, including homopolymers such as polyethylene and copolymers such as ethylene copolymerized with another mono-unsaturated monomer, without modifying the polymer chains such that they can be crosslinked, has limited the utility of these polymer materials.
- This limitation of the olefin polymers is especially significant in the coating art in those situations which require the coating to have the advantages of a cross-linked polymer system. While some of the olefin polymers can be rendered cross-linkable by subjecting the polymer to controlled doses of radiation, such a treatment is time consuming and expensive. Moreover, many of the olefin polymers are not amenable to such a treatment.
- an olefin polymer is blended or otherwise mixed with a dicarboxylic acid of a block copolymer of ot-methyl styrene and an aliphatic conjugated diolefin to provide a composition of matter which is cross-linkable.
- the composition of matter of this invention possesses many of the properties of a cross-linked olefin polymer without the necessity of having to modify the olefin polymer to allow it to be cross-linked.
- Another object of this invention is to provide an olefin polymer-containing composition of matter which possesses many of the properties of a cross-linked olefin polymer without modifying the olefin polymer molecules.
- the dicarboxylic acid block copolymer which is blended or otherwise mixed with an olefin polymer to produce a composition of matter which can be cross-linked by the application of heat according to the teachings of this invention comprises a dicarboxylic acid of a block copolymer of u-methyl styrene and an aliphatic conjugated diolefin haying between 4 and 6 carbon atoms per molecule.
- the dicarboxylic acid block copolymer is represented by the formula wherein A represents a molecule of the methyl styrene after it has become a part of the polymer, x is an integer of between 3 and 6, inclusive, each B represents a molecule of the aliphatic conjugated diolefin after it has become a part of the polymer, each 3/ is an integer of between 1 and about 100, and the HOOC- and -COOH portions represent carboxylic acid groups attached to the ends of the polymer.
- Exemplary conjugated diolefins which can be block-copolymerized with the a-methyl styrene polymer block include butadiene, isoprene, 1,3-pentadiene, dimethyl butadiene, mixtures of the foregoing diolefins, and the like.
- the a-methyl styrene polymer block can be present as a trimer, tetramer, pentamer, or hexamer.
- the degree of polymerization (DP) of the dicarboxylic acid block copolymer is the number of a-methyl styrene molecules in the copolymer plus the number of conjugated diolefin molecules in the copolymer.
- the DP of a block copolymer containing a-methyl styrene tetramer and 23 1,3-butadiene molecules on each side of the a-methyl styrene tetramer is 50.
- the terminal carboxylic acid groups in the block copolymer are not taken into consideration when calculating the DP for a particular block copolymer.
- the dicarboxylic acid block copolymers useful in practicing this invention can have any suitable degree of polymerization. In general, block copolymers having a degree of polymerization between about 5 and about 200 or more can be employed.
- the block copolymer can be prepared by reacting amethyl styrene with an alkali metal such as sodium at a temperature of between about 15 and about 50 C. in an aliphatic ether solvent such as methyl isopropyl ether. The reaction is allowed to proceed in an environment substantially free of impurities to form the corresponding alkali metal addition compound of the poly- (ot-methyl styrene).
- an alkali metal such as sodium
- the alkali metal compound is then reacted with an aliphatic conjugated diolefin such as 1,3- butadiene in the presence of a suitable solvent such as an aliphatic or cyclic ether at a temperature of between about 78 and -20 C. It is generally preferred that this reaction also be conducted under conditions substantially free of impurities which may react with the alkali metal addition compound or otherwise interfere with the formation of the block copolymers.
- the conjugated diolefin is used in amounts sufiicient to provide the degree of polymerization desired. In general, the conjugated diolefin is used in an amount between about 1 and about 200 gram molecular proportions per gram equivalent proportion of the alkali metal addition compound.
- the block copolymer of a-methyl styrene and conjugated diolefin thus formed is in effect a living copolymer having negatively charged end groups which react freely with carbon dioxide to form carboxylic acid groups on the ends of the polymer chains.
- This reaction can be effected by pouring with stirring the other solution containing the block copolymer into a vessel containing granular solid carbon dioxide. It is generally preferred to use a stoichiometrlc excess of carbon dioxide.
- the predominant 1,2-addition of the conjugated diolefin results in a multitude of vinyl groups pendant from the polymer chain in the vicinity of the aliphatic conjugated diolefin portion of the block copolymer. While the invention is not to be predicated upon or bound by any particular theory, it is believed that the pendant groups become entwined with the olefin polymer chains when the dicarboxylic acid block copolymer has been blended with the olefin polymer. When heat is applied to this blend, it is believed that the pendant vinyl groups cross-link and thus form a network of polymer molecules having many of the properties of a cross-linked polyolefin.
- the dicarboxylic acid block copolymer is blended with the olefin polymer in an amount sufficient to produce a composition of matter having the characteristics which are desired.
- the actual amount of dicarboxylic acid block copolymer employed in the composition of matter will depend upon such factors as the molecular weight of the olefin polymer, the type of olefin polymer in terms of whether it is a copolymer or homopolymer, the degree of polymerization of the dicarboxylic acid block copolymer resin, and the like.
- the amount dicarboxylic acid block copolymer employed does not necessarily have an upper limit except as that dictated by economics, it is generally preferred that the dicarboxylic acid block copolymer be employed in an amount equal to at least about 0.5 percent by weight based upon the total weight of the blend.
- Olefin polymers which can be blended with the dicarboxylic acid block copolymer to produce a composition of matter having the characteristics of a cross-linkable or cross-linked composition of matter includes any olefin homopolymer or copolymer which will achieve the results of this invention by means of the dicarboxylic acid block copolymer.
- olefin polymer as used herein is intended to include any suitable olefin homopolymer such as polyethylene, polypropylene, polybutene-l, and any suitable olefin copolymer such as copolymers of ethylene and an a,B-ethylenically unsaturated carboxylic acid and copolymers of ethylene, an a,/8-ethylenically unsaturated carboxylic acid, and an ester selected from the group consisting of alkyl esters of an a,fi-ethylenically unsaturated carboxylic acid and vinyl esters of a saturated carboxylic acid.
- any suitable olefin homopolymer such as polyethylene, polypropylene, polybutene-l
- any suitable olefin copolymer such as copolymers of ethylene and an a,B-ethylenically unsaturated carboxylic acid and copolymers of ethylene, an a,/8-ethylen
- Copolymers of ethylene and an ester selected from the group consisting of alkyl esters of an a,B-ethylenically unsaturated carboxylic acid and vinyl esters of a saturated carboxylic acid can also be employed as the "olefin polymer in the practice of the invention.
- Exemplary a,B-ethylenically unsaturated carboxylic acids which can be copolymerized with the ethylene or copolymerized with ethylene and an alkyl ester of an a,fi-ethylenically unsaturated carboxylic acid or vinyl ester of a saturated carboxylic acid include acrylic, methacrylic, ethacrylic, maleic, fumaric, itaconic and the like. It is generally preferred that the a,B-ethylenically unsaturated carboxylic acid which is copolymerized with ethylene or with ethylene and an alkyl ester contain between about 3 and about 8 carbon atoms per molecule.
- alkyl esters of an Qgfi-ethylenically unsaturated carboxylic acid which can be copolymerized with ethylene and an unsaturated acid or with ethylene alone include methyl methacrylate, ethyl acrylate, n-pentyl acrylate, iso-octyl acrylate, iso-propyl acrylate, n-butyl methacrylate, and the like.
- the alkyl radical contain up to about 8 carbon atoms and that the acid moiety of the ester contain between 3 and 8 carbon atoms.
- Exemplary vinyl esters which can be copolymerized with ethylene and an a,,8-ethylenically unsaturated carboxylic acid or with ethylene alone include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate, and the like.
- the olefin copolymers e.g. of ethylene, can contain up to about 30 weight percent and preferably between about 5 and about 25 weight percent a,,8-ethylenically unsaturated carboxylic acid and up to about 30 and preferably between about 5 and about 25 weight percent of an ester selected from the group consisting of alkyl esters of a,B-ethylenically unsaturated carboxylic acids and vinyl esters of saturated carboxylic acids.
- olefin polymers which can be blended with the dicarboxylic acid block copolymer of this invention include homopolymers of ethylene, propylene, and l-butene.
- Olefin copolymers which can be blended with the dicarboxylic acid block copolymer include copolymers of ethylene and acrylic acid. In this embodiment of the invention, it is generally preferred that the olefin polymer contain between about 70 and about 99.5 weight percent ethylene and between about 0.5 and about 30 weight percent acrylic acid.
- Another exemplary olefin polymer which can be blended with the dicarboxylic acid block copolymer according to this invention is a copolymer of ethylene, acrylic acid, and ethyl acrylate. In this embodiment, it is generally preferred that the olefin polymer contain between about 50 and about weight percent ethylene, between about 5 and about 25 weight percent acrylic acid, and between about 5 and about 25 weight percent ethyl acrylate.
- Another olefin polymer which can be blended with the dicarboxylic acid block copolymer in accordance with this invention is the copolymer of ethylene, acrylic acid and vinyl acetate. It is generally preferred that this olefin polymer contain between about 50 and about 90 weight percent ethylene, between about 5 and about 25 weight percent acrylic acid, and between about 5 and about 25 weight percent vinyl acetate.
- the dicarboxylic acid block copolymer and olefin polymer can be blended or otherwise mixed together by any suitable technique such as by a roll mill or Banbury mixer.
- the olefin polymer and dicarboxylic acid block copolymer can be dissolved in a suitable solvent system which can then be flashed.
- Olefin polymers which are blended with the dicarboxylic acid block copolymer in accordance with this invention to produce the desired results can generally be defined as those which have no unsaturation in the backbones of the individual polymer chains.
- the dicarboxylic acid block copolymer is particularly effective in producing a composition of matter which can be heated to produce a polymer network having many of the properties of a highly crosslinked polymer material.
- EXAMPLE I About 50 grams of an olefin polymer comprising 72 weight percent ethylene, 14 Weight percent acrylic acid, and 14 Weight percent ethyl acrylate was dissolved in 500 grams of tetrahydrofuran. About 500 grams of a dicarboxylic acid block copolymer of a-methyl styrene tetramer and 1,3-butadiene (polymerized in the 1-2 position to form pendant vinyl groups) having a DP of 50 was added to the tetrahydrofuran-olefin solution.
- This polymer solution was then added to 500 grams of an aqueous solution containing 5.4 grams potassium hydroxide and the tetrahydrofuran distilled off leaving a clear dispersion of the olefin polymer and dicarboxylic acid block copolymer.
- the resulting aqueous dispersion contained 14.6 percent solids after the tetrahydrofuran had been distilled off.
- the resulting dispersion is deposited on a substrate and the water flashed off to produce a coating of the olefindicarboxylic acid block copolymer composition.
- the substrate is then heated to produce a coating which has many of the characteristics of a cross-linked olefin polymer including improved resistance to solvents and an improvement in the resistance to heat degradation.
- EXAMPLE II Polyethylene having a molecular weight of about 500,- 000 is blended in a Banbury mixer with a dicarboxylic acid block copolymer of ot-methyl styrene tetramer and 1,3-butadiene in a relative proportion to provide a composition of matter containing 95 weight percent polyethylene and weight percent dicarboxylic acid block copolymer.
- the resulting composition of matter is recovered from the Banbury mixer and compression molded to produce a film having a thickness of about 3 mils.
- the film is laminated to aluminum can stock having a thickness of about 8 mils by placing the can stock and the film between the platens of a hydraulic press which bonds the film to the aluminum under heat and pressure. The heat supplied by the platens in the hydraulic press is sufficient to cause the pendant vinyl groups of the block copolymer to cross-link with each other and thus produce a coating on the aluminum can stock which has the characteristics of a cross-linked olefin.
- composition of matter of this invention can be applied to any suitable substrate of metal or the like to form a tightly adhering protective coating.
- Exemplary metal substrates which can be coated with the composition of this invention include aluminum, steel, bonderized steel, magnesium, iron, and the like.
- Exemplary non-metallic substrates which can be coated by the composition of this invention include kraft paper, glass, plastics, and the like.
- the metal substrate can be in the form of automobile bodies, containers, metal strips or sheets for use in fabricating receptacles, flashing material for building construction, and the like.
- a composition of matter comprising a blend of an olefin polymer characterized by having substantially no unsaturation in the backbones of the individual polymer chains and at least about 0.5 percent by weight, based upon the total weight of said blend, of a dicarboxylic acid of a block copolymer of a-methyl styrene and an aliphatic conjugated diolefin having between 4 and 6 carbon atoms per molecule, inclusive, said block copolymer having the formula wherein A represents a molecule of the rat-methyl styrene after it has become a part of the polymer, x is an integer of between 3 and 6, inclusive, each B represents a molecule of the aliphatic conjugated diolefin after it has become a part of the polymer, each y is an integer of be- 6 tween 1 and about 100, and the HOOC-- and COOH portions represent carboxylic acid groups attached to the ends of the polymer.
- composition of matter according to claim 1 wherein said dicarboxylic acid block copolymer comprises 06- methyl styrene tetramer and 1,3-butadiene having a degree of polymerization between about 6 and about 200.
- a composition of matter according to claim 1 wherein said olefin polymer is selected from the group consisting of homopolymers of ethylene, propylene, and l-butene; copolymers of ethylene containing up to about 30 weight percent a,[3-ethylenical1y unsaturated carboxylic acid; copolymers of ethylene containing up to about 30 weight percent of an ester selected from the group consisting of alkyl esters of an c fi-ethylenically unsaturated carboxylic acid and vinyl esters of a saturated carboxylic acid; and copolymers of ethylene containing up to about 30 weight percent a,fi-ethylenically unsaturated carboxylic acid and containing up to about 30 weight percent of an ester selected from the group consisting of alkyl esters of an 11,3- ethylenically unsaturated carboxylic acid and vinyl esters of a saturated carboxylic acid.
- composition of matter according to claim 3 wherein said olefin polymer is polyethylene.
- composition of matter according to claim 3 wherein said ole-fin polymer is a copolymer of ethylene and acrylic acid.
- composition of matter according to claim 5 wherein said olefin polymer contains between about and about 99.5 weight percent ethylene and between about 0.5 and about 30 weight percent acrylic acid.
- composition of matter according to claim 3 wherein said olefin polymer is a copolymer of ethylene, acrylic acid, and ethyl acrylate.
- composition of matter according to claim 7 wherein said olefin polymer contains between about 50 and about weight percent ethylene, between about 5 and about 25 weight percent acrylic acid, and between about 5 and about 25 weight percent ethyl acrylate.
- composition of matter according to claim 3 wherein said olefin polymer is a copolymer of ethylene, acrylic acid, and vinyl acetate.
- composition of matter according to claim 9 wherein said olefin polymer contains between about 50 and about 90 weight percent ethylene, between about 5 and about 25 weight percent acrylic acid, and between about 5 and about 25 weight percent vinyl acetate.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A COMPOSITION OF MATTER COMPRISING A BLEND OF AN OLEFIN POLYMER SUCH AS POLYETHYLENE AND A DICARBOXYLIC ACID OF A BLOCK COPOLYMER OF A-METHYLENE AND A DICARBOXYLIC ACID OF A BLOCK COPOLYMER OF A-METHYLE STYRENE AND AN ALIPHATIC CONJUGATED DIOLEFIN SUCH AS 1,3-BUTADIENE HAS THE CHARACTERISTICS OF A CROSS-LINKED POLYMER. THE COMPOSITION OF MATTER IS PREPARED BY BLENDING OR OTHERWISE MIXING THE OLEFIN POLYMER AND THE DICARBOXYLIC ACID BLOCK COPOLYMER IN RELATIVE PROPORTIONS SUCH THAT THE FINAL PRODUCT HAS AT LEAST ABOUT 0.5 PERCENT BY WEIGHT DICARBOXYLIC ACID BLOCK COPOLYMER. THE COMPOSITION OF MATTER IS USEFUL FOR PROVIDING A PROTECTIVE COATING ON A SUBSTRATE OF METAL OR THE LIKE.
Description
Patented Aug. 17, 1971 M hoe 3,600,462 ()lLlEFllN POLYMER BLEND WlTH DICAJRBUXYILIC ACID 01F BLOCK CQPOLYMER UF (It-METHYL STYRENE AND ALllPHATlC CONJUGATED DIOLlElFl [N Thomas O. Harmon, Midland, Mich, assignor to The Dow @hemical Company, Midland, Mich. No Drawing. Filed Sept. 5, 1968, Ser. No. 757,796 lint. Cl. (108i? 29/12, 29/36, 29/50 US. Cl. 260-876 Claims ABSTRACT OF THE DISCLOSURE A composition of matter comprising a blend of an olefin polymer such as polyethylene and a dicarboxylic acid of a block copolymer of wmethyl styrene and an aliphatic conjugated diolefin such as 1,3-butadiene has the characteristics of a cross-linked polymer. The composition of matter is prepared by blending or otherwise mixing the olefin polymer and the dicarboxylic acid block copolymer in relative proportions such that the final product has at least about 0.5 percent by weight dicarboxylic acid block copolymer. The composition of matter is useful for providing a protective coating on a substrate of metal or the like.
This invention relates to polymer blends. In one aspect, this invention relates to polyolefin-containing blends which can be crosslinked. In another aspect, this invention relates to polyolefin-containing coatings which can be crosslinked by the application of heat.
The inability to cross-link olefin polymers that are substantially saturated, including homopolymers such as polyethylene and copolymers such as ethylene copolymerized with another mono-unsaturated monomer, without modifying the polymer chains such that they can be crosslinked, has limited the utility of these polymer materials. This limitation of the olefin polymers is especially significant in the coating art in those situations which require the coating to have the advantages of a cross-linked polymer system. While some of the olefin polymers can be rendered cross-linkable by subjecting the polymer to controlled doses of radiation, such a treatment is time consuming and expensive. Moreover, many of the olefin polymers are not amenable to such a treatment.
According to this invention, an olefin polymer is blended or otherwise mixed with a dicarboxylic acid of a block copolymer of ot-methyl styrene and an aliphatic conjugated diolefin to provide a composition of matter which is cross-linkable. The composition of matter of this invention possesses many of the properties of a cross-linked olefin polymer without the necessity of having to modify the olefin polymer to allow it to be cross-linked.
Accordingly, it is an object of this invention to provide a cross-linkable blend containing an olefin polymer.
Another object of this invention is to provide an olefin polymer-containing composition of matter which possesses many of the properties of a cross-linked olefin polymer without modifying the olefin polymer molecules.
These and other objects of the invention will become apparent to one skilled in the art after studying the following detailed description and the appended claims.
The dicarboxylic acid block copolymer which is blended or otherwise mixed with an olefin polymer to produce a composition of matter which can be cross-linked by the application of heat according to the teachings of this invention comprises a dicarboxylic acid of a block copolymer of u-methyl styrene and an aliphatic conjugated diolefin haying between 4 and 6 carbon atoms per molecule. The dicarboxylic acid block copolymer is represented by the formula wherein A represents a molecule of the methyl styrene after it has become a part of the polymer, x is an integer of between 3 and 6, inclusive, each B represents a molecule of the aliphatic conjugated diolefin after it has become a part of the polymer, each 3/ is an integer of between 1 and about 100, and the HOOC- and -COOH portions represent carboxylic acid groups attached to the ends of the polymer. Exemplary conjugated diolefins which can be block-copolymerized with the a-methyl styrene polymer block include butadiene, isoprene, 1,3-pentadiene, dimethyl butadiene, mixtures of the foregoing diolefins, and the like. As indicated with respect to the general formula, the a-methyl styrene polymer block can be present as a trimer, tetramer, pentamer, or hexamer.
As used herein, the degree of polymerization (DP) of the dicarboxylic acid block copolymer is the number of a-methyl styrene molecules in the copolymer plus the number of conjugated diolefin molecules in the copolymer. Thus, for example, the DP of a block copolymer containing a-methyl styrene tetramer and 23 1,3-butadiene molecules on each side of the a-methyl styrene tetramer is 50. The terminal carboxylic acid groups in the block copolymer are not taken into consideration when calculating the DP for a particular block copolymer. The dicarboxylic acid block copolymers useful in practicing this invention can have any suitable degree of polymerization. In general, block copolymers having a degree of polymerization between about 5 and about 200 or more can be employed.
Although the invention is not to be bound by any particular technique for producing the dicarboxylic acid block copolymers, a suitable technique for their preparation is described in US. Pat. 3,346,666, the disclosure of which is specifically incorporated herein by reference. The block copolymer can be prepared by reacting amethyl styrene with an alkali metal such as sodium at a temperature of between about 15 and about 50 C. in an aliphatic ether solvent such as methyl isopropyl ether. The reaction is allowed to proceed in an environment substantially free of impurities to form the corresponding alkali metal addition compound of the poly- (ot-methyl styrene). The alkali metal compound is then reacted with an aliphatic conjugated diolefin such as 1,3- butadiene in the presence of a suitable solvent such as an aliphatic or cyclic ether at a temperature of between about 78 and -20 C. It is generally preferred that this reaction also be conducted under conditions substantially free of impurities which may react with the alkali metal addition compound or otherwise interfere with the formation of the block copolymers. The conjugated diolefin is used in amounts sufiicient to provide the degree of polymerization desired. In general, the conjugated diolefin is used in an amount between about 1 and about 200 gram molecular proportions per gram equivalent proportion of the alkali metal addition compound.
The block copolymer of a-methyl styrene and conjugated diolefin thus formed is in effect a living copolymer having negatively charged end groups which react freely with carbon dioxide to form carboxylic acid groups on the ends of the polymer chains. This reaction can be effected by pouring with stirring the other solution containing the block copolymer into a vessel containing granular solid carbon dioxide. It is generally preferred to use a stoichiometrlc excess of carbon dioxide.
The predominant 1,2-addition of the conjugated diolefin results in a multitude of vinyl groups pendant from the polymer chain in the vicinity of the aliphatic conjugated diolefin portion of the block copolymer. While the invention is not to be predicated upon or bound by any particular theory, it is believed that the pendant groups become entwined with the olefin polymer chains when the dicarboxylic acid block copolymer has been blended with the olefin polymer. When heat is applied to this blend, it is believed that the pendant vinyl groups cross-link and thus form a network of polymer molecules having many of the properties of a cross-linked polyolefin.
The dicarboxylic acid block copolymer is blended with the olefin polymer in an amount sufficient to produce a composition of matter having the characteristics which are desired. The actual amount of dicarboxylic acid block copolymer employed in the composition of matter will depend upon such factors as the molecular weight of the olefin polymer, the type of olefin polymer in terms of whether it is a copolymer or homopolymer, the degree of polymerization of the dicarboxylic acid block copolymer resin, and the like. While the amount dicarboxylic acid block copolymer employed does not necessarily have an upper limit except as that dictated by economics, it is generally preferred that the dicarboxylic acid block copolymer be employed in an amount equal to at least about 0.5 percent by weight based upon the total weight of the blend.
Olefin polymers which can be blended with the dicarboxylic acid block copolymer to produce a composition of matter having the characteristics of a cross-linkable or cross-linked composition of matter includes any olefin homopolymer or copolymer which will achieve the results of this invention by means of the dicarboxylic acid block copolymer. Thus, the term olefin polymer as used herein is intended to include any suitable olefin homopolymer such as polyethylene, polypropylene, polybutene-l, and any suitable olefin copolymer such as copolymers of ethylene and an a,B-ethylenically unsaturated carboxylic acid and copolymers of ethylene, an a,/8-ethylenically unsaturated carboxylic acid, and an ester selected from the group consisting of alkyl esters of an a,fi-ethylenically unsaturated carboxylic acid and vinyl esters of a saturated carboxylic acid. Copolymers of ethylene and an ester selected from the group consisting of alkyl esters of an a,B-ethylenically unsaturated carboxylic acid and vinyl esters of a saturated carboxylic acid can also be employed as the "olefin polymer in the practice of the invention.
Exemplary a,B-ethylenically unsaturated carboxylic acids which can be copolymerized with the ethylene or copolymerized with ethylene and an alkyl ester of an a,fi-ethylenically unsaturated carboxylic acid or vinyl ester of a saturated carboxylic acid include acrylic, methacrylic, ethacrylic, maleic, fumaric, itaconic and the like. It is generally preferred that the a,B-ethylenically unsaturated carboxylic acid which is copolymerized with ethylene or with ethylene and an alkyl ester contain between about 3 and about 8 carbon atoms per molecule.
Exemplary alkyl esters of an Qgfi-ethylenically unsaturated carboxylic acid which can be copolymerized with ethylene and an unsaturated acid or with ethylene alone include methyl methacrylate, ethyl acrylate, n-pentyl acrylate, iso-octyl acrylate, iso-propyl acrylate, n-butyl methacrylate, and the like. In the alkyl ester, it is generally preferred that the alkyl radical contain up to about 8 carbon atoms and that the acid moiety of the ester contain between 3 and 8 carbon atoms.
Exemplary vinyl esters which can be copolymerized with ethylene and an a,,8-ethylenically unsaturated carboxylic acid or with ethylene alone include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate, and the like.
The olefin copolymers, e.g. of ethylene, can contain up to about 30 weight percent and preferably between about 5 and about 25 weight percent a,,8-ethylenically unsaturated carboxylic acid and up to about 30 and preferably between about 5 and about 25 weight percent of an ester selected from the group consisting of alkyl esters of a,B-ethylenically unsaturated carboxylic acids and vinyl esters of saturated carboxylic acids.
Thus, olefin polymers which can be blended with the dicarboxylic acid block copolymer of this invention include homopolymers of ethylene, propylene, and l-butene. Olefin copolymers which can be blended with the dicarboxylic acid block copolymer include copolymers of ethylene and acrylic acid. In this embodiment of the invention, it is generally preferred that the olefin polymer contain between about 70 and about 99.5 weight percent ethylene and between about 0.5 and about 30 weight percent acrylic acid. Another exemplary olefin polymer which can be blended with the dicarboxylic acid block copolymer according to this invention is a copolymer of ethylene, acrylic acid, and ethyl acrylate. In this embodiment, it is generally preferred that the olefin polymer contain between about 50 and about weight percent ethylene, between about 5 and about 25 weight percent acrylic acid, and between about 5 and about 25 weight percent ethyl acrylate.
Another olefin polymer which can be blended with the dicarboxylic acid block copolymer in accordance with this invention is the copolymer of ethylene, acrylic acid and vinyl acetate. It is generally preferred that this olefin polymer contain between about 50 and about 90 weight percent ethylene, between about 5 and about 25 weight percent acrylic acid, and between about 5 and about 25 weight percent vinyl acetate.
The dicarboxylic acid block copolymer and olefin polymer can be blended or otherwise mixed together by any suitable technique such as by a roll mill or Banbury mixer. Alternatively, the olefin polymer and dicarboxylic acid block copolymer can be dissolved in a suitable solvent system which can then be flashed.
Olefin polymers which are blended with the dicarboxylic acid block copolymer in accordance with this invention to produce the desired results can generally be defined as those which have no unsaturation in the backbones of the individual polymer chains. With olefin polymers of this type, the dicarboxylic acid block copolymer is particularly effective in producing a composition of matter which can be heated to produce a polymer network having many of the properties of a highly crosslinked polymer material.
The following examples illustrate different techniques for preparing the composition of matter of this invention. It is to be understood that these examples are for the purpose of illustration only and should not be construed as limiting of the invention.
EXAMPLE I About 50 grams of an olefin polymer comprising 72 weight percent ethylene, 14 Weight percent acrylic acid, and 14 Weight percent ethyl acrylate was dissolved in 500 grams of tetrahydrofuran. About 500 grams of a dicarboxylic acid block copolymer of a-methyl styrene tetramer and 1,3-butadiene (polymerized in the 1-2 position to form pendant vinyl groups) having a DP of 50 was added to the tetrahydrofuran-olefin solution. This polymer solution was then added to 500 grams of an aqueous solution containing 5.4 grams potassium hydroxide and the tetrahydrofuran distilled off leaving a clear dispersion of the olefin polymer and dicarboxylic acid block copolymer. The resulting aqueous dispersion contained 14.6 percent solids after the tetrahydrofuran had been distilled off.
The resulting dispersion is deposited on a substrate and the water flashed off to produce a coating of the olefindicarboxylic acid block copolymer composition. The substrate is then heated to produce a coating which has many of the characteristics of a cross-linked olefin polymer including improved resistance to solvents and an improvement in the resistance to heat degradation.
EXAMPLE II Polyethylene having a molecular weight of about 500,- 000 is blended in a Banbury mixer with a dicarboxylic acid block copolymer of ot-methyl styrene tetramer and 1,3-butadiene in a relative proportion to provide a composition of matter containing 95 weight percent polyethylene and weight percent dicarboxylic acid block copolymer. The resulting composition of matter is recovered from the Banbury mixer and compression molded to produce a film having a thickness of about 3 mils. The film is laminated to aluminum can stock having a thickness of about 8 mils by placing the can stock and the film between the platens of a hydraulic press which bonds the film to the aluminum under heat and pressure. The heat supplied by the platens in the hydraulic press is sufficient to cause the pendant vinyl groups of the block copolymer to cross-link with each other and thus produce a coating on the aluminum can stock which has the characteristics of a cross-linked olefin.
The composition of matter of this invention can be applied to any suitable substrate of metal or the like to form a tightly adhering protective coating. Exemplary metal substrates which can be coated with the composition of this invention include aluminum, steel, bonderized steel, magnesium, iron, and the like. Exemplary non-metallic substrates which can be coated by the composition of this invention include kraft paper, glass, plastics, and the like. The metal substrate can be in the form of automobile bodies, containers, metal strips or sheets for use in fabricating receptacles, flashing material for building construction, and the like.
Although the invention has been described in considerable detail, it must be understood that such description is for the purpose of illustration only and many variations and modifications are possible without departing from the spirit and scope of the invention.
That which is claimed is:
1. A composition of matter comprising a blend of an olefin polymer characterized by having substantially no unsaturation in the backbones of the individual polymer chains and at least about 0.5 percent by weight, based upon the total weight of said blend, of a dicarboxylic acid of a block copolymer of a-methyl styrene and an aliphatic conjugated diolefin having between 4 and 6 carbon atoms per molecule, inclusive, said block copolymer having the formula wherein A represents a molecule of the rat-methyl styrene after it has become a part of the polymer, x is an integer of between 3 and 6, inclusive, each B represents a molecule of the aliphatic conjugated diolefin after it has become a part of the polymer, each y is an integer of be- 6 tween 1 and about 100, and the HOOC-- and COOH portions represent carboxylic acid groups attached to the ends of the polymer.
2. A composition of matter according to claim 1 wherein said dicarboxylic acid block copolymer comprises 06- methyl styrene tetramer and 1,3-butadiene having a degree of polymerization between about 6 and about 200.
3. A composition of matter according to claim 1 wherein said olefin polymer is selected from the group consisting of homopolymers of ethylene, propylene, and l-butene; copolymers of ethylene containing up to about 30 weight percent a,[3-ethylenical1y unsaturated carboxylic acid; copolymers of ethylene containing up to about 30 weight percent of an ester selected from the group consisting of alkyl esters of an c fi-ethylenically unsaturated carboxylic acid and vinyl esters of a saturated carboxylic acid; and copolymers of ethylene containing up to about 30 weight percent a,fi-ethylenically unsaturated carboxylic acid and containing up to about 30 weight percent of an ester selected from the group consisting of alkyl esters of an 11,3- ethylenically unsaturated carboxylic acid and vinyl esters of a saturated carboxylic acid.
4. A composition of matter according to claim 3 wherein said olefin polymer is polyethylene.
5. A composition of matter according to claim 3 wherein said ole-fin polymer is a copolymer of ethylene and acrylic acid.
6. A composition of matter according to claim 5 wherein said olefin polymer contains between about and about 99.5 weight percent ethylene and between about 0.5 and about 30 weight percent acrylic acid.
7. A composition of matter according to claim 3 wherein said olefin polymer is a copolymer of ethylene, acrylic acid, and ethyl acrylate.
8. A composition of matter according to claim 7 wherein said olefin polymer contains between about 50 and about weight percent ethylene, between about 5 and about 25 weight percent acrylic acid, and between about 5 and about 25 weight percent ethyl acrylate.
9. A composition of matter according to claim 3 wherein said olefin polymer is a copolymer of ethylene, acrylic acid, and vinyl acetate.
10. A composition of matter according to claim 9 wherein said olefin polymer contains between about 50 and about 90 weight percent ethylene, between about 5 and about 25 weight percent acrylic acid, and between about 5 and about 25 weight percent vinyl acetate.
References Cited UNITED STATES PATENTS 3,346,666 10/1967 Dennis 260-4379 SAMUEL H. BLECH, Primary Examiner US. Cl. X.R.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US75779668A | 1968-09-05 | 1968-09-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3600462A true US3600462A (en) | 1971-08-17 |
Family
ID=25049254
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US757796A Expired - Lifetime US3600462A (en) | 1968-09-05 | 1968-09-05 | Olefin polymer blend with dicarboxylic acid of block copolymer of alpha-methyl styrene and aliphatic conjugated diolefin |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3600462A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3970771A (en) * | 1974-11-25 | 1976-07-20 | Shell Oil Company | Substrate coated with mixed resin primer coat comprising a block copolymer |
| US4003860A (en) * | 1975-06-09 | 1977-01-18 | Phillips Petroleum Company | Nonshrink cellular rubber composition |
| US4168341A (en) * | 1978-02-21 | 1979-09-18 | Phillips Petroleum Co. | Fabric-backed teleblock copolymer composition with dulled surface useful in footwear uppers |
| US4659776A (en) * | 1979-11-30 | 1987-04-21 | The Dow Chemical Company | Physically-ameliorated styrene polymer/thermoplastic elastomer polyblends |
-
1968
- 1968-09-05 US US757796A patent/US3600462A/en not_active Expired - Lifetime
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3970771A (en) * | 1974-11-25 | 1976-07-20 | Shell Oil Company | Substrate coated with mixed resin primer coat comprising a block copolymer |
| US4003860A (en) * | 1975-06-09 | 1977-01-18 | Phillips Petroleum Company | Nonshrink cellular rubber composition |
| US4168341A (en) * | 1978-02-21 | 1979-09-18 | Phillips Petroleum Co. | Fabric-backed teleblock copolymer composition with dulled surface useful in footwear uppers |
| US4659776A (en) * | 1979-11-30 | 1987-04-21 | The Dow Chemical Company | Physically-ameliorated styrene polymer/thermoplastic elastomer polyblends |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3437718A (en) | Polymer blends | |
| JPH066654B2 (en) | Filler-containing polypropylene resin composition | |
| JPS582983B2 (en) | Sunmusubutsu kakiyozai o fukum funtaitosososebutsu | |
| US3842058A (en) | Vinyl ether terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution | |
| US3600462A (en) | Olefin polymer blend with dicarboxylic acid of block copolymer of alpha-methyl styrene and aliphatic conjugated diolefin | |
| US3842057A (en) | Vinyl ester terminated macromolecular monomers having a substantially uniform molecular weight distribution and process for preparing same | |
| US4757112A (en) | Single step bulk process for high impact polyamide masterbatches, products thereof and blends with polyamides | |
| US3278495A (en) | Terpolymer of ethylene, propylene, and an unsaturated acid derivative from the classof amides, nitriles, anhydrides, esters, and the hydrolysis products thereof | |
| US3035011A (en) | Transesterification of copolymers of olefins and organic vinyl esters with polyfunctional carboxylic acids or derivatives thereof and method of making same | |
| JP2596884B2 (en) | Binder resin solution composition with good low-temperature fluidity | |
| JPH0618940B2 (en) | Thermoplastic composition and articles made therefrom | |
| DE3855071T2 (en) | Use of an alpha olefin-alkenylsilane copolymer to bond two layers or to coat an article | |
| US4137281A (en) | Impact-resistant, high softening maleic anhydride copolymers | |
| US3562354A (en) | Polyvinyl chloride based coatings containing glycidyl methacrylate and vinyl acetate for metallic objects | |
| JPH0345101B2 (en) | ||
| JPS58118809A (en) | Production of primer for propylene resin | |
| US2856309A (en) | Unsaturated hydrocarbon drying oils containing a hardening agent and a process of making them | |
| JP2975371B2 (en) | Ionomer polymer | |
| US3787366A (en) | Reactive beta-lactone-containing polymers and a method for their preparation | |
| US3311584A (en) | Interpolymers of vinylidene aromatic, butadiene and half ester of maleic acid | |
| KR930005029B1 (en) | Alpha-olefin block copolymer and adhesive and coating materials including same | |
| JPH07258557A (en) | Thermoplastic resin composition | |
| DE2329780C2 (en) | Use of a graft polymer as an adhesive | |
| US3442833A (en) | Strippable coatings | |
| US3884712A (en) | Process for preparing liquid polymers |