US3595278A - Transfer system for suboceanic oil production - Google Patents

Transfer system for suboceanic oil production Download PDF

Info

Publication number
US3595278A
US3595278A US3595278DA US3595278A US 3595278 A US3595278 A US 3595278A US 3595278D A US3595278D A US 3595278DA US 3595278 A US3595278 A US 3595278A
Authority
US
United States
Prior art keywords
riser
tanker
ocean
joint
ocean surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Herbert J Lilly Jr
Chris D Dobler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing North American Inc
Original Assignee
North American Rockwell Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North American Rockwell Corp filed Critical North American Rockwell Corp
Application granted granted Critical
Publication of US3595278A publication Critical patent/US3595278A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B21/507Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers with mooring turrets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/402Distribution systems involving geographic features

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

A transfer system for offshore petroleum production has a vertically movable riser extending from a collection tank on the ocean floor to a storage on the ocean surface. The riser is releasably attachable by a pivotal connection to the tanker during flowing operation and disconnectable during storms or otherwise violent sea states. In the disconnected mode, the riser remains submerged under the ocean surface to avoid excessive structural loading. The riser is articulated and moored by a system of weights and floats to maintain tension within acceptable stress limits throughout a wide range of changes in vertical and some horizontal movement of the tanker.

Description

United States Patent TRANSFER SYSTEM FOR SUBOCEANIC 01L PRODUCTION 1 Claim, 6 Dnwing Figs.
u.s. c1 141/1,
1111. c1 B65b 1 04,
I B65b 3/04 Field of Search 141/346,
[56] References Cited UNITED STATES PATENTS 3, l 00,006 8/ l 963 Sheets et a]. 141/] Primary ExaminerH0uston S. Bell, .lr. AtlorneysL. Lee Humphries, Harold H. Card, Jr. and
Charles F. Dischler ABSTRACT: A transfer system for offshore petroleum production has a vertically movable riser extending from a collection tank on the ocean floor to a storage on the ocean surface. The riser is releasably attachable by a pivotal connection to the tanker during flowing operation and disconnectable during storms or otherwise violent sea states. In the disconnected mode, the riser remains submerged under the ocean surface to avoid excessive structural loading. The riser is articulated and moored by a system of weights and floats to maintain tension within acceptable stress limits throughout a wide range of changes in vertical and some horizontal movement of the tanker.
PATENTED JUL2 7 m:
SHEET 1 OF 2 Y LA XAQQAX TRANSFER SYSTEM FOR SUBOCEANIC OIL PRODUCTION BACKGROUND OF THE INVENTION.
In offshore petroleum production, offloading of crude oil collected from various points on the ocean floor to a storage tanker or other floating facility is necessary. One method in current widespread use involves attachment of a riser to a floating swivel buoy which in turn forms a connection point for storage tankers. During storms or severe sea states, the tanker can be disconnected from the buoy, but the buoy can thereafter tear loose from the riser resulting in damage and possible complete loss of the riser.
Another severe problem in the use of risers is associated with their particular sensitivity to structural overstress, especially in waters of great depth or in offshore locations characterized by wide variation of tide levels. Thus, when a tanker heaves upward and downward due to surface wave conditions, the riser connected to such tanker cannot usually respond to such movement at a sufficient rate to accommodate the resulting loads, although risers are generally stronger under tensile loads than any other type loading. During the downward displacement of the tanker, compression forces are applied to the riser which tend to move the same downwardly. The huge length, inertia and relative inflexibility of the riser as well as tremendous hydrostatic pressures severely retard its downward movement through the water, whereby compression loads identified the mentioned operating conditions involve greater risk of damage than any other type of load or stress imposed thereon. Distortion of the riser such as identified with column .bending in beams or the like or any distortion resulting in curvature of the riser cannot be accommodated in view of its mass and axial rigidity.
SUMMARY OF THE INVENTION The invention contemplates a riser consisting essentially of two separate runs or links I2 and 14 for communicating between a collection or storage tank 16 on the ocean floor and a tanker I8 on the ocean surface. Links 12 and I4 are both substantially straight and are joined to each other by a pivotal connection 20. Diverging mooring lines connect joint with two floats 26, 27 and two anchors 28, 29, respectively, as shown in FIG. 2, to maintain link I2 substantially under tension throughout a relatively wide range of vertical and horizontal displacements of joint 20 as suggested in FIG. I. Weighted mass is secured to joint 20 to apply downward force to vertical link 14, while upward force is applied to the same riser link by buoyant mass or float 32, thus maintaining this portion of the riser under continuous tension during the mentioned range of movement. The upper end of riser 14 is releasably connected to tanker 18 in the offloading operation, and when disconnected therefrom remains submerged under the ocean surface and therefore less exposed to violent forces associated with stormy seas or collision with surface vessels.
Connection of riser 14 with tanker 18 occurs through a mooring swivel 76 on the storage tanker, at the top of which suitable locking means and conduit flow connections are situated.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I shows a side elevational schematic view of the riser and mooring system contemplated in this case,
FIG. 2 shows a top plan view ofthe system shown in FIG. 1,
FIG. 3 shows a detailed view of the upper end of the riser shown in FIG. I, but in the disconnected mode,
FIG. 4 shows a fragmentary view, partly in cross section, of a detail from the structure shown in FIG. 3,
FIG. 5 shows a transverse view, partly in cross section, through a storage tanker connected to the riser shown in FIGS. 1 and 2, and
FIG. 6 is a top plan view of the connection system shown in FIG. 5.
DESCRIPTION OF THE PREFERRED EMBODIMENT From FIG. I, it may be seen that the invention in this case contemplates and includes a collection or storage container 16 for oil or gas accumulated from one or more suboceanic well drillings (not shown) supplied to tank 16 by one or more conduits as suggested by conduit 10. A transfer riser consisting of two sections or links 12 and I4 communicates the internal area of tank 16 with a storage tanker or other floating facility 18 on the ocean surface. Riser link 12 is operatively joined to tank 16 through pivotal joint 36 which may take any convenient form known to the prior art, including joint 17 shown in US. Pat. No. 3,236,266 issued Feb. 22, I966 and permitting rotational movement of link 12 in a substantially vertical plane perpendicular to horizontal axis 38 through joint 36 as shown in FIG. 2. Link 12 of the riser is connected to link 14 through a second pivotal joint 20 which is movable in an arc defined by a center of rotation coinciding with axis 38. The arcuate path of movement involves both vertical and lateral displacement ofjoint 20 as suggested by the dash lines in FIG. I. Restraining means are provided to limit the transition rate at which movement ofjoint 20 may occur, the stated means including relatively heavy mass or weight 30. Link 12 is rendered neutrally buoyant by suitable hydrostatic balance means such as by securing any required number of floats spaced along the length of link 12 as may be necessary to compensate for the weight and mass distribution of riser link 12, which will naturally include due consideration of the ocean depth and displacement volume of link 12 in any particular installation.
Due to the particular sensitivity of riser links 12 and 14 to damage by compressive loads applied axially thereto, means are provided in this case to maintain each of the separate links under substantially axial tension. The stated means includes one or more mooring line connections between joint 20 and one or more anchors or dead weights. Preferably, a minimum of two separate mooring line connections are used to apply tensile loading of link I2. Thus, referring to FIG. 2, lines 22 and 23 are attached to joint 20 and connect the same with buoyant masses or floats 26 and 27, respectively. Mooring lines 24 and 25 each connect floats 26 and 27 with separate anchor or deadweight means 28 and 29, respectively. Anchor means 28 and 29 are positioned on the ocean floor equidistantly from the longitudinal axis of riser link 12 so that lateral movements of link 12 either in a clockwise or counterclockwise direction about joint 36 as shown in FIG. 2 will be resisted by substantially equal reaction loads in lines 22 and 23. In achieving the foregoing action affects, the included angle 40 between lines 22 and 23 should preferably be within a range from 20 to the higher range limit being preferred. Tensioning of riser 12 is achieved by both of the separate branches in the same manner and may be illustrated by the one shown in FIG. I comprising elements 22, 24, 26, and 28. Due to buoyancy of float 26, it will be understood that tension is maintained in lines 22 and 24, for example, connected to joint 20 and anchor 28, respectively, and that a force component due to the started tension in line 22 pulls joint 20 generally toward the right in the view shown by FIG. 1. Since joint 20 is structurally connected to link 12, the pulling force thus applied to the joint results in tensile loading of link 12 as the link is unable to move axially due to the restraint offered by its connection with joint 36 and stationary tank 16. The vertical position ofjoint 20, to which downward pulling force is continuously maintained by attachment of weight 30 thereto, is dependent upon the location of the upper end of riser link I4, which in turn depends upon the buoyancy characteristics of riser buoy 32 in the disconnected mode or the position of tanker 18 when the riser is connected thereto.
In the connected mode suggested by FIG. 1, it will be understood that ocean surface 42 will cause variations in the vertieal position of tanker 18, either through wave action or tides, and also through loading of the tanker as its hold is filled. Changes in the vertical position of tanker 18 with respect to the ocean floor 44 during oil transfer operation of the riser will result in displacement ofjoint 20 along the arcuate path within which the joint is movable. If, for example, tanker l8 heaves upwardly from the initial position shown in FIG. I, upward force transmitted through riser 14 will pulljoint 20 upwardly, and such upward movement will necessarily result in lateral movement of riser l4 and joint 20 due to the restraint offered by riser portion 12 through its connection with the joint. The stated displacement due to upward heaving of tanker 18 is suggested by dashed line 14 denoting the displaced position of riser [4 toward the left in FIG. 1. In the stated condition of displacement, float 26 will be forced in a generally downward direction as lines 22 and 24 attached thereto are pulled into closer linear alignment by movement ofjoint 20 with respect to stationary anchor means 28. The displaced position of float 26 due to movement of riser l4 and joint 20 toward the left in FIG. I is suggested by reference numeral 26. In the displaced condition thus represented by numerals I4 and 26 in FIG. I, it will be understood that tensile force is continuously maintained axially through both riser links 12 and 14 due to the horizontal force component of the tension in lines 22 and 24 and through the continuous downward pull applied tojoint 20 by mass 30.
Downward heaving of tanker 18, to which riser link 14 is connected at its upper end, would result in corresponding downward movement of joint 20 due to the continuous force applied to joint 20 by mass 30. The stated downward movement ofjoint 20 would be accompanied by lateral movement of riser 14 toward the position designated by dashed line 14" to the right as shown in FIG. 1 due to the continuous rightward force applied to joint 20 by float 26 and transmitted through 22. Downward movement ofjoint 20 in the foregoing manner would cause corresponding downward movement of float 26 to the position suggested by reference numeral 26" by force transmitted through line 22 extending between the joint and the float. In the displaced condition thus denoted by reference numerals 14" and 26" in FIG. 1, it will be understood that riser links 12 and 14 are both continuously maintained under tension due to the forces respectively applied thereto by float 26 and mass 30, respectively. It may incidentally be noted that the position of the structure shown in FIG. I and identifiable with reference numerals l4" and 26" is the one normally assumed by the riser and mooring system when riser I4 is in the disconnected mode as discussed more fully below. In the foregoing disconnected position, mass 30 may descend so far as to touch ocean floor 44, which in many suboceanic locations may comprise a semisolid surface of mud rather than a smooth hard surface of rock or the like. To prevent embedment of mass 30 by sinkage thereof into a highly tenacious mud mass, a mud mat 46 may be provided in the location suggested by FIG. I for supporting mass 30 at its lowermost limit of movement.
Referring to FIG. 3, the upper end of riser 14 is shown in the disconnected mode characterizing its condition when not in use for transferring products from tank 16 into a storage facility or the like on ocean surface 42. Hydrostatic balance means in the form of buoyant body 32 comprises a hollow sphere through which riser l4 penetrates is secured or otherwise formed on the riser. The upper terminal end of the riser is provided with a blind hub or cap 48 which seals and closes off the upper terminal end of riser l4. Cap 48, as shown more particularly in FIG. 4, may include a sealing surface 50 adapted to make contact with a sealing member such as flexible ring 52 nested within the upper terminal edge portion of riser l4, and held firmly in contact therewith by suitable clamping means such as an overcenter toggle system as shown in the mentioned figure. The stated system may take any suitable form including those known to the prior art, and illustratively may comprise a projecting boss or lug 54 integrally formed on cap 48 and supporting a pivotal link 56 having a pivotal lever 58 mounted on the lower end thereof. A projecting flange or curved lug 60 integrally formed or otherwise secured to riser 14 is adapted to receive a rounded portion of lever 58 in securely nesting and load transmitting relationship as shown in FIG. 4. Rotation of lever 58 mto or out of engagement with flange 60 provides secure but easily disconnected holding means between the cap and the riser. As further shown in FIGS. 3 and 4, cable connection means are provided on cap 48 for securing visual marker buoy 62 thereto. The stated mans illustratively include a hollow cleat 64 having cable 66 joined thereto in the manner shown by FIG. 4. Riser buoy 32 has a predetermined amount of buoyancy which, in combination with the lifting force of buoyant float 32 and the downward forces applied by riser I4 and components attached thereto, result in buoy 32 hanging at a predetermined depth below ocean surface 42 a sufficient amount to avoid the violent effects associated with stormy seas and the like.
As may he further seen from FIG. 4, the terminal end portion of riser I4 is provided with an annular groove 70 defined by two vertically spaced-apart annular flanges 72 and 74. Referring particularly to FIG. 5, attachment means for connecting riser 14 to tanker 18 may conveniently include pivotally mounted mooring swivel 76 supported within a vertical passage 78 through the center of tanker l8. Suitable bearing support for mooring swivel 76 is provided as schematically shown by bearings 80 and 82, for example.
In operation, a line (not shown) may be passed through center passage 78 oftanker l8 and secured by marker buoy 62 or cable 66 in order to pull the sealed and submerged end of riser 14 up through mooring swivel 76 for operative attachment as required during the transfer operation. With the riser and buoy 32 thus positioned as shown in FIG. 5, locking collet or annular flange means mounted on mooring swivel 76 are secured to riser 14 within groove 70 and locked in place by suitable means including those known to the prior art. Blind cap 48 is then removed, exposing the open end of riser l4 and positioning the same substantially in the center of passage 78. A pivotally mounted section of pipe 84, with a suitable pipe swivel 99, appropriately supported on tanker 18 such as by brackets 86 and having mating connection means on the distal end thereof as suggested by flanged end 88 in FIG. Sis rotated into mating connection with seal 52 at the terminal end of riser l4. Pivotal links 90 secured at one end to a swiveling mooring structure by such means as brackets 92 may be engaged to similar brackets 94 proximate the end 88 of pipe 84 and joined thereto by a pin and clevis connection or the like to hold the pipe 84 in tightly sealed fluid transferring relationship with riser 14. Alternatively, a toggle system such as shown in FIG. 4 for cap 48 may be used on flange 88 of pipe section 84 to secure the same together. When thus connected, the contents of tank 16 on ocean floor 44 may be transferred into storage tanks and the like aboard tanker 18 through suitable conduits as suggested by pipe 96 in FIG. 6. Disconnection of riser 14 from tanker 18 is accomplished by simply reversing the connection operation, and includes replacement of cap 48 in the position shown by FIG. 4 and release of the riser together with marker buoy 62 passage 78 into the submerged state.
We claim:
1. A method of transferring fluids from a collection point on the ocean floor to a tanker ship on the ocean surface, comprising the steps of:
lowering a line through a center aperture through said ship,
securing said line to a marker buoy on said ocean surface attached to a submerged transfer riser below said ocean surface,
lifting said riser through said aperture, and
connecting said riser to flow conduits on said tanker ship.

Claims (1)

1. A method of transferring fluids from a collection point on the ocean floor to a tanker ship on the ocean surface, comprising the steps of: lowering a line through a center aperture through said ship, securing said line to a marker buoy on said ocean surface attached to a submerged transfer riser below said ocean surface, lifting said riser through said aperture, and connecting said riser to flow conduits on said tanker ship.
US3595278D 1969-09-11 1969-09-11 Transfer system for suboceanic oil production Expired - Lifetime US3595278A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US85710769A 1969-09-11 1969-09-11

Publications (1)

Publication Number Publication Date
US3595278A true US3595278A (en) 1971-07-27

Family

ID=25325202

Family Applications (1)

Application Number Title Priority Date Filing Date
US3595278D Expired - Lifetime US3595278A (en) 1969-09-11 1969-09-11 Transfer system for suboceanic oil production

Country Status (1)

Country Link
US (1) US3595278A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2176950A1 (en) * 1972-03-20 1973-11-02 Continental Oil Co
US3881530A (en) * 1972-05-17 1975-05-06 Giovanni Faldi Plant for evacuating dredged material
US4090538A (en) * 1974-06-28 1978-05-23 Technigaz System for loading and unloading at sea a transportation ship conveying incoherent products
FR2381166A1 (en) * 1977-02-18 1978-09-15 Coflexip Charging petroleum from offshore well to ship - using a flexible pipe extended by a caisson lifted at optimum rate by ship's hoist, avoiding damage
FR2383066A1 (en) * 1977-03-09 1978-10-06 Ryan William Offshore tanker mooring and cargo transfer terminal - includes buoyant caisson with riser having head connectable to tanker pedestal
DE2802054A1 (en) * 1978-01-18 1979-07-19 Bechtel Int Corp Underwater gas or oil collection system - uses pipe suspended from stern of vessel, resting on pedestal on sea bed
FR2425373A1 (en) * 1978-05-12 1979-12-07 Sea Terminals Transfer of oil from offshore wells to coast - uses mooring riser with buffer vessel and shuttle tanker so that oil can flow continuously without transfer pipeline (NO-8.10.79)
FR2473981A1 (en) * 1980-01-17 1981-07-24 Elf Aquitaine ANCHORING DEVICE FOR HYDROCARBON PRODUCTION VESSEL
EP0059499A1 (en) * 1981-02-26 1982-09-08 Single Buoy Moorings Inc. Mooring system comprising a floating storage capacity anchored to the ocean floor
US4867211A (en) * 1985-12-12 1989-09-19 British Aerospace Public Limited Company Open sea transfer of fluids
FR2656274A1 (en) * 1989-12-21 1991-06-28 Doris Engineering Device for charging a tanker at sea
US5545065A (en) * 1991-11-27 1996-08-13 Den Norske Stats Oljeselskap A.S. Arrangement in a ship for loading/unloading of a flowable medium in open sea
US5927224A (en) * 1996-06-21 1999-07-27 Fmc Corporation Dual function mooring lines for storage vessel
US6718900B2 (en) * 2002-06-11 2004-04-13 Gregory James Carter Variable storage vessel and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100006A (en) * 1960-03-03 1963-08-06 Gen Dynamics Corp Submerged fueling methods and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100006A (en) * 1960-03-03 1963-08-06 Gen Dynamics Corp Submerged fueling methods and apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2176950A1 (en) * 1972-03-20 1973-11-02 Continental Oil Co
US3881530A (en) * 1972-05-17 1975-05-06 Giovanni Faldi Plant for evacuating dredged material
US4090538A (en) * 1974-06-28 1978-05-23 Technigaz System for loading and unloading at sea a transportation ship conveying incoherent products
FR2381166A1 (en) * 1977-02-18 1978-09-15 Coflexip Charging petroleum from offshore well to ship - using a flexible pipe extended by a caisson lifted at optimum rate by ship's hoist, avoiding damage
FR2383066A1 (en) * 1977-03-09 1978-10-06 Ryan William Offshore tanker mooring and cargo transfer terminal - includes buoyant caisson with riser having head connectable to tanker pedestal
DE2802054A1 (en) * 1978-01-18 1979-07-19 Bechtel Int Corp Underwater gas or oil collection system - uses pipe suspended from stern of vessel, resting on pedestal on sea bed
FR2425373A1 (en) * 1978-05-12 1979-12-07 Sea Terminals Transfer of oil from offshore wells to coast - uses mooring riser with buffer vessel and shuttle tanker so that oil can flow continuously without transfer pipeline (NO-8.10.79)
FR2473981A1 (en) * 1980-01-17 1981-07-24 Elf Aquitaine ANCHORING DEVICE FOR HYDROCARBON PRODUCTION VESSEL
EP0059499A1 (en) * 1981-02-26 1982-09-08 Single Buoy Moorings Inc. Mooring system comprising a floating storage capacity anchored to the ocean floor
US4490121A (en) * 1981-02-26 1984-12-25 Single Buoy Moorings Inc. Mooring system
USRE32578E (en) * 1981-02-26 1988-01-12 Single Buoy Moorings Inc. Mooring system
US4867211A (en) * 1985-12-12 1989-09-19 British Aerospace Public Limited Company Open sea transfer of fluids
FR2656274A1 (en) * 1989-12-21 1991-06-28 Doris Engineering Device for charging a tanker at sea
US5545065A (en) * 1991-11-27 1996-08-13 Den Norske Stats Oljeselskap A.S. Arrangement in a ship for loading/unloading of a flowable medium in open sea
US5927224A (en) * 1996-06-21 1999-07-27 Fmc Corporation Dual function mooring lines for storage vessel
US6718900B2 (en) * 2002-06-11 2004-04-13 Gregory James Carter Variable storage vessel and method

Similar Documents

Publication Publication Date Title
US3834432A (en) Transfer system for suboceanic oil production
US6517290B1 (en) Loading arrangement for floating production storage and offloading vessel
EP0877702B1 (en) System for anchoring ships
US5044297A (en) Disconnectable mooring system for deep water
US3595278A (en) Transfer system for suboceanic oil production
US6415828B1 (en) Dual buoy single point mooring and fluid transfer system
US4088089A (en) Riser and yoke mooring system
US7793723B2 (en) Submerged loading system
JPH0534198B2 (en)
US4493282A (en) Combination mooring system
US5893334A (en) Method and apparatus for mooring floating storage vessels
AU2007278210B2 (en) Deep water hydrocarbon transfer system
US6688348B2 (en) Submerged flowline termination buoy with direct connection to shuttle tanker
US5873395A (en) Method for mooring floating storage vessels
US20060056918A1 (en) Riser system connecting two fixed underwater installations to a floating surface unit
US3236267A (en) Method and apparatus for transferring fluid offshore
US4042990A (en) Single point mooring terminal
KR100423268B1 (en) Devices for loading / unloading floats for use in shallow water
US3651525A (en) One-point mooring buoy for loading or unloading ships
RU2133687C1 (en) Method of single-point mooring of ships and systems for realization of this method (versions)
Rutkowski A comparison between conventional buoy mooring CBM, single point mooring SPM and single anchor loading sal systems considering the hydro-meteorological condition limits for safe ship’s operation offshore
US6763862B2 (en) Submerged flowline termination at a single point mooring buoy
US3712260A (en) Marine terminal mooring
US3837380A (en) Marine loading/unloading system
US5237948A (en) Mooring system for oil tanker storage vessel or the like