US3598051A - Directional warhead - Google Patents

Directional warhead Download PDF

Info

Publication number
US3598051A
US3598051A US747603A US3598051DA US3598051A US 3598051 A US3598051 A US 3598051A US 747603 A US747603 A US 747603A US 3598051D A US3598051D A US 3598051DA US 3598051 A US3598051 A US 3598051A
Authority
US
United States
Prior art keywords
charge
firing
detonation
pairs
initiation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US747603A
Inventor
William H Avery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Application granted granted Critical
Publication of US3598051A publication Critical patent/US3598051A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/095Arrangements of a multiplicity of primers or detonators, dispersed around a warhead, one of the primers or detonators being selected for directional detonation effects

Definitions

  • the present invention comprises a spherical explosive device that, by selective multipoint initiation, concentrates its energy in a beam along any of several aiming axes. Aiming is accomplished by electronically selecting the proper group of detonators, thereby eliminating the necessity of physically aiming the charge as is required in all other focused blast devices.
  • these initiators Once fired, these initiators cause a nearly cylindrical detonation wave, converging on the focusing axis, which forces the explosion products out along this axis and causes the warhead energy to be concentrated in the direction of a target rather than being omnidirectionally dissipated as in conventional warheads.
  • a sensing device preferably contained in the missile itself, capable of determining proximity to the target will indicate to the missile when it is within range of the target and will cause the missile warhead to explode, directing fragments and blast effects toward the target aircraft. Directing the blast not only causes the mass projected into the area of the target to be greatly increased, but also substantially augments the fragment velocity in the direction of the target.
  • This cushion absorbs the shockwave occurring during the detonation phase of the explosive process for an instant of time, long enough for the uncushioned area of the container, that is, the area where the negative plate is located. to receive the blast shock an instant sooner and with sufficient severity to fragmentize that area of the container first. Migration of the positively charged gaseous ions in the direction of the negative plate enhances blast flow in that direction.
  • the present invention proposes the use of a spherical charge initiated at a number of points in a local area on the surface of the charge. By electronic selection of the appropriate initiation points and initiation times. the blast is caused to be concentrated along any desired axis of the sphere.
  • the instant invention provides practical and reliable focusing of blast effects in contrast to the device of Witow and avoids the requirement for mechanical orientation of the warhead. for which intercept time is too short, of scored and grooved fragmentation devices such as the device of Zernow.
  • SUMMARY Focused blast is the term applied to explosions that, by method ofinitiation, shape of explosive charge, or method of confinement, are directed in a beam or are uniformly distributed in a plane.
  • the explosive charge should have a symmetry that permits producing the blast in any desired direction.
  • the initiating means disposed on the surface of or within the charge may be em ployed, depending on the directionality desired in the blast. Time delays between initiation on different portions ofthe explosive are desirable. Also, for some applications a graded composition of the explosive varying from the surface toward the center of the charge may be useful. Hollow charges and combinations of explosive and other material may also be employed.
  • the concept is not restricted to spherical charges. With appropriate initiation point selection and detonation timing, shapes such as cylinders, cones, or polyhedrons could be utilized.
  • a further object of the invention is to provide a spherical warhead whose blast can be concentrated along any desired axis of the sphere without mechanical movement, through electronic selection and control of initiator points appropriately arranged about the center or axis of the warhead.
  • Yet another object of the invention is to increase the damage probability of a missile system carrying the invention by increasing the effective range of the warhead.
  • Another object of the invention is to provide a directionally explosive warhead which is compatible with aircraft intercept kinematics.
  • FIG. 1 schematically depicts a top view of a spherical configuration of the present invention as seen along the z-axis, detonation waves being seen converging on the z-axis;
  • FIG. 2 schematically depicts the device of FIG. 1 as seen along the y-axis and indicating initiation point location and firing sequence;
  • FIG. 3 depicts the present invention as a sphere of radius a having nine firing axes, the center of the sphere being at the origin of an xyz coordinance system, the z axis ofwhich system is intended to coincide with the axis ofa missile on which said invention is mounted;
  • FIGS. 4a, 4b and 4c illustrate the method of axis rotation utilized to determine the location of initiation points for certain ofthe firing axes.
  • a sphere l of explosive composition shown from a top and from a side view, has a radius, a, and twelve initiation points 2,
  • the delay time, t,, is the time required for the detonation wave from initiation point A, initiated at P0, to reach the line 8-8.
  • Such a device has only a single focusing axis, By adding more initiation points 2, the beam can be aimed along any desired axis simply by firing the proper combination of detonators.
  • the method of locating these initiation points is hereinafter described. Location of initiation points should not be restricted to the surface of the charge. For certain applications, disposing the detonators within the charge proves advantageous.
  • a practical focused blast warhead must be capable of firing along any of several possible axes.
  • the proper firing axis is determined by the relative attitudes of the missile and target at intercept. When these attitudes are optimum for producing target destruction. the appropriate group of detonators is triggered electronically. The entire system, being electronically controlled and fired, would have a nearly instantaneous response.
  • a sphere of radius a having nine firing axes, i.e., axes (l 9), is shown in FIG. 3.
  • the center of the sphere I is at the origin of the .ry: coordinate system and the z axis coincides with the missile axis.
  • lfthe z axis were the firing axis, the 12 initiation points would be located at where column matrix notation is used for the coordinates.
  • the v'::' system be any other firing axis.
  • the initiation points for this axis will have the same coordinates in the .ry'z' system as the initiation points for the z axis in the xy: system.
  • the .t'y'z' axis can be formed by rotating the .ry: axis and the most systematic method of performing this rotation is the method of Euler angles found in Goldsteins Classical Mechanics, Mechanics, Addison-Wesley, I956. In this approach, the rotation is decomposed into three separate ones as in FIGS. 40, 4b, and 40.
  • the .tyz system is rotated counterclockwise about the z axis through an angle I resulting in the intermediate 1 system.
  • the 51;; system is then rotated counterclockwise, through an angle Gabout the axis to produce the (1 1 system.
  • A is an orthogonal matrix; so, its inverse is equal to its transpose; i.e.,
  • Table III By careful examination of the initiation points in Table III, it is seen that they are comprised of 21 pairs of points, and that the pairs are reflections of each other through the origin. Furthermore, Table IV shows that the pairs are always fired simultaneously; the ones on the firing axes; i.c., those numbcred one through nine, being fired either with or without delay and the others; VIL, the ones numbered l0 through I] and the lettered ones, always being delayed.
  • the application of the present invention is not limited to an antiaircraft capability.
  • the invention could apply to any situation where a directed blast would be advantageous. Such a situation is seen for armor-piercing projectiles, for antipersonnel projectiles, or for mines and depth charges.
  • Such a localized detonation prevents the waste of energy and particles of an omnidirectional explosion by directing most of the energy of the explosion, as well as the particles of the explosion, toward the target or targets.
  • the present invention conserves explosive energy needed for a particular purpose and gives increased range and destructiveness to a particular charge.
  • pairs of diametrically oppositely disposed detonation initiation means located on and symmetrically disposed over the surface ofthe charge
  • pairs of diametrically oppositely disposed detonation initiation means located along each axis and on the surface of the charge
  • pairs of diametrically oppositely disposed detonation initiation means symmetrically disposed on the surface of the charge and noncoincidental with the several firing axes
  • the explosive device of claim 7 and further comprising sensing means for determining the orientation of a target in relation to the explosive device, and

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

The present invention comprises a spherical explosive device that, by selective multipoint initiation, concentrates its energy in a beam along any of several aiming axes. Aiming is accomplished by electronically selecting the proper group of detonators, thereby eliminating the necessity of physically aiming the charge as is required in all other focused blast devices. Once fired, these initiators cause a nearly cylindrical detonation wave, converging on the focusing axis, which forces the explosion products out along this axis and causes the warhead energy to be concentrated in the direction of a target rather than being omnidirectionally dissipated as in conventional warheads.

Description

ilited States Patent [72] Inventor William H. Avery Silver Spring, Md. [21 Appl. No. 747,603 [22] Filed July 25, 1968 [4S] Patented Aug. 10, 1971 [73] Assignee The United States of America as represented by the Secretary of the Navy [54] DIRECTXONAL WARHEAD 9 Claims, 6 Drawing Figs.
[52] 0.8. CI 102/23, 102/24 [51] Int. Cl F42d 1/06 [50] Field of Search 102/22- 24, 67, 70.2, 24 l-IC, DIG. 2
[ 56] References Cited UNITED STATES PATENTS 3,076,408 2/1963 Poulter et a1. 102/23 3,136,251 6/1964 Witow l02/70.2 (P) 3,238,019 3/1966 Car1i.... 102/(C.W.F.)
SENSING INDICATOR SWITCHING Primary Examiner- Verlm R. Pendcgrass Attorneys-R. S. Sciascia. J. A. Cooke and John O. Tresansky ABSTRACT: The present invention comprises a spherical explosive device that, by selective multipoint initiation, concentrates its energy in a beam along any of several aiming axes. Aiming is accomplished by electronically selecting the proper group of detonators, thereby eliminating the necessity of physically aiming the charge as is required in all other focused blast devices. Once fired, these initiators cause a nearly cylindrical detonation wave, converging on the focusing axis, which forces the explosion products out along this axis and causes the warhead energy to be concentrated in the direction of a target rather than being omnidirectionally dissipated as in conventional warheads.
NETWORK PATENTEU AUG I 0 19?;
SHEET 1 [IF 2 F/G..Z
SENSING INDICATOR SWITCHING NETWORK FIG.2
INVENT OR ATTORNEY Y R E v A H M m L H W PATENTEU AUG I 0 IQYI SHEET 2 OF 2 WILLIAM H. AVERY INVENTOR ATTORNEY DIRECTIONAL WARHEAD BACKGROUND OF THE INVENTION 1. Field ofthe Invention Although development of the present invention has proceeded in response to the problems involved in destroying or disabling airborne vehicles, successful application can readily be made to any number of environments, such as antiinstallation or antipersonnel situations. The most pertinent application arises in combination with a guided missile system as a method for preventing near misses of unfriendly aircraft. The probability of scoring a direct hit on an airborne object traveling at speeds exceeding that of sound is considerably less than one, even with sophisticated antiaircraft missile systems. In order to inflict crippling damage in a near miss situation, it would be desirable for the missile to explode while in proximity to the target and to focus destructive fragments and blast pressures in the direction of the target. Accordingly, a sensing device, preferably contained in the missile itself, capable of determining proximity to the target will indicate to the missile when it is within range of the target and will cause the missile warhead to explode, directing fragments and blast effects toward the target aircraft. Directing the blast not only causes the mass projected into the area of the target to be greatly increased, but also substantially augments the fragment velocity in the direction of the target.
2. Description of the Prior Art Devices which exist for directing the blast of a warhead include the electrically controlled directional warhead accord ing to Witow disclosed in U.S. Pat. No. 3,136,251. Plates disposed internally of the warhead are selectively charged on command from any well-known device capable of sensing proximity to a target. The place oriented toward the target is charged negatively, thereby attracting positively charged gaseous ions produced in the deflagration phase of the explosive process. Free electrons thus produced migrate toward the other plates which are charged positively. This migration tends to set up a shock absorbing layer or cushion around the inner surface of the explosive container which is identified with the positive plates. This cushion absorbs the shockwave occurring during the detonation phase of the explosive process for an instant of time, long enough for the uncushioned area of the container, that is, the area where the negative plate is located. to receive the blast shock an instant sooner and with sufficient severity to fragmentize that area of the container first. Migration of the positively charged gaseous ions in the direction of the negative plate enhances blast flow in that direction.
Zernow et al., in U.S. Pat. No. 3,156,188, discloses a spherical warhead for controlling fragment size by providing an inert perforated barrier encasing the explosive andinterior to the metal warhead casing. On detonation, the resulting shockwave is interrupted by the barrier but continues unhindered through the perforations of the barrier causing preferential fractures in the casing. It can be easily seen that a directed blast could be accomplished by perforating only a select portion of the barrier, However. the warhead itself would have to be physically rotated on intercept of a moving target in order to insure that the blast be directed toward the target.
The present invention proposes the use of a spherical charge initiated at a number of points in a local area on the surface of the charge. By electronic selection of the appropriate initiation points and initiation times. the blast is caused to be concentrated along any desired axis of the sphere. The instant invention provides practical and reliable focusing of blast effects in contrast to the device of Witow and avoids the requirement for mechanical orientation of the warhead. for which intercept time is too short, of scored and grooved fragmentation devices such as the device of Zernow.
SUMMARY Focused blast is the term applied to explosions that, by method ofinitiation, shape of explosive charge, or method of confinement, are directed in a beam or are uniformly distributed in a plane. For practical applications, the explosive charge should have a symmetry that permits producing the blast in any desired direction.
Many arrangements or patterns for the initiating means disposed on the surface of or within the charge may be em ployed, depending on the directionality desired in the blast. Time delays between initiation on different portions ofthe explosive are desirable. Also, for some applications a graded composition of the explosive varying from the surface toward the center of the charge may be useful. Hollow charges and combinations of explosive and other material may also be employed.
The concept is not restricted to spherical charges. With appropriate initiation point selection and detonation timing, shapes such as cylinders, cones, or polyhedrons could be utilized.
Accordingly, it is an object of thisinvention to provide a warhead which is directionally explosive.
It is also an object of this invention to increase the concentration of destructive fragments in the area of a target and to augment the fragment velocity in that direction.
A further object of the invention is to provide a spherical warhead whose blast can be concentrated along any desired axis of the sphere without mechanical movement, through electronic selection and control of initiator points appropriately arranged about the center or axis of the warhead.
Yet another object of the invention is to increase the damage probability of a missile system carrying the invention by increasing the effective range of the warhead.
Another object of the invention is to provide a directionally explosive warhead which is compatible with aircraft intercept kinematics.
Other objects and attendant advantages will become more readily apparent and more easily understood by reference to the following description of the preferred'embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 schematically depicts a top view of a spherical configuration of the present invention as seen along the z-axis, detonation waves being seen converging on the z-axis;
FIG. 2 schematically depicts the device of FIG. 1 as seen along the y-axis and indicating initiation point location and firing sequence;
FIG. 3 depicts the present invention as a sphere of radius a having nine firing axes, the center of the sphere being at the origin of an xyz coordinance system, the z axis ofwhich system is intended to coincide with the axis ofa missile on which said invention is mounted; and
FIGS. 4a, 4b and 4c illustrate the method of axis rotation utilized to determine the location of initiation points for certain ofthe firing axes.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings and particularly to FIGS. 1 and 2, a sphere l of explosive composition, shown from a top and from a side view, has a radius, a, and twelve initiation points 2, The four points 2 lie in the equatorial plane. i.e., the xy plane, and are initiated first, at t=0, and the eight points 2 lying in the two parallel planes, one above and one below the equatorial plane, are to be initiated later at t=t,,. The delay time, t,,, is the time required for the detonation wave from initiation point A, initiated at P0, to reach the line 8-8. Thus:
where D is the detonation velocity of the explosive and I is the angle shown in FIG. 2. The converging detonation waves, so produced. will focus the explosion products along the z axis.
Such a device has only a single focusing axis, By adding more initiation points 2, the beam can be aimed along any desired axis simply by firing the proper combination of detonators. The method of locating these initiation points is hereinafter described. Location of initiation points should not be restricted to the surface of the charge. For certain applications, disposing the detonators within the charge proves advantageous.
A practical focused blast warhead must be capable of firing along any of several possible axes. The proper firing axis is determined by the relative attitudes of the missile and target at intercept. When these attitudes are optimum for producing target destruction. the appropriate group of detonators is triggered electronically. The entire system, being electronically controlled and fired, would have a nearly instantaneous response.
A systematic method of locating the initiation points has been developed. Such initiation will show that the points 2 occur in pairs which are reflections of each other through the center of the sphere 1. These paired points are always fired simultaneously and certain of them are always delayed, which simplifies the switching network 3 and sensing indicator 4 required to choose them.
A sphere of radius a, having nine firing axes, i.e., axes (l 9), is shown in FIG. 3. The center of the sphere I is at the origin of the .ry: coordinate system and the z axis coincides with the missile axis. lfthe z axis were the firing axis, the 12 initiation points would be located at where column matrix notation is used for the coordinates. Now let in the v'::' system be any other firing axis. The initiation points for this axis will have the same coordinates in the .ry'z' system as the initiation points for the z axis in the xy: system. Now the .t'y'z' axis can be formed by rotating the .ry: axis and the most systematic method of performing this rotation is the method of Euler angles found in Goldsteins Classical Mechanics, Mechanics, Addison-Wesley, I956. In this approach, the rotation is decomposed into three separate ones as in FIGS. 40, 4b, and 40.
l. The .tyz system is rotated counterclockwise about the z axis through an angle I resulting in the intermediate 1 system.
2. The 51;; system is then rotated counterclockwise, through an angle Gabout the axis to produce the (1 1 system.
3. Finally, the 5'1 system is rotated counterclockwise about the axis through angle 1 resulting in the .r' system.
Thus in matrix notation and the matrix A is the product of the three separate rotation matrices B. C and D where.
where cos b sin ,0 (l B=(sin cos 0) 1 U U C (0 005a l119 0 sim C050 (A4) and 00s,, D= sin,, 0
Table I given at the end of this description shows the Euler angles GD, 0 and I for the firing axes indicated in FIG. 3. I is zero for all of these, so B reduces to the identity matrix. Thus A=CD or siin. t) cos,, 0
O l (A-5) sin 0 C08,, 0059 S1110 Sing cos,, sing 0080 Now recall that I is known and I is sought; therefore,
I=A'".Y'
but A is an orthogonal matrix; so, its inverse is equal to its transpose; i.e.,
The value ofA for each firing axis found by substituting in the values of GI and 0 that appear in Table l. The resulting trans formation matrices for each of the nine firing axes are tabulated in accompanying Table II.
By using these matrices and the coordinates of the firing points in the primed system given in Eq.(Al the positions of the initiation points in the xyz system can be found from Eq.(A8). These are collected in Table III, Table IV gives the initiation points and their firing order for each firing axis.
By careful examination of the initiation points in Table III, it is seen that they are comprised of 21 pairs of points, and that the pairs are reflections of each other through the origin. Furthermore, Table IV shows that the pairs are always fired simultaneously; the ones on the firing axes; i.c., those numbcred one through nine, being fired either with or without delay and the others; VIL, the ones numbered l0 through I] and the lettered ones, always being delayed.
The application of the present invention is not limited to an antiaircraft capability. The invention could apply to any situation where a directed blast would be advantageous. Such a situation is seen for armor-piercing projectiles, for antipersonnel projectiles, or for mines and depth charges.
Such a localized detonation prevents the waste of energy and particles of an omnidirectional explosion by directing most of the energy of the explosion, as well as the particles of the explosion, toward the target or targets. The present invention conserves explosive energy needed for a particular purpose and gives increased range and destructiveness to a particular charge.
Many modifications of the present invention are possible in light of the above description. It is believed apparent that the present device is not confined to the specific use or uses described herein; nor is the the invention limited to the particular construction described in these embodiments, it being understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
lUlllSd TABLE 1\' Firing Order of Initiation Points Firing axis Initiation time. delay I claim:
1. In an explosive device, the combination of a charge formed of explosive material and having at least one axis of symmetry,
pairs of diametrically oppositely disposed detonation initiation means located on and symmetrically disposed over the surface ofthe charge, and
means for dctonating each detonation initiation means of each pair simultaneously and for delaying the detonation of certain of said pairs in order to produce a directed blast.
2. The explosive device of claim 1 wherein said charge takes the shape ofa sphere.
3. The explosive device of claim 1 wherein said detonation initiation means are disposed within the charge.
4. The explosive device of claim 1 and further comprising sensing means for determining the orientation of a target in relation to the explosive device, and
means for selectively detonating said initiator means so as to produce a directional effect with maximum velocity and fragmentation density in the direction of the target.
5. The method of producing a directed destructive blast utilizing a generally spherical charge of explosive material having pair ofdiametrically oppositely disposed detonation initiation means located on the surface of said charge, said method comprising symmetrically locating said pairs of initiation means over the surface of said charge,
detonating each pair simultaneously, and
delaying the detonation of certain of said pairs in order to produce a directed blast.
6. The method ofclaim 5 and further comprising establishing a plurality of firing axes through the spherical charge,
locating pairs of detonation initiation means along each axis on the surface ofthe charge,
symmetrically disposing pairs of diametrically opposed initiation means on the surface of the charge and noncoincidental with the established firing axes, and
firing at least one pair of detonation initiation means disposed along the firing axes previous to the firing of the remaining initiation means.
Lois NIH ton-i Coordinates Coordinates Points 7. In an explosive device, the combination of a generally spherical charge formed of explosive material and having a plurality offiring axes through the charge,
pairs of diametrically oppositely disposed detonation initiation means located along each axis and on the surface of the charge,
pairs of diametrically oppositely disposed detonation initiation means symmetrically disposed on the surface of the charge and noncoincidental with the several firing axes, and
means for firing at least one pair of detonation initiation means disposed along one of the firing axes previous to the firing of the remaining initiation means MIQ CHI-
8. The explosive device ol claim 7 whcrcm sald detonation initiation means are disposed within the charge.
9. The explosive device of claim 7 and further comprising sensing means for determining the orientation of a target in relation to the explosive device, and
means for selectively detonating said initiator meansso as to produce a directional effect with maximum velocity and fragmentation density in the direction ofthe target.

Claims (9)

1. In an explosive device, the combination of a charge formed of explosive material and having at least one axis of symmetry, pairs of diametrically oppositely disposed detonation initiation means located on and symmetrically disposed over the surface of the charge, and means for detonating each detonation initiation means of each pair simultaneously and for delaying the detonation of certain of said pairs in order to produce a directed blast.
2. The explosive device of claim 1 wherein said charge takes the shape of a sphere.
3. The explosive device of claim 1 wherein said detonation initiation means are disposed within the charge.
4. The explosive device of claim 1 and further comprising sensing means for determining the orientation of a target in relation to the explosive devicE, and means for selectively detonating said initiator means so as to produce a directional effect with maximum velocity and fragmentation density in the direction of the target.
5. The method of producing a directed destructive blast utilizing a generally spherical charge of explosive material having pairs of diametrically oppositely disposed detonation initiation means located on the surface of said charge, said method comprising symmetrically locating said pairs of initiation means over the surface of said charge, detonating each pair simultaneously, and delaying the detonation of certain of said pairs in order to produce a directed blast.
6. The method of claim 5 and further comprising establishing a plurality of firing axes through the spherical charge, locating pairs of detonation initiation means along each axis on the surface of the charge, symmetrically disposing pairs of diametrically opposed initiation means on the surface of the charge and noncoincidental with the established firing axes, and firing at least one pair of detonation initiation means disposed along the firing axes previous to the firing of the remaining initiation means.
7. In an explosive device, the combination of a generally spherical charge formed of explosive material and having a plurality of firing axes through the charge, pairs of diametrically oppositely disposed detonation initiation means located along each axis and on the surface of the charge, pairs of diametrically oppositely disposed detonation initiation means symmetrically disposed on the surface of the charge and noncoincidental with the several firing axes, and means for firing at least one pair of detonation initiation means disposed along one of the firing axes previous to the firing of the remaining initiation means.
8. The explosive device of claim 7 wherein said detonation initiation means are disposed within the charge.
9. The explosive device of claim 7 and further comprising sensing means for determining the orientation of a target in relation to the explosive device, and means for selectively detonating said initiator means so as to produce a directional effect with maximum velocity and fragmentation density in the direction of the target.
US747603A 1968-07-25 1968-07-25 Directional warhead Expired - Lifetime US3598051A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74760368A 1968-07-25 1968-07-25

Publications (1)

Publication Number Publication Date
US3598051A true US3598051A (en) 1971-08-10

Family

ID=25005829

Family Applications (1)

Application Number Title Priority Date Filing Date
US747603A Expired - Lifetime US3598051A (en) 1968-07-25 1968-07-25 Directional warhead

Country Status (1)

Country Link
US (1) US3598051A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655139A (en) * 1984-09-28 1987-04-07 The Boeing Company Selectable deployment mode fragment warhead
US4658727A (en) * 1984-09-28 1987-04-21 The Boeing Company Selectable initiation-point fragment warhead
US4662281A (en) * 1984-09-28 1987-05-05 The Boeing Company Low velocity disc pattern fragment warhead
US4815385A (en) * 1987-12-16 1989-03-28 The United States Of America As Represented By The Secretary Of The Army Blast focusing method and apparatus
US4823701A (en) * 1984-09-28 1989-04-25 The Boeing Company Multi-point warhead initiation system
US20040036419A1 (en) * 2002-08-22 2004-02-26 Wood James R. Electromagnetic pulse transmitting system and method
GB2409717A (en) * 2003-12-15 2005-07-06 Halliburton Energy Serv Inc Severing pipe utilizing a multi-point initiation explosive device
EP1672308A1 (en) * 2004-12-16 2006-06-21 Giat Industries Dispositif d'allumage pour une charge explosive ou une composition pyrotechnique
US20070084376A1 (en) * 2001-08-23 2007-04-19 Lloyd Richard M Kinetic energy rod warhead with aiming mechanism
US20070263759A1 (en) * 2005-04-01 2007-11-15 Melin Roger W Plasma antenna generator and method of using same
US8387535B1 (en) * 2010-05-14 2013-03-05 The United States Of America As Represented By The Secretary Of The Navy Hydroreactive energetic device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3076408A (en) * 1958-06-11 1963-02-05 Borg Warner Controlled fracturing of solids by explosives
US3136251A (en) * 1963-01-18 1964-06-09 Morris I Witow Electrically controlled directional warhead
US3212437A (en) * 1963-11-21 1965-10-19 Saling Donald Murray Explosive sound source for underwater echo ranging techniques
US3238019A (en) * 1963-10-01 1966-03-01 Stanford Research Inst Method of making diamond
US3280743A (en) * 1963-05-10 1966-10-25 Hubert G Reuther Directional control of explosive energy
US3326125A (en) * 1965-09-20 1967-06-20 Denis A Silvia Sequenced initiation-a technique for explosive wave shaping
US3447463A (en) * 1967-05-01 1969-06-03 Arthur Alfred Lavine Dual ignition explosive arrangement
US3472165A (en) * 1963-03-28 1969-10-14 Us Air Force Warhead

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3076408A (en) * 1958-06-11 1963-02-05 Borg Warner Controlled fracturing of solids by explosives
US3136251A (en) * 1963-01-18 1964-06-09 Morris I Witow Electrically controlled directional warhead
US3472165A (en) * 1963-03-28 1969-10-14 Us Air Force Warhead
US3280743A (en) * 1963-05-10 1966-10-25 Hubert G Reuther Directional control of explosive energy
US3238019A (en) * 1963-10-01 1966-03-01 Stanford Research Inst Method of making diamond
US3212437A (en) * 1963-11-21 1965-10-19 Saling Donald Murray Explosive sound source for underwater echo ranging techniques
US3326125A (en) * 1965-09-20 1967-06-20 Denis A Silvia Sequenced initiation-a technique for explosive wave shaping
US3447463A (en) * 1967-05-01 1969-06-03 Arthur Alfred Lavine Dual ignition explosive arrangement

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658727A (en) * 1984-09-28 1987-04-21 The Boeing Company Selectable initiation-point fragment warhead
US4662281A (en) * 1984-09-28 1987-05-05 The Boeing Company Low velocity disc pattern fragment warhead
US4823701A (en) * 1984-09-28 1989-04-25 The Boeing Company Multi-point warhead initiation system
US4655139A (en) * 1984-09-28 1987-04-07 The Boeing Company Selectable deployment mode fragment warhead
US4815385A (en) * 1987-12-16 1989-03-28 The United States Of America As Represented By The Secretary Of The Army Blast focusing method and apparatus
US20070084376A1 (en) * 2001-08-23 2007-04-19 Lloyd Richard M Kinetic energy rod warhead with aiming mechanism
US8127686B2 (en) 2001-08-23 2012-03-06 Raytheon Company Kinetic energy rod warhead with aiming mechanism
US20040036419A1 (en) * 2002-08-22 2004-02-26 Wood James R. Electromagnetic pulse transmitting system and method
US6843178B2 (en) 2002-08-22 2005-01-18 Lockheed Martin Corporation Electromagnetic pulse transmitting system and method
GB2409717A (en) * 2003-12-15 2005-07-06 Halliburton Energy Serv Inc Severing pipe utilizing a multi-point initiation explosive device
GB2409717B (en) * 2003-12-15 2006-07-05 Halliburton Energy Serv Inc Apparatus and method for severing pipe utilizing a multi-point initiation explosive device
EP1672308A1 (en) * 2004-12-16 2006-06-21 Giat Industries Dispositif d'allumage pour une charge explosive ou une composition pyrotechnique
US7434514B2 (en) 2004-12-16 2008-10-14 Giat Industries Ignition device for explosive charge or pyrotechnic composition
FR2879732A1 (en) * 2004-12-16 2006-06-23 Giat Ind Sa INITIATION DEVICE FOR EXPLOSIVE LOAD OR PYROTECHNIC COMPOSITION
EP1848954A2 (en) * 2005-02-17 2007-10-31 Raython Company Kinetic energy rod warhead with aiming mechanism
EP1848954A4 (en) * 2005-02-17 2011-06-01 Raytheon Co Kinetic energy rod warhead with aiming mechanism
US20070263759A1 (en) * 2005-04-01 2007-11-15 Melin Roger W Plasma antenna generator and method of using same
US7340025B2 (en) 2005-04-01 2008-03-04 Lockheed Martin Corporation Plasma antenna generator and method of using same
US8387535B1 (en) * 2010-05-14 2013-03-05 The United States Of America As Represented By The Secretary Of The Navy Hydroreactive energetic device and method

Similar Documents

Publication Publication Date Title
US4848239A (en) Antiballistic missile fuze
US4655139A (en) Selectable deployment mode fragment warhead
US4658727A (en) Selectable initiation-point fragment warhead
US3978796A (en) Focused blast-fragment warhead
US3893368A (en) Device for the protection of targets against projectiles
US3853059A (en) Configured blast fragmentation warhead
US5182418A (en) Aimable warhead
US4662281A (en) Low velocity disc pattern fragment warhead
US3598051A (en) Directional warhead
US3136251A (en) Electrically controlled directional warhead
US5544589A (en) Fragmentation warhead
US3960085A (en) Variable geometry warhead
US4823701A (en) Multi-point warhead initiation system
US3796159A (en) Explosive fisheye lens warhead
US3677183A (en) Pre-shaped fragmentation device
US3447463A (en) Dual ignition explosive arrangement
US3703865A (en) Electronically controlled aimed blast warhead
US3714897A (en) Directed warhead
US3280743A (en) Directional control of explosive energy
US3802342A (en) Armor piercing fragment and launcher
US5540156A (en) Selectable effects explosively formed penetrator warhead
US3517615A (en) Explosive wave shaper
US4815385A (en) Blast focusing method and apparatus
US3995574A (en) Dynamic method for enhancing effects of underwater explosions
US3720168A (en) Elliptical warhead