US3595133A - Transducer for producing mechanical oscillations - Google Patents

Transducer for producing mechanical oscillations Download PDF

Info

Publication number
US3595133A
US3595133A US838237A US3595133DA US3595133A US 3595133 A US3595133 A US 3595133A US 838237 A US838237 A US 838237A US 3595133D A US3595133D A US 3595133DA US 3595133 A US3595133 A US 3595133A
Authority
US
United States
Prior art keywords
transducer
chamber
piston member
position control
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US838237A
Inventor
Keith Foster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Development Corp UK
National Research Development Corp of India
Original Assignee
National Research Development Corp UK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Development Corp UK filed Critical National Research Development Corp UK
Application granted granted Critical
Publication of US3595133A publication Critical patent/US3595133A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • B06B1/183Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid operating with reciprocating masses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/06Means for driving the impulse member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S173/00Tool driving or impacting
    • Y10S173/04Liquid operated

Definitions

  • This invention relates to a transducer mechanical oscillations.
  • the present invention provides a transducer for converting fluid pressure oscillations into mechanical oscillations comprising a piston member and a cylinder member mounted for relative oscillatory movement, first and second opposing faces of the piston member respectively bounding first and second chambers in the cylinder member, means to connect at least the first chamber to a respective source of oscillating pressure fluid to cause said relative oscillatory movement, a valve assembly within the cylinder member, the valve assembly comprising a storage space, a flow regulator valve connecting the first chamber to the storage space and biassed to maintain the fluid pressure in the storage space greater than the algebraic mean pressure in the first chamber, and a position control valve within the cylinder member and engageable by the piston member, the position control valve being adapted upon relative movement in one sense in excess of a predetermined amount, to cause the storage space to be connected to the second chamber, to oppose the said relative movement in excess of a predetermined amount.
  • the position control valve is adapted upon further relative movement in said one sense to connect the second chamber to the first chamber.
  • the position control valve may be adapted to connect the second chamber to the first chamber via the storage space, bypassing the flow regulator valve.
  • the position control valve may be adapted to be moved axially when engaged by the piston member, and has an axially extending surface provided with two axially spaced lands, a first land cooperating with a first port to connect the storage space to the second chamber upon said relative movement in excess of a predetermined amount, a second land cooperating with a second port to connect the storage chamber to the first chamber upon said further relative movement, whilst the second chamber is connected to the storage chamber.
  • the surface of the position control valve may bound the storage chamber.
  • a spring may be provided to oppose said axial movement of the position control valve.
  • the position control valve may be adapted, upon said further relative movement, to connect the first chamber to a relatively low pressure port.
  • the position control valve may have a third land which cooperates with the relatively low pressure port.
  • the piston member may be slidably supported in the cylinder member in at least two axially spaced-apart bearings, a said bearing permitting the piston member freedom of movement to accommodate malalignment between said bearings.
  • Said hearing may comprise an annular bearing pad in which the piston member is supported, and which has limited freedom of movement radially of the axis of the piston member.
  • Said hearing may support one end of the piston member, the piston member being hollow at said end, the said bearing comprising a spigot which slidably engages said hollow end, the spigot being universally mounted from the cylinder member.
  • the piston member may consist of at least two portions connected together by a shock absorbing device.
  • the shock absorbing device may comprise a dashpot.
  • the piston member may comprise two relatively moveable coaxial elements, one inside the other, connected together by the shock absorbing device.
  • the dashpot may comprise an axially extending cavity in the inner piston element which is adapted to contain pressure fluid, the outer piston element carrying a plunger which is disposed in said cavity for damped axial movement therein.
  • An end of the piston member may be slidably supported in a portion of the cylinder member which is connected to the for producing remainder of the cylinder member via a vibration damping device.
  • the invention provides a rock breaking tool comprising a transducer as set forth above and a rock breaking bit arranged to receive impact blows from the piston member.
  • the rock breaking bit may be slidably mounted in said portion of the cylinder member.
  • FIG. l is a part-sectional, part-elevational view of a transducer in accordance with the present invention.
  • FIG. 2 is a sectional view taken along the line AA of FIG.
  • FIGS. 3, t and 5 are sectional views showing details of F IG. 1 on an enlarged scale
  • FIG. 6 shows in section an alternative form of the structure of FIG. 3, and
  • transducer 10 adapted to be driven by fluid pressure oscillations to produce mechanical oscillations in accordance with the present invention, embodied in a rock breaking tool.
  • the transducer lltll includes a double-acting piston member generally indicated at It mounted in a cylinder member generally indicated at 112 for relative sliding movement therewith.
  • first and second chambers l3 and M are each of which is adapted to contain pressure fluid.
  • the chambers l3 and 14 are each adapted to be connected to a source of pressure fluid of cyclically varying pressure to cause relative oscillatory motion between the piston member 11 and the cylinder member 112, the pressure variations in the two chambers being arranged to be 180 out of phase.
  • the piston member 11 comprises an outer hollow annular working piston element 16 and an inner element or rod l7 which is a coaxial sliding fit inside the piston element 116.
  • a large mass 18 is connected to the rod 17, and is arranged to apply impact blows to a rock breaking bit 19.
  • the piston element l7 and the piston element 16 are connected at their respective left-hand ends by a small movement shock absorbing dashpot device 54, described hereafter.
  • This manner of connecting together the two elements of the piston member 11 is designed to reduce the Euler load imposed on a long piston at impact, such as would occur when the transducer of the present invention is incorporated into a 1,000 ft.-lb. hammer to be mounted on a digger to give blows-at a rate of approximately 10 blows per second, with a mass of 200 lbs.
  • the piston element 16 is provided with a raised land 26) having two oppositely tapering working surfaces 21, 22.
  • the su face 2i bounds the chamber 13 and is subjected to the cyclically varying pressures therein in operation, while the surface 22, which has a smaller area than the surface Zll, bounds the chamber M.
  • the chambers 13 and M are axially separated by a valve assembly generally indicated at 2.5 and located internally of the cylinder member 12.
  • the valve assembly 25 includes a flow regulator valve 26 of the nonreturn type, an axially moveaole position control valve 27 (see FIG. 3), as well as a storage space 2%. in addition to these elements, the valve assembly 25 includes a wall member 29 and a fixed structural body 30.
  • the nonreturn valve 26 communicates with the chamber 13 via a bore 351 in the wall 29, and it communicates with a storage space 2% via a bore 33 in the body 3b.
  • the storage space 2% may be placed into communication with the righthand chamber 141 via a port 35 in the body 36.
  • the position control valve 27 is generally cylindrical in shape, with its left-hand end abutting the wall 29.
  • the valve 27 has an axially extending surface which bounds the storage chamber 28 and is provided, adjacent its right-hand end, with a first land 32 which is in sliding engagement with the port 35 in the body 30, which constitutes a first port.
  • the lefi-hand end of the axially extending surface of the valve 27 is provided with a second land 36 which cooperates with a second port 30a in the structural member 30.
  • the lands 32, 36 are axially spaced.
  • the right-hand end of the valve 27 is provided with a radially inwardly extending flange 37 which is engageable with the hollow piston element 16. in fact, as can be seen in FIG.
  • the piston element 16 is provided with a shoulder 39 to abut the flange 37 so as to axially move the valve 27 when the piston member 12 moves rightward in excess of a predetermined amount.
  • a spring 390 urges the valve 27 leftward towards the wall 29.
  • the right-hand end of the chamber 14 is bounded by an inwardly extending flange 40 of the cylinder member 12, and a bearing pad 40a in the flange 40 through which the piston member passes is sealed by way of sealing elements 41.
  • the cylinder member 12 has a portion 45 of reduced radial cross section within which slides the mass 18, with an annular sintered bronze bearing pad 43 therebetween.
  • the portion 45 is itself slidably mounted in the remainder of the cylinder member 12 and is radially spaced therefrom to provide an annular space 46 wherein a shock absorbing, vibration damping device is provided.
  • Said annular space 46 is filled with oil and the vibration damping device (FIG. 4) comprises a radially outwardly extending flange 47 on the cylinder portion 415 which is provided with a bore 48.
  • a spring loaded valve 49 seats against the left-hand end of the bore 48 and is provided with one or more small orifices to permit restricted flow through the valve 49.
  • a spring 51 urges the cylinder portion leftward relative to the remainder of the piston portion. in operation, should the piston member move excessively far to the right, e.g. due to the tool 19 breaking through into relatively soft material, the mass 18 will strike the right-hand end of the portion 45, forcing it rightward against the spring 51.
  • the valve 49 lifts under the action of the increased oil pressure in the space 46 to allow oil to flow through the bore 48 to permit this movement.
  • the valve 49 closes and the portion 45 moves leftward under the action of the spring 51 in a heavily damped manner, due to the dashpot effect of the small orifices on the return flow of the oil in the space 46.
  • the small movement dashpot device 54 (FIG. consists of an axially extending cavity 56 in the inner piston element 17 which contains oil, the outer piston element 16 carrying by means of a threaded bush 58 a plunger 611, which has a threaded spigot 62 engaging the threaded bush 58 and secured thereto by a lockout.
  • the plunger 60 is disposed in the cavity 56 and has at intervals around its periphery axially extending grooves 64- which permit a restricted flow of oil from one side of the plunger 60 to the other.
  • a plug 66 closes the left-hand end of the cavity 56.
  • the grooves 64 permit a small degree of heavily damped relative axial movement between the piston elements 16, 17.
  • the chambers 13, 14 are each connected to a respective source of oscillating pressure fluid causing the piston member 11 to perform oscillatory sliding motion relative to the cylinder member 12, the pressure variations in said chambers being arranged to be 180 out of phase with each other.
  • the piston will normally drift to the right and makeup fluid will be introduced only into the left-hand chamber 13. Excessive drift to the right is, however, prevented by the provision of the shoulder 39 on the element 16.
  • the shoulder 39 will engage the flange 37 of the position control valve 27, thereby causing the land 32 of the valve to be displaced relative to the port 35 to permit communication between the storage space 28 and the right-hand chamber 14'; via the bore 35.
  • the land 36 of the valve 27 still closes the port 30a.
  • the nonretum valve 26 is biassed in such a way that it will only open at the peaks of the pressure oscillations in the chamber 13 and thus only this peak pressure will pass from the chamber 13 to the storage space 28 via the bores 31, the valve 26 and the bore 33.
  • the storage space 28 will be charged up with high pressure fluid and this high pressure fluid will pass to the right-hand chamber 14 when the land 32 opens the port 35.
  • the pressure level in the chamber 14 will be raised quickly and will oppose the rightward drift of the piston member.
  • the function of the flow regulator nonretum valve 26 is to maintain the pressure in the storage space 28 above the algebraic mean pressure in the left-hand chamber 13. Consequently, the flow regulator valve 26 need not be a true nonretum valve; some reverse flow from the storage chamber 28 to the left-hand chamber is permissible provided the pressure in the chamber 28 is suitably maintained.
  • the position control valve 27 will open fully, that is to say, the land 36 will open the port 30a and direct communication will be established between the chamber 13 and the chamber 14, via the space 28, bypassing the nonretum valve 26.
  • the oscillating pressure difference between the two chambers is greatly reduced and the reciprocating motion of the piston member 11 will come to a rapid stop.
  • the difference in the areas of the faces 21, 22 promotes the cessation of the reciprocating motion because, once the pressure difference between the chambers 13, 14 is reduced, the piston member tends to drift further to the right.
  • Restarting of the transducer may be effected by forcing the piston member mechanically leftward until the ports 39a, 35 are closed, whereafter reciprocating motion will recommence.
  • P10. 6 shows an alternative form of the valve assembly 25.
  • Corresponding parts in F108. 3 and 6 carry the same reference numerals, and will not be described again.
  • the position control valve 27 is provided with a third land 72 which cooperates with a port 74 which is con nected via a low pressure return line 76 to the source of pressure fluid oscillations which is connected to the chamber 113.
  • the spacing of the lands 36, 32, 72 is such that upon the aforementioned further relative rightward movement, the land 72 uncovers the port 74 and connects the chamber 1.3 to the low pressure return line 74 via a vent 77 and the space in which the spring 390 is located.
  • the flow of pressure fluid from the first chamber 13 to the return line, indicated by the arrows 753, permits the pressure difference between the chambers 13, 1 to be more quickly reduced upon the further relative movement, whereby to more quickly stop the oscillatory movement of the piston member 11.
  • the flow of fluid via the land 72 and port 74 also has a cooling effect, since relatively hot fluid leaves the transducer via the return line.
  • the axial spacing of the lands 36, 32, 72 and their respective ports is preferably such that the port 35 is opened at an earlier stage of the further rightward movement than is the port 74. It will be appreciated that the port 35 is shown ghosted in H0. 6 so as to indicate that it does not connect with the return line 76. A vent similar to that at 77 is provided in the FIG. 3 embodiment to avoid unwanted fluid compression in the space containing the spring 39a.
  • the transducer need not be double acting; the chamber 14 may be a closed chamber constituting a fluid spring. Also leftward drift of the piston member 11 may be controlledby a dump port which is uncovered by the piston member upon excessive leftward movement to vent the chamber M to a return line such as 76.
  • FIG. 7 An alternative form of the bearing 80 is shown in FIG. 7. Again, previously referenced parts carry the same numerals.
  • the bearing comprises an annular sintered bronze bearing pad 82 supported in a radial wall 83 of the cylinder member 12 and axially located by two keep plates 86, 88.
  • a bore 90 in the wall 83 in which the pad 82 is disposed is of larger diameter than the pad 82, to pennit it limited radial freedom of movement.
  • O-rings 92 seal the pad 82 against fluid leakage from the chamber 13.
  • a return line 94 which may be branched off the line 76 of FIG. 6 connects via the radial clearance between the pad 82 and the bore 90 with a leakage collecting groove 96 in the bearing pad 82.
  • the return line 94 although at a low pressure compared to that in the chamber 13, may still carry a pressure of (say) l00 ft.-lb./in., the pressure in the said radial clearance imparts a degree of resilience to the bearing.
  • the radial freedom of movement of the pad 82 permits any malalignment between this pad and the pads 40a, 43 to be accommodated.
  • FIG. 8 A further alternative form of the bearing is shown in FIG. 8.
  • the piston member 111 instead of being in two pieces, joined by a shock absorber, is in one piece.
  • the working face 21 of the piston member is formed by the annular end face of the left-hand end of the piston member lll, which is hollow.
  • a spigot 97 slidably engages the hollow lefthand end 98, and this spigot is universally mounted from the cylinder member 12 via a spherical seat M and a split clamp ring 102.
  • the seat 100 and clamp ring 102 permits the spigot 97 freedom to pivot slightly during movement of the piston member ill to accommodate malalignment between the spigot 97 and the bearing pads Mia, 43.
  • a return line 104 collects leakage, and a vent 106 provided with a filter 108 prevents undesirable air compression in the interior of the hollow end 98 of the piston member 11.
  • a transducer for converting fluid pressure oscillations into mechanical oscillations comprising a piston member having first and second opposing faces and a cylinder member mounted for relative oscillatory movement, the said first and second opposing faces of the piston member respectively bounding first and second chambers in the cylinder member, means to connect at least the first chamber to a respective source of oscillating pressure fluid to cause said relative oscillatory movement, a valve assembly within the cylinder member, the valve assembly comprising a storage space, a flow regulator valve connecting the first chamber to the storage space, means to bias the regulator valve to maintain the fluid pressure in the storage space greater than the algebraic mean pressure in the first chamber, and a position control valve within the cylinder member and engageable by the piston member, the position control valve being adapted upon relative movement in one sense in excess of a predetermined amount, to cause the storage space to be connected to the second chamber, to oppose the said relative movement in excess of a predetermined amount.
  • a transducer as claimed in claim 3 wherein there are two ports, and the position control valve is adapted to be moved axially when engaged by the piston member, and has an axially extending surface provided with two axially spaced lands including a first land cooperating with a first port to connect the storage chamber to the second chamber upon said relative movement in excess of a predetermined amount, a second land cooperating with a second port to connect the storage space to the first chamber upon said further relative movement, whilst the second chamber is connected to the storage space.
  • a transducer as claimed in claim 1 wherein at least two axially spaced-apart bearings are provided slidably to support the piston member in the cylinder member, a said bearing permitting the piston member freedom of movement to accommodate malalignment between said bearings.
  • a transducer as claimed in claim 9 wherein said bearing comprises an annular bearing pad in which the piston member is supported, and which has limited freedom of movement radially of the axis of the piston member.
  • a transducer as claimed in claim 9 wherein the said bearing supports one end of the piston member, the piston member being hollow at said end, the said bearing comprising a spigot which slidably engages said hollow end, the spigot being universally mounted from the cylinder member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Damping Devices (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

A transducer for converting fluid pressure oscillations into mechanical oscillations usable as a rock breaking tool comprises a differential area piston sliding in a cylinder having two chambers therein. One chamber is connected to the oscillating pressure fluid source, and a valve arrangement including a fluid storage space ensures that the pressure in the storage space is greater than the algebraic mean pressure in the first chamber. A position control valve prevents slow drift or rapid excessive movements of the piston.

Description

I United States Patent [111 Inventor q s E la d [56] References Cited arming am, ng n 1 2| 1 pp N0 838,237 UNITED STATES PATENTS Banker X [73] Assignee National Research Development 3,335,640 8/1967 Conrad... 91/390 common 3,427,762 2/l969 MlllS 91/390 X London, England Primary Examiner-Martin P. Schwadron Priority J y 1963 Assistant Examiner-Irwin C. Cohen cm! Brill! Attorney-Cushman, Darby & Cushman [31] 31606/68 ABSTRACT: A transducer for converting fluid pressure oscil- [54] OR PRODUCING MECHANICAL lations into mechanical oscillations usable as a rock breaking 16 Claim 8 nnwin tool comprises a difierential area piston sliding in a cylinder g having two chambers therein. One chamber is connected to [52] [1.8. CI 91/390, the oscillating pressure fluid source, and a valve arrangement 92/ 10, 92/84, 92/85 including a fluid storage space ensures that the pressure in the [SI] Int. Cl. ..Fl5b 15/22 storage space is greater than the algebraic mean pressure in [50] Field of Search 91/390; the first chamber. A position control valve prevents slow drift 92/8, 9, 10 or rapid excessive movements of the piston.
PATENTEU m2? |97i 5%. 133
sum 2 OF 3 TRANSDUCER FOR PRODUCING MECHANICAL OSCKLJLATI'ONS This invention relates to a transducer mechanical oscillations.
The present invention provides a transducer for converting fluid pressure oscillations into mechanical oscillations comprising a piston member and a cylinder member mounted for relative oscillatory movement, first and second opposing faces of the piston member respectively bounding first and second chambers in the cylinder member, means to connect at least the first chamber to a respective source of oscillating pressure fluid to cause said relative oscillatory movement, a valve assembly within the cylinder member, the valve assembly comprising a storage space, a flow regulator valve connecting the first chamber to the storage space and biassed to maintain the fluid pressure in the storage space greater than the algebraic mean pressure in the first chamber, and a position control valve within the cylinder member and engageable by the piston member, the position control valve being adapted upon relative movement in one sense in excess of a predetermined amount, to cause the storage space to be connected to the second chamber, to oppose the said relative movement in excess of a predetermined amount.
Preferably, the position control valve is adapted upon further relative movement in said one sense to connect the second chamber to the first chamber.
The position control valve may be adapted to connect the second chamber to the first chamber via the storage space, bypassing the flow regulator valve.
The position control valve may be adapted to be moved axially when engaged by the piston member, and has an axially extending surface provided with two axially spaced lands, a first land cooperating with a first port to connect the storage space to the second chamber upon said relative movement in excess of a predetermined amount, a second land cooperating with a second port to connect the storage chamber to the first chamber upon said further relative movement, whilst the second chamber is connected to the storage chamber.
The surface of the position control valve may bound the storage chamber.
A spring may be provided to oppose said axial movement of the position control valve.
The position control valve may be adapted, upon said further relative movement, to connect the first chamber to a relatively low pressure port.
Thus, the position control valve may have a third land which cooperates with the relatively low pressure port.
The piston member may be slidably supported in the cylinder member in at least two axially spaced-apart bearings, a said bearing permitting the piston member freedom of movement to accommodate malalignment between said bearings.
Said hearing may comprise an annular bearing pad in which the piston member is supported, and which has limited freedom of movement radially of the axis of the piston member.
Said hearing may support one end of the piston member, the piston member being hollow at said end, the said bearing comprising a spigot which slidably engages said hollow end, the spigot being universally mounted from the cylinder member.
The piston member may consist of at least two portions connected together by a shock absorbing device.
The shock absorbing device may comprise a dashpot.
The piston member may comprise two relatively moveable coaxial elements, one inside the other, connected together by the shock absorbing device.
The dashpot may comprise an axially extending cavity in the inner piston element which is adapted to contain pressure fluid, the outer piston element carrying a plunger which is disposed in said cavity for damped axial movement therein.
An end of the piston member may be slidably supported in a portion of the cylinder member which is connected to the for producing remainder of the cylinder member via a vibration damping device.
in another aspect, although not so restricted, the invention provides a rock breaking tool comprising a transducer as set forth above and a rock breaking bit arranged to receive impact blows from the piston member.
The rock breaking bit may be slidably mounted in said portion of the cylinder member.
The invention will be described, merely by way of example, with reference to the accompanying drawings, in which:
FIG. l is a part-sectional, part-elevational view of a transducer in accordance with the present invention,
FIG. 2 is a sectional view taken along the line AA of FIG.
FIGS. 3, t and 5 are sectional views showing details of F IG. 1 on an enlarged scale,
FIG. 6 shows in section an alternative form of the structure of FIG. 3, and
FIGS. 7 and 8 show sectional views of alternative forms of part of the structure of FIG. I.
The terms left and right as used hereinafter refer to directions as seen in the drawings.
Referring to the drawings, there is shown a transducer 10 adapted to be driven by fluid pressure oscillations to produce mechanical oscillations in accordance with the present invention, embodied in a rock breaking tool. The transducer lltll includes a double-acting piston member generally indicated at It mounted in a cylinder member generally indicated at 112 for relative sliding movement therewith.
Within the cylinder member 12 are first and second chambers l3 and M, each of which is adapted to contain pressure fluid. The chambers l3 and 14 are each adapted to be connected to a source of pressure fluid of cyclically varying pressure to cause relative oscillatory motion between the piston member 11 and the cylinder member 112, the pressure variations in the two chambers being arranged to be 180 out of phase.
The piston member 11 comprises an outer hollow annular working piston element 16 and an inner element or rod l7 which is a coaxial sliding fit inside the piston element 116. A large mass 18 is connected to the rod 17, and is arranged to apply impact blows to a rock breaking bit 19. The piston element l7 and the piston element 16 are connected at their respective left-hand ends by a small movement shock absorbing dashpot device 54, described hereafter. This manner of connecting together the two elements of the piston member 11 is designed to reduce the Euler load imposed on a long piston at impact, such as would occur when the transducer of the present invention is incorporated into a 1,000 ft.-lb. hammer to be mounted on a digger to give blows-at a rate of approximately 10 blows per second, with a mass of 200 lbs.
The left-hand end of the piston member 11 is supported in a bearing which may be an annular sintered bronze bearing pad, or which may be as described hereafter with reference to FIG. 7.
The piston element 16 is provided with a raised land 26) having two oppositely tapering working surfaces 21, 22. The su face 2i bounds the chamber 13 and is subjected to the cyclically varying pressures therein in operation, while the surface 22, which has a smaller area than the surface Zll, bounds the chamber M.
The chambers 13 and M are axially separated by a valve assembly generally indicated at 2.5 and located internally of the cylinder member 12. The valve assembly 25 includes a flow regulator valve 26 of the nonreturn type, an axially moveaole position control valve 27 (see FIG. 3), as well as a storage space 2%. in addition to these elements, the valve assembly 25 includes a wall member 29 and a fixed structural body 30.
The nonreturn valve 26 communicates with the chamber 13 via a bore 351 in the wall 29, and it communicates with a storage space 2% via a bore 33 in the body 3b. The storage space 2% may be placed into communication with the righthand chamber 141 via a port 35 in the body 36.
The position control valve 27 is generally cylindrical in shape, with its left-hand end abutting the wall 29. The valve 27 has an axially extending surface which bounds the storage chamber 28 and is provided, adjacent its right-hand end, with a first land 32 which is in sliding engagement with the port 35 in the body 30, which constitutes a first port. The lefi-hand end of the axially extending surface of the valve 27 is provided with a second land 36 which cooperates with a second port 30a in the structural member 30. It will be noted that the lands 32, 36 are axially spaced. The right-hand end of the valve 27 is provided with a radially inwardly extending flange 37 which is engageable with the hollow piston element 16. in fact, as can be seen in FIG. 3, the piston element 16 is provided with a shoulder 39 to abut the flange 37 so as to axially move the valve 27 when the piston member 12 moves rightward in excess of a predetermined amount. A spring 390 urges the valve 27 leftward towards the wall 29.
The right-hand end of the chamber 14 is bounded by an inwardly extending flange 40 of the cylinder member 12, and a bearing pad 40a in the flange 40 through which the piston member passes is sealed by way of sealing elements 41.
To the right of the flange 40 the cylinder member 12 has a portion 45 of reduced radial cross section within which slides the mass 18, with an annular sintered bronze bearing pad 43 therebetween. The portion 45 is itself slidably mounted in the remainder of the cylinder member 12 and is radially spaced therefrom to provide an annular space 46 wherein a shock absorbing, vibration damping device is provided. Said annular space 46 is filled with oil and the vibration damping device (FIG. 4) comprises a radially outwardly extending flange 47 on the cylinder portion 415 which is provided with a bore 48.
A spring loaded valve 49 seats against the left-hand end of the bore 48 and is provided with one or more small orifices to permit restricted flow through the valve 49. A spring 51 urges the cylinder portion leftward relative to the remainder of the piston portion. in operation, should the piston member move excessively far to the right, e.g. due to the tool 19 breaking through into relatively soft material, the mass 18 will strike the right-hand end of the portion 45, forcing it rightward against the spring 51. The valve 49 lifts under the action of the increased oil pressure in the space 46 to allow oil to flow through the bore 48 to permit this movement. When the piston member 11 retracts, the valve 49 closes and the portion 45 moves leftward under the action of the spring 51 in a heavily damped manner, due to the dashpot effect of the small orifices on the return flow of the oil in the space 46.
The small movement dashpot device 54 (FIG. consists of an axially extending cavity 56 in the inner piston element 17 which contains oil, the outer piston element 16 carrying by means of a threaded bush 58 a plunger 611, which has a threaded spigot 62 engaging the threaded bush 58 and secured thereto by a lockout. The plunger 60 is disposed in the cavity 56 and has at intervals around its periphery axially extending grooves 64- which permit a restricted flow of oil from one side of the plunger 60 to the other. A plug 66 closes the left-hand end of the cavity 56. The grooves 64 permit a small degree of heavily damped relative axial movement between the piston elements 16, 17. Only a small degree of relative movement may be required to sufficiently reduce the Euler load on the relatively long piston elements 16, 17 to a satisfactory figure. The elasticity of the oil in the cavity 56 assists in this respect. Vents 68, 70 prevent air compression in enclosed spaces in the dashpot device 54.
In operation, the chambers 13, 14 are each connected to a respective source of oscillating pressure fluid causing the piston member 11 to perform oscillatory sliding motion relative to the cylinder member 12, the pressure variations in said chambers being arranged to be 180 out of phase with each other. However, owing to the unequal areas of the surfaces 21 and 22 of the hollow outer piston element 16, the pistonwill normally drift to the right and makeup fluid will be introduced only into the left-hand chamber 13. Excessive drift to the right is, however, prevented by the provision of the shoulder 39 on the element 16. When the piston member 11 moves in excess of a predetermined amount, the shoulder 39 will engage the flange 37 of the position control valve 27, thereby causing the land 32 of the valve to be displaced relative to the port 35 to permit communication between the storage space 28 and the right-hand chamber 14'; via the bore 35. During this time, however, the land 36 of the valve 27 still closes the port 30a. The nonretum valve 26 is biassed in such a way that it will only open at the peaks of the pressure oscillations in the chamber 13 and thus only this peak pressure will pass from the chamber 13 to the storage space 28 via the bores 31, the valve 26 and the bore 33. in this way, the storage space 28 will be charged up with high pressure fluid and this high pressure fluid will pass to the right-hand chamber 14 when the land 32 opens the port 35. When this happens, the pressure level in the chamber 14 will be raised quickly and will oppose the rightward drift of the piston member.
it will be appreciated that the function of the flow regulator nonretum valve 26 is to maintain the pressure in the storage space 28 above the algebraic mean pressure in the left-hand chamber 13. Consequently, the flow regulator valve 26 need not be a true nonretum valve; some reverse flow from the storage chamber 28 to the left-hand chamber is permissible provided the pressure in the chamber 28 is suitably maintained.
If there should be further rightward movement of the piston member 11, e.g. a too sudden and extreme drift to the right, as may occur when the tool 19 breaks through," the position control valve 27 will open fully, that is to say, the land 36 will open the port 30a and direct communication will be established between the chamber 13 and the chamber 14, via the space 28, bypassing the nonretum valve 26. Thus, the oscillating pressure difference between the two chambers is greatly reduced and the reciprocating motion of the piston member 11 will come to a rapid stop. The difference in the areas of the faces 21, 22 promotes the cessation of the reciprocating motion because, once the pressure difference between the chambers 13, 14 is reduced, the piston member tends to drift further to the right. Restarting of the transducer may be effected by forcing the piston member mechanically leftward until the ports 39a, 35 are closed, whereafter reciprocating motion will recommence.
P10. 6 shows an alternative form of the valve assembly 25. Corresponding parts in F108. 3 and 6 carry the same reference numerals, and will not be described again.
In FIG. 6 the position control valve 27 is provided with a third land 72 which cooperates with a port 74 which is con nected via a low pressure return line 76 to the source of pressure fluid oscillations which is connected to the chamber 113. The spacing of the lands 36, 32, 72 is such that upon the aforementioned further relative rightward movement, the land 72 uncovers the port 74 and connects the chamber 1.3 to the low pressure return line 74 via a vent 77 and the space in which the spring 390 is located. The flow of pressure fluid from the first chamber 13 to the return line, indicated by the arrows 753, permits the pressure difference between the chambers 13, 1 to be more quickly reduced upon the further relative movement, whereby to more quickly stop the oscillatory movement of the piston member 11. The flow of fluid via the land 72 and port 74 also has a cooling effect, since relatively hot fluid leaves the transducer via the return line.
The axial spacing of the lands 36, 32, 72 and their respective ports is preferably such that the port 35 is opened at an earlier stage of the further rightward movement than is the port 74. it will be appreciated that the port 35 is shown ghosted in H0. 6 so as to indicate that it does not connect with the return line 76. A vent similar to that at 77 is provided in the FIG. 3 embodiment to avoid unwanted fluid compression in the space containing the spring 39a.
it will be appreciated that the transducer need not be double acting; the chamber 14 may be a closed chamber constituting a fluid spring. Also leftward drift of the piston member 11 may be controlledby a dump port which is uncovered by the piston member upon excessive leftward movement to vent the chamber M to a return line such as 76.
An alternative form of the bearing 80 is shown in FIG. 7. Again, previously referenced parts carry the same numerals. The bearing comprises an annular sintered bronze bearing pad 82 supported in a radial wall 83 of the cylinder member 12 and axially located by two keep plates 86, 88. A bore 90 in the wall 83 in which the pad 82 is disposed is of larger diameter than the pad 82, to pennit it limited radial freedom of movement. O-rings 92 seal the pad 82 against fluid leakage from the chamber 13. A return line 94 which may be branched off the line 76 of FIG. 6 connects via the radial clearance between the pad 82 and the bore 90 with a leakage collecting groove 96 in the bearing pad 82. Since the return line 94, although at a low pressure compared to that in the chamber 13, may still carry a pressure of (say) l00 ft.-lb./in., the pressure in the said radial clearance imparts a degree of resilience to the bearing. The radial freedom of movement of the pad 82 permits any malalignment between this pad and the pads 40a, 43 to be accommodated.
A further alternative form of the bearing is shown in FIG. 8. In this embodiment, the piston member 111, instead of being in two pieces, joined by a shock absorber, is in one piece.
The working face 21 of the piston member is formed by the annular end face of the left-hand end of the piston member lll, which is hollow. A spigot 97 slidably engages the hollow lefthand end 98, and this spigot is universally mounted from the cylinder member 12 via a spherical seat M and a split clamp ring 102. The seat 100 and clamp ring 102 permits the spigot 97 freedom to pivot slightly during movement of the piston member ill to accommodate malalignment between the spigot 97 and the bearing pads Mia, 43. A return line 104 collects leakage, and a vent 106 provided with a filter 108 prevents undesirable air compression in the interior of the hollow end 98 of the piston member 11.
l claim:
ll. A transducer for converting fluid pressure oscillations into mechanical oscillations comprising a piston member having first and second opposing faces and a cylinder member mounted for relative oscillatory movement, the said first and second opposing faces of the piston member respectively bounding first and second chambers in the cylinder member, means to connect at least the first chamber to a respective source of oscillating pressure fluid to cause said relative oscillatory movement, a valve assembly within the cylinder member, the valve assembly comprising a storage space, a flow regulator valve connecting the first chamber to the storage space, means to bias the regulator valve to maintain the fluid pressure in the storage space greater than the algebraic mean pressure in the first chamber, and a position control valve within the cylinder member and engageable by the piston member, the position control valve being adapted upon relative movement in one sense in excess of a predetermined amount, to cause the storage space to be connected to the second chamber, to oppose the said relative movement in excess of a predetermined amount.
2. A transducer as claimed in claim ll wherein the position control valve is adapted upon further relative movement in said one sense to connect the second chamber to the first chamber.
3. A transducer as claimed in claim 2 wherein the position control valve is adapted to connect the second chamber to the first chamber via the storage space, bypassing the flow regulator valve.
4. A transducer as claimed in claim 3 wherein there are two ports, and the position control valve is adapted to be moved axially when engaged by the piston member, and has an axially extending surface provided with two axially spaced lands including a first land cooperating with a first port to connect the storage chamber to the second chamber upon said relative movement in excess of a predetermined amount, a second land cooperating with a second port to connect the storage space to the first chamber upon said further relative movement, whilst the second chamber is connected to the storage space.
5. A transducer as claimed in claim 4 wherein the said surface of the position control valve bounds the storage space.
6. A transducer as claimed in claim 4 wherein a spring is provided to oppose said axial movement of the position control valve.
7. A transducer as claimed in claim 2 wherein the position control valve is adapted, upon said further relative movement, to connect the first chamber to a relatively low pressure port.
8. A transducer as claimed in claim 4 wherein the position control valve has a third land which cooperates with the relatively low pressure port.
9. A transducer as claimed in claim 1 wherein at least two axially spaced-apart bearings are provided slidably to support the piston member in the cylinder member, a said bearing permitting the piston member freedom of movement to accommodate malalignment between said bearings.
10. A transducer as claimed in claim 9 wherein said bearing comprises an annular bearing pad in which the piston member is supported, and which has limited freedom of movement radially of the axis of the piston member.
11. A transducer as claimed in claim 9 wherein the said bearing supports one end of the piston member, the piston member being hollow at said end, the said bearing comprising a spigot which slidably engages said hollow end, the spigot being universally mounted from the cylinder member.
12. A transducer as claimed in claim ll wherein there is provided a shock absorber device, the piston member consisting of at least two portions connected together by said shock absorbing device.
13. A transducer as claimed in claim 12 wherein the shock absorbing device comprises a dashpot.
M. A transducer as claimed in claim 12 wherein the piston member comprises two relatively movable coaxial elements, one inside the other, connected together by the shock absorbing device.
15. A transducer as claimed in claim 13 wherein the dashpot is defined by an axially extending cavity formed in the inner piston element which is adapted to contain pressure fluid, there being a plunger carried by the outer piston ele ment which plunger is disposed in said cavity for damped axial movement therein.
116. A transducer as claimed in claim 1 wherein a vibration damping device connects a portion of the cylinder member with the remainder thereof, the said portion slidably supporting an end of the piston member.

Claims (16)

1. A transducer for converting fluid pressure oscillations into mechanical oscillations comprising a piston member having first and second opposing faces and a cylinder member mounted for relative oscillatory movement, the said first and second opposing faces of the piston member respectively bounding first and secOnd chambers in the cylinder member, means to connect at least the first chamber to a respective source of oscillating pressure fluid to cause said relative oscillatory movement, a valve assembly within the cylinder member, the valve assembly comprising a storage space, a flow regulator valve connecting the first chamber to the storage space, means to bias the regulator valve to maintain the fluid pressure in the storage space greater than the algebraic mean pressure in the first chamber, and a position control valve within the cylinder member and engageable by the piston member, the position control valve being adapted upon relative movement in one sense in excess of a predetermined amount, to cause the storage space to be connected to the second chamber, to oppose the said relative movement in excess of a predetermined amount.
2. A transducer as claimed in claim 1 wherein the position control valve is adapted upon further relative movement in said one sense to connect the second chamber to the first chamber.
3. A transducer as claimed in claim 2 wherein the position control valve is adapted to connect the second chamber to the first chamber via the storage space, bypassing the flow regulator valve.
4. A transducer as claimed in claim 3 wherein there are two ports, and the position control valve is adapted to be moved axially when engaged by the piston member, and has an axially extending surface provided with two axially spaced lands including a first land cooperating with a first port to connect the storage chamber to the second chamber upon said relative movement in excess of a predetermined amount, a second land cooperating with a second port to connect the storage space to the first chamber upon said further relative movement, whilst the second chamber is connected to the storage space.
5. A transducer as claimed in claim 4 wherein the said surface of the position control valve bounds the storage space.
6. A transducer as claimed in claim 4 wherein a spring is provided to oppose said axial movement of the position control valve.
7. A transducer as claimed in claim 2 wherein the position control valve is adapted, upon said further relative movement, to connect the first chamber to a relatively low pressure port.
8. A transducer as claimed in claim 4 wherein the position control valve has a third land which cooperates with the relatively low pressure port.
9. A transducer as claimed in claim 1 wherein at least two axially spaced-apart bearings are provided slidably to support the piston member in the cylinder member, a said bearing permitting the piston member freedom of movement to accommodate malalignment between said bearings.
10. A transducer as claimed in claim 9 wherein said bearing comprises an annular bearing pad in which the piston member is supported, and which has limited freedom of movement radially of the axis of the piston member.
11. A transducer as claimed in claim 9 wherein the said bearing supports one end of the piston member, the piston member being hollow at said end, the said bearing comprising a spigot which slidably engages said hollow end, the spigot being universally mounted from the cylinder member.
12. A transducer as claimed in claim 1 wherein there is provided a shock absorber device, the piston member consisting of at least two portions connected together by said shock absorbing device.
13. A transducer as claimed in claim 12 wherein the shock absorbing device comprises a dashpot.
14. A transducer as claimed in claim 12 wherein the piston member comprises two relatively movable coaxial elements, one inside the other, connected together by the shock absorbing device.
15. A transducer as claimed in claim 13 wherein the dashpot is defined by an axially extending cavity formed in the inner piston element which is adapted to contain pressure fluid, there being a plunger carried by the outer piston element which plunger is disposed in said cavity for damped axial movement therein.
16. A transducer as claimed In claim 1 wherein a vibration damping device connects a portion of the cylinder member with the remainder thereof, the said portion slidably supporting an end of the piston member.
US838237A 1968-07-02 1969-07-01 Transducer for producing mechanical oscillations Expired - Lifetime US3595133A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB31606/68A GB1253538A (en) 1968-07-02 1968-07-02 A transducer for converting liquid pressure oscillations into mechanical oscillations

Publications (1)

Publication Number Publication Date
US3595133A true US3595133A (en) 1971-07-27

Family

ID=10325666

Family Applications (1)

Application Number Title Priority Date Filing Date
US838237A Expired - Lifetime US3595133A (en) 1968-07-02 1969-07-01 Transducer for producing mechanical oscillations

Country Status (3)

Country Link
US (1) US3595133A (en)
DE (1) DE1933366A1 (en)
GB (1) GB1253538A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887019A (en) * 1971-05-11 1975-06-03 Af Hydraulics Hydraulic percussive implement
US3925985A (en) * 1973-01-09 1975-12-16 Rapidex Inc Impact actuator
US4196888A (en) * 1978-01-13 1980-04-08 A/S Hydraulik Brattvaag Winches
US4492147A (en) * 1983-12-30 1985-01-08 Knapp Pneumatics, Inc. Reciprocatory air motor with cushioning pistons
US7156189B1 (en) * 2004-12-01 2007-01-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Self mountable and extractable ultrasonic/sonic anchor
US20070193757A1 (en) * 2006-02-03 2007-08-23 California Institute Of Technology Ultrasonic/sonic jackhammer
RU2542708C1 (en) * 2013-12-26 2015-02-27 Федеральное государственное бюджетное учреждение науки институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук Ice for percussion tools
CN112178005A (en) * 2020-09-25 2021-01-05 韩振华 Tunneling hydraulic cylinder

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012010962A1 (en) 2011-10-12 2013-04-18 Andreas Stihl Ag & Co. Kg Cutting chain for hand-operated implement for cutting metal and mineral materials, has upper central connecting links that includes drive tooth which are shaped differently to drive tooth on lower central connecting links
DE102012010977A1 (en) 2012-05-31 2013-12-05 Andreas Stihl Ag & Co. Kg "Hand-held implement with a cutting chain for cutting mineral or metallic materials"
DE102012010963A1 (en) 2012-05-31 2013-12-05 Andreas Stihl Ag & Co. Kg Implement with sprocket cover
DE102014004526A1 (en) * 2014-03-27 2015-10-01 Andreas Stihl Ag & Co. Kg Hand-held implement
CN107014583B (en) * 2017-05-08 2023-07-04 大连理工大学 Multifunctional pressure oscillation tube testing platform with two openings at two ends
CN113124006B (en) * 2021-04-19 2023-04-07 中国铁建重工集团股份有限公司 Hydraulic system for continuously adjusting rock drilling power

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3032018A (en) * 1958-07-18 1962-05-01 Fawick Corp Control valve for air suspension system
US3306172A (en) * 1964-07-13 1967-02-28 Atlas Copco Ab Means for transmitting force between an oscillating and a desirably steady member of an apparatus
US3335640A (en) * 1965-12-01 1967-08-15 Beteiligungs & Patentverw Gmbh Dead center point controlling device
US3427762A (en) * 1965-12-28 1969-02-18 Hobson Ltd H M Hydraulically operated self-adjusting steady rest

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3032018A (en) * 1958-07-18 1962-05-01 Fawick Corp Control valve for air suspension system
US3306172A (en) * 1964-07-13 1967-02-28 Atlas Copco Ab Means for transmitting force between an oscillating and a desirably steady member of an apparatus
US3335640A (en) * 1965-12-01 1967-08-15 Beteiligungs & Patentverw Gmbh Dead center point controlling device
US3427762A (en) * 1965-12-28 1969-02-18 Hobson Ltd H M Hydraulically operated self-adjusting steady rest

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887019A (en) * 1971-05-11 1975-06-03 Af Hydraulics Hydraulic percussive implement
US3925985A (en) * 1973-01-09 1975-12-16 Rapidex Inc Impact actuator
US4196888A (en) * 1978-01-13 1980-04-08 A/S Hydraulik Brattvaag Winches
US4492147A (en) * 1983-12-30 1985-01-08 Knapp Pneumatics, Inc. Reciprocatory air motor with cushioning pistons
US7156189B1 (en) * 2004-12-01 2007-01-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Self mountable and extractable ultrasonic/sonic anchor
US20070193757A1 (en) * 2006-02-03 2007-08-23 California Institute Of Technology Ultrasonic/sonic jackhammer
US8910727B2 (en) 2006-02-03 2014-12-16 California Institute Of Technology Ultrasonic/sonic jackhammer
RU2542708C1 (en) * 2013-12-26 2015-02-27 Федеральное государственное бюджетное учреждение науки институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук Ice for percussion tools
CN112178005A (en) * 2020-09-25 2021-01-05 韩振华 Tunneling hydraulic cylinder

Also Published As

Publication number Publication date
DE1933366A1 (en) 1970-01-08
GB1253538A (en) 1971-11-17

Similar Documents

Publication Publication Date Title
US3595133A (en) Transducer for producing mechanical oscillations
US3605960A (en) Automatically adjustable shock absorbers
US2771968A (en) Shock absorber
US3175645A (en) Shock absorber with primary and secondary damping chambers
US2856035A (en) Hydraulic shock absorber
CA1297915C (en) Semi-active damper for vehicles and the like
EP3187748B1 (en) Recoil suppressing hydraulic damper for a train coupler
US2944639A (en) Shock absorber with vacuum compensator
US3147965A (en) Vehicle suspension
GB2122720A (en) A shock absorber with adjustable orifice
US2867298A (en) Telescopic shock absorber
US5487454A (en) Leakage bellows of hydraulic damper protected by oppositely wound coil springs
US3151856A (en) Hermetically sealed liquid springs
US3870287A (en) Gas spring
US2747370A (en) Fluid pressure device
US6648310B2 (en) Shock absorber
US2371705A (en) Hydraulic shock absorber
US5992584A (en) Dashpot for power cylinder
US2580825A (en) Shock absorbing means
GB641527A (en) Improvements in telescopic shock-absorbers for resisting loads operating in tension
US3582058A (en) Linear-type vibration dampener
JPS6346749Y2 (en)
US3356186A (en) Locking means for shock absorbers
JPH0743456Y2 (en) Cushion device for hydraulic cylinder
US2673733A (en) Improved shock absorbing and cushioning device