US3592221A - Plate swing valve - Google Patents

Plate swing valve Download PDF

Info

Publication number
US3592221A
US3592221A US3592221DA US3592221A US 3592221 A US3592221 A US 3592221A US 3592221D A US3592221D A US 3592221DA US 3592221 A US3592221 A US 3592221A
Authority
US
United States
Prior art keywords
shaft
valve body
valve
valve according
horizontal shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Arthur C Worley
Dominic Cicchino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Application granted granted Critical
Publication of US3592221A publication Critical patent/US3592221A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/052Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with pivoted closure members, e.g. butterfly valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6851With casing, support, protector or static constructional installations
    • Y10T137/7036Jacketed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86847Pivoted valve unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87788With valve or movable deflector at junction
    • Y10T137/87812Pivoted valve or deflector

Definitions

  • valves suitable for gas switching or diversion have included slide valves such as shown in U.S. Pat. No. 536,151; butterfly valves such as the valve illustrated in U.S. Pat. No. 1,558,157; and combination folding and butterfly valves as disclosed in U.S. Pat. No. 2,910,284. All of the above valves, while designed for high-temperature service, suffer from excessive leakage past the sealing surfaces or from leakage to the atmosphere and require water-seal tanks to ensure the safety of personnel. Where water-seal tanks are employed, a large amount of space must be allocated for their installation, since very commonly, the gas lines leaving the catalyst regenerators are in the range of 4 to 5 feet in diame- 161'.
  • the present invention embodies the design of a plate valve in which closure is effected by plate gravity and differential pressure. It is particularly adapted for use at low pressure and high temperature in flue gas systems requiring switching or bypass arrangements. Flow of gas is switched by rotation of the plate through 180 so as to close a downwardly directed gas path at either extreme, thereby providing absolute interlock. It is economical of piping layout and makes it possible to dispense with water-seal tanks and use only simpleblanking plates between flanges for the protection of personnel when servicing lines or equipment downstream.
  • FIG. 1 is a cutaway view of the valve in perspective illustrating the essential features and operative elements.
  • FIG. 2 is a section through the plate-shaft showing the construction of the shaft bearings.
  • FIG. 3 is a section through the drive shaft and plate-shaft at a point where they engage each other showing the construction of the loose spline.
  • FIG. 4 is a section through the spaced closure plates in closed position showing one plate in contact with an outlet nozzle.
  • FIG. 5 is a section through an outlet port showing the method of support and attachment of the outlet nozzle to the base plate and outer shell.
  • the valve assembly comprises an upper tubular inlet port I, having an outer shell 2, which may be made of carbon steel and an inner liner 3 which is preferably made from a perforated heat and corrosion resistant alloy such as type 410 stainless steel.
  • the outer shell 2 is connected by means of a flattened truncated conical section 8 through a vertical section 40 to an approximately elliptical baseplate 6.
  • the inner liner 3 is connected through liner 33 by means of vertical liner 4] to baseplate liner 30.
  • the space between the outer shell and inner liner is filled with a castable insulation 10 consisting of, for example, alumina and mineral fibers bonded with a calcium aluminate cement.
  • Stiffening ribs 9 disposed about the periphery of the conical section aid in maintaining rigidity and act as supporting members to a structural steel framework (not shown).
  • FIG. 5 is a vertical section through exit port 5 showing the method of construction and attachment of the heat and corrosion resistant outlet nozzle 22 to the outer shell of exit port 5.
  • Outer shell 3 is attached as by welding to baseplate 6 and is reinforced by a plurality of gussets 33.
  • Nozzle 22 has its upper edge hard-surfaced with a wear-resistant alloy 23 such as STELLITE No. 6 (a cobaltchromium-tungsten alloy having a Rockwell C hardness of about 45) which is ground and polished to a surface finish of about r.m.s. or less.
  • a wear-resistant alloy 23 such as STELLITE No. 6 (a cobaltchromium-tungsten alloy having a Rockwell C hardness of about 45) which is ground and polished to a surface finish of about r.m.s. or less.
  • nozzle 22 The lower end of nozzle 22 is attached to outer shell 5 by means of conical sleeve 37 and is further secured by external brackets 35 welded to nozzle 22.
  • Conical sleeves 34 welded to the interior of nozzles 22 covers the edges of liner 7 and helps to smooth the flow of gas into the exit ports.
  • a ring plate 36 protects the perforated liner 30 at its intersection with nozzle 22.
  • the void between outer shell 5 and liner 7 is filled by castable insulation 10. Lining support studs 42 maintain baseplate liner 30 at proper distance and prevent sagging at high temperature.
  • FIG. 2 is a section through shaft 19 and illustrates how bearing 20, reinforced by angle brackets 21, is attached to baseplate 6 and protrudes through baseplate liner 30.
  • the bearing consists of a vertically elongated slot permitting vertical movement of the shaft and clearances are sufficient to permit some transverse movement.
  • Plate shaft 19 terminates in splines comprising parallel flats and is coupled to hollow drive shafts 24 in a socket at point 29.
  • FIG. 3 is a section through 29 showing construction of spline flats 32 and coupling socket 31.
  • the cross section area of the splined shaft ends 31 is equal to or greater than the nominal cross section area of the shaft and is constructed by, for example, welding longitudinal bars to the shaft or by upsetting the ends by forging before machining.
  • Coupling member 311 may be made by plug-welding chordate sections to the interior of the hollow drive shaft 24 and finished by machining. Clearances are provided for a loose fit between the respective flats and the circumferential portions of the coupling. It is preferred that the plane of flats 32 lie in the same plane as closure plates 1 1.
  • FIG. 4 the edge of spaced closure plates 11 are shown in closed position resting on hard-surfaced edge 23 of outlet nozzle 22.
  • the plates are constructed by welding circular discs 12 and 113 to a circumferential spacer ring 14 having a plurality of pressure equalization openings 15.
  • Moment beams 17 and gussets 18 are then welded to the plate and ring assembly before stress equalization and annealing. After annealing, contact surfaces 16 are machined to parallelism and a surface finish of about r.m.s. Gussets 18 are bored in line to accommodate shaft 19.
  • Drive shafts 24 are sealed against leakage by stuffing boxes 23 which are supplied with purge couplings 39, which may be attached to vent lines or may be used for supplying a back pressure of an inert gas such as nitrogen.
  • the external termini of drive shafts 24 are sealed against leakage and are journaled in bearings supported on the structural steel framework.
  • the pistons may be operated by a high pressure gaseous medium such as air or by hydraulic fluids. For a typical installation having 4% foot inlet and outlet ports and 5 foot closure plates, a torque of about 500,000 inch/pounds is required to swing the plates. While the hydraulic actuated rack and pinion is the preferred means for rotation of the plates, other means amenable to remote control may be used such as worm gears, pulleys, levers and the like. In order to insure a uniform distribution of the load, the hydraulic pressure actuating the pistons should be piped from a single source.
  • the closed nozzle and contacting plate are protected by the upper plate.
  • the exposed nozzle and upper plate are at the same temperature when switching of gas flow is required.
  • the clearances provided in the bearings and spline 29 permit the seating surface 16 of the plate to adjust to full contact with the mating surface 23 of the nozzle by means of the weight of plate without the use of any force applied by the pistons.
  • a three-way valve for directing a flow of gas comprising:
  • valve body said body having an upper inlet port in communication with a pair of substantially coplanar lower exit ports including outlet nozzles;
  • closure means within said valve body attached to a horizontal shaft for sealing said exit ports by force of gravity;
  • valve body comprises an outer shell; an inner liner in spaced relationship to said outer shell; and a castable insulation disposed between said outer shell and said inner liner.
  • valve according to claim 1 wherein said outlet nozzles include hard-surfaced contact surfaces having a Rockwell C hardness of at least 45.
  • valve according to claim 1 wherein said closure means comprises a pair of circular plates having inner and outer surfaces; said inner surfaces being connected to a circumferential spacer ring having a plurality of pressure equalization openings and said outer surfaces having seating surfaces located at their peripheries.
  • shaft-rotating means comprises a double rack engaging a pinion attached to said shaft, said rack actuated by a piston in a hydraulic cylinder.
  • shaft drive means comprises in combination a loose spline attached to said shaft engaging a socket in a hollow drive shaft.
  • a three-way valve for directing a flow of gas comprising:
  • valve body said body having an inlet port in communication with a pair of lower exit ports;
  • closure means within said valve body attached to a horizontal shaft
  • At least one stuffing box in said valve body in substantially coaxial relationship to said horizontal shaft e. shaft-rotating means mounted externally to said valve body in coaxial relationship to said stuffing box; and shaft-drive means passing through said stuffing box, said shaft-drive means including loose coupling means connecting said horizontal shaft with said shaft-rotating means to isolate the floating movement of said horizontal shaft from said stuffing box and said shaft-rotating means.
  • said exit ports include outlet nozzles having hard-surfaced contact surfaces having a Rockwell C hardness of about 45.
  • Valve according to claim 9 wherein said bearing means for said horizontal shaft comprise vertically elongated slots.
  • valve according to claim 9 wherein said shaft-drive means comprises in combination a loose spline attached to said shaft engaging a socket in a hollow drive shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding Valves (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Lift Valve (AREA)

Abstract

A three-way plate valve for directing a gas stream at high temperature is characterized by an upper inlet port, a pair of adjacent outlet ports and a closure plate for either outlet port pivoted therebetween. The closure plate includes a pair of spaced sealing surfaces for contacting the outlet ports and is attached to a shaft which is journaled in bearings within the valve body. Operation of the valve is effected by an external drive mechanism.

Description

llll 3,592,221
United States Patent [56] Relerences Cited UNITED STATES PATENTS [72] Inventors ArthurCWorky Morrblowu;
Dominic Ckdlino, Rocklway. both of. NJ. 881.072
660 77 33 e i n "we a nH HFA 666 335 999 Ill 356 7O [21] Appl. No.
Filed [22] Dec.l,1969 [45] Patented July 13.1971
y v mmwm n 5 7 I 7 3 P Uk m l .6 H 0 41A! in c u ms m .m 2 r M u m wm E Wm E m MD M m m0 h m I m w Mn h m3 .m mD m .n 5 m n C Wu a L I.
m. HMC o m M s .e W A PRU h F M H n U m 7 5 5 5 (J PATENTEDJUUBISYI 3.592.221
SHEET 1 OF 2 Arthur C. War/ey Dominic Clash/no BY mate AGENT INVENTORS PATENTEB Jun 3 1911 3; 592,221
SHEET 2 BF 2 35 l fX Figure 4 Ar/hur C. War/ey V R Dominic Ciao/lino IN ENTO 8 win M. AGENT lPlLATlE SWING VALVE FIELD OF THE INVENTION This invention is concerned with large aperture plate valves particularly adapted for use in low pressure, high temperature service involving diversion of gas flows having low solids entrainment. The valve finds particular utility in the operation of catalytic cracking furnaces for petroleum hydrocarbons, in which waste gases leaving the catalyst regenerator at a temperature of about 1200 F., containing from 5 to percent of carbon monoxide, is either burned in a waste-heat boiler or is diverted to a stack for discharge to the atmosphere.
Examples of fluid catalytic cracking furnaces and associated waste-heat boilers are illustrated in U.S. Pats. No. Re. 25,220; 2,906,703; 3,158,562; 3,355,380; and 3,362,902; 3,401,124; respectively.
PRIOR ART Prior efforts to develop valves suitable for gas switching or diversion have included slide valves such as shown in U.S. Pat. No. 536,151; butterfly valves such as the valve illustrated in U.S. Pat. No. 1,558,157; and combination folding and butterfly valves as disclosed in U.S. Pat. No. 2,910,284. All of the above valves, while designed for high-temperature service, suffer from excessive leakage past the sealing surfaces or from leakage to the atmosphere and require water-seal tanks to ensure the safety of personnel. Where water-seal tanks are employed, a large amount of space must be allocated for their installation, since very commonly, the gas lines leaving the catalyst regenerators are in the range of 4 to 5 feet in diame- 161'.
More recently, a fluid-expandable disc valve illustrated in copending application Ser. No. 675,083 has been developed which embodies improvements over the prior art but which requires the use of two valves in flue gas service instead of the single valve of the instant invention.
SUMMARY The present invention embodies the design of a plate valve in which closure is effected by plate gravity and differential pressure. It is particularly adapted for use at low pressure and high temperature in flue gas systems requiring switching or bypass arrangements. Flow of gas is switched by rotation of the plate through 180 so as to close a downwardly directed gas path at either extreme, thereby providing absolute interlock. It is economical of piping layout and makes it possible to dispense with water-seal tanks and use only simpleblanking plates between flanges for the protection of personnel when servicing lines or equipment downstream.
GENERAL DESCRIPTION OF DRAWINGS FIG. 1 is a cutaway view of the valve in perspective illustrating the essential features and operative elements.
FIG. 2 is a section through the plate-shaft showing the construction of the shaft bearings.
FIG. 3 is a section through the drive shaft and plate-shaft at a point where they engage each other showing the construction of the loose spline.
FIG. 4 is a section through the spaced closure plates in closed position showing one plate in contact with an outlet nozzle.
FIG. 5 is a section through an outlet port showing the method of support and attachment of the outlet nozzle to the base plate and outer shell.
DETAILED DESCRIPTION OF DRAWINGS Referring to FIG. 1, the valve assembly comprises an upper tubular inlet port I, having an outer shell 2, which may be made of carbon steel and an inner liner 3 which is preferably made from a perforated heat and corrosion resistant alloy such as type 410 stainless steel. The outer shell 2 is connected by means of a flattened truncated conical section 8 through a vertical section 40 to an approximately elliptical baseplate 6. In similar manner, following the contours of the outer shell, the inner liner 3 is connected through liner 33 by means of vertical liner 4] to baseplate liner 30. The space between the outer shell and inner liner is filled with a castable insulation 10 consisting of, for example, alumina and mineral fibers bonded with a calcium aluminate cement. Stiffening ribs 9 disposed about the periphery of the conical section aid in maintaining rigidity and act as supporting members to a structural steel framework (not shown).
Disposed along the major axis of the baseplate 6 are exit ports 4 and 5, having inner liners 7, castable insulation 10 and include outlet nozzles 22. FIG. 5 is a vertical section through exit port 5 showing the method of construction and attachment of the heat and corrosion resistant outlet nozzle 22 to the outer shell of exit port 5. Outer shell 3 is attached as by welding to baseplate 6 and is reinforced by a plurality of gussets 33. Nozzle 22 has its upper edge hard-surfaced with a wear-resistant alloy 23 such as STELLITE No. 6 (a cobaltchromium-tungsten alloy having a Rockwell C hardness of about 45) which is ground and polished to a surface finish of about r.m.s. or less. The lower end of nozzle 22 is attached to outer shell 5 by means of conical sleeve 37 and is further secured by external brackets 35 welded to nozzle 22. Conical sleeves 34 welded to the interior of nozzles 22 covers the edges of liner 7 and helps to smooth the flow of gas into the exit ports. A ring plate 36 protects the perforated liner 30 at its intersection with nozzle 22. The void between outer shell 5 and liner 7 is filled by castable insulation 10. Lining support studs 42 maintain baseplate liner 30 at proper distance and prevent sagging at high temperature.
Along the minor axis of baseplate 6 and midway-between exit ports 4 and 5, a horizontal plate shaft 19 is journaled in bearings 20. Spaced closure plates 11 are attached, as by welding, to shaft 19 by means of moment beams 17 and gussets 13.
FIG. 2 is a section through shaft 19 and illustrates how bearing 20, reinforced by angle brackets 21, is attached to baseplate 6 and protrudes through baseplate liner 30. The bearing consists of a vertically elongated slot permitting vertical movement of the shaft and clearances are sufficient to permit some transverse movement.
Plate shaft 19 terminates in splines comprising parallel flats and is coupled to hollow drive shafts 24 in a socket at point 29. FIG. 3 is a section through 29 showing construction of spline flats 32 and coupling socket 31. The cross section area of the splined shaft ends 31 is equal to or greater than the nominal cross section area of the shaft and is constructed by, for example, welding longitudinal bars to the shaft or by upsetting the ends by forging before machining. Coupling member 311 may be made by plug-welding chordate sections to the interior of the hollow drive shaft 24 and finished by machining. Clearances are provided for a loose fit between the respective flats and the circumferential portions of the coupling. It is preferred that the plane of flats 32 lie in the same plane as closure plates 1 1.
Referring to FIG. 4, the edge of spaced closure plates 11 are shown in closed position resting on hard-surfaced edge 23 of outlet nozzle 22. The plates are constructed by welding circular discs 12 and 113 to a circumferential spacer ring 14 having a plurality of pressure equalization openings 15. Moment beams 17 and gussets 18 are then welded to the plate and ring assembly before stress equalization and annealing. After annealing, contact surfaces 16 are machined to parallelism and a surface finish of about r.m.s. Gussets 18 are bored in line to accommodate shaft 19.
Drive shafts 24 are sealed against leakage by stuffing boxes 23 which are supplied with purge couplings 39, which may be attached to vent lines or may be used for supplying a back pressure of an inert gas such as nitrogen. The external termini of drive shafts 24 are sealed against leakage and are journaled in bearings supported on the structural steel framework.
Pinions 25 attached to drive shafts 24 engage racks 26 which are actuated by pistons 43 in double-acting cylinders 27. The pistons may be operated by a high pressure gaseous medium such as air or by hydraulic fluids. For a typical installation having 4% foot inlet and outlet ports and 5 foot closure plates, a torque of about 500,000 inch/pounds is required to swing the plates. While the hydraulic actuated rack and pinion is the preferred means for rotation of the plates, other means amenable to remote control may be used such as worm gears, pulleys, levers and the like. In order to insure a uniform distribution of the load, the hydraulic pressure actuating the pistons should be piped from a single source.
In operation, the closed nozzle and contacting plate are protected by the upper plate. At the same time the exposed nozzle and upper plate are at the same temperature when switching of gas flow is required. When the plate has been rotated, the clearances provided in the bearings and spline 29 permit the seating surface 16 of the plate to adjust to full contact with the mating surface 23 of the nozzle by means of the weight of plate without the use of any force applied by the pistons.
Having fully and operably described our invention, we claim:
1. A three-way valve for directing a flow of gas comprising:
a. a valve body, said body having an upper inlet port in communication with a pair of substantially coplanar lower exit ports including outlet nozzles;
b. closure means within said valve body attached to a horizontal shaft for sealing said exit ports by force of gravity;
c. bearing means between said exit ports journaling said horizontal shaft;
(1. a pair of oppositely disposed stuffing boxes in communication with said valve body and in coaxial relationship to said horizontal shaft;
e. shaft-rotating means mounted externally to said valve body in coaxial relationship to said stuffing boxes; and
f. shaft-drive means passing through said stuffing boxes connecting said horizontal shaft with said shaft-rotating means.
2. Valve according to claim 1 wherein said valve body comprises an outer shell; an inner liner in spaced relationship to said outer shell; and a castable insulation disposed between said outer shell and said inner liner.
3. Valve according to claim 2 wherein said inner liner is fabricated from a heat and corrosion resistant alloy.
4. Valve according to claim 1 wherein said outlet nozzles include hard-surfaced contact surfaces having a Rockwell C hardness of at least 45.
5. Valve according to claim 1 wherein said closure means comprises a pair of circular plates having inner and outer surfaces; said inner surfaces being connected to a circumferential spacer ring having a plurality of pressure equalization openings and said outer surfaces having seating surfaces located at their peripheries.
6. Valve according to claim 1 wherein said bearing means for said horizontal shaft comprise vertically elongated slots.
7. Valve according to claim 1 wherein shaft-rotating means comprises a double rack engaging a pinion attached to said shaft, said rack actuated by a piston in a hydraulic cylinder.
8. Valve according to claim 1 wherein shaft drive means comprises in combination a loose spline attached to said shaft engaging a socket in a hollow drive shaft.
9. A three-way valve for directing a flow of gas comprising:
a. a valve body, said body having an inlet port in communication with a pair of lower exit ports;
b. closure means within said valve body attached to a horizontal shaft;
. bearing means between said exit ports journaling said horizontal shaft, said bearing means permitting limited floating movement between said horizontal shaft and said valve body to permit self-alignment of said closure means upon said exit ports;
d. at least one stuffing box in said valve body in substantially coaxial relationship to said horizontal shaft; e. shaft-rotating means mounted externally to said valve body in coaxial relationship to said stuffing box; and shaft-drive means passing through said stuffing box, said shaft-drive means including loose coupling means connecting said horizontal shaft with said shaft-rotating means to isolate the floating movement of said horizontal shaft from said stuffing box and said shaft-rotating means. 10. Valve according to claim 9 wherein said exit ports include outlet nozzles having hard-surfaced contact surfaces having a Rockwell C hardness of about 45.
11. Valve according to claim 9 wherein said bearing means for said horizontal shaft comprise vertically elongated slots.
12. Valve according to claim 9 wherein said shaft-drive means comprises in combination a loose spline attached to said shaft engaging a socket in a hollow drive shaft.

Claims (12)

1. A three-way valve for directing a flow of gas comprising: a. a valve body, said body having an upper inlet port in communication with a pair of substantially coplanar lower exit ports including outlet nozzles; b. closure means within said valve body attached to a horizontal shaft for sealing said exit ports by force of gravity; c. bearing means between said exit ports journaling said horizontal shaft; d. a pair of oppositely disposed stuffing boxes in communication with said valve body and in coaxial relationship to said horizontal shaft; e. shaft-rotating means mounted externally to said valve body in coaxial relationship to said stuffing boxes; and f. shaft-drive means passing through said stuffing boxes connecting said horizontal shaft with said shaft-rotating means.
2. Valve according to claim 1 wherein said valve body comprises an outer shell; an inner liner in spaced relationship to said outer shell; and a castable insulation disposed between said outer shell and said inner liner.
3. Valve according to claim 2 wherein said inner liner is fabricated from a heat and corrosion resistant alloy.
4. Valve according to claim 1 wherein said outlet nozzles include hard-surfaced contact surfaces having a Rockwell C hardness of at least 45.
5. Valve according to claim 1 wherein said closure means comprises a pair of circular plates having inner and outer surfaces; said inner surfaces being connected to a circumferential spacer ring having a plurality of pressure equalization openings and said outer surfaces having seating surfaces located at their peripheries.
6. Valve according to claim 1 wherein said bearing means for said horizontal shaft comprise vertically elongated slots.
7. Valve according To claim 1 wherein shaft-rotating means comprises a double rack engaging a pinion attached to said shaft, said rack actuated by a piston in a hydraulic cylinder.
8. Valve according to claim 1 wherein shaft drive means comprises in combination a loose spline attached to said shaft engaging a socket in a hollow drive shaft.
9. A three-way valve for directing a flow of gas comprising: a. a valve body, said body having an inlet port in communication with a pair of lower exit ports; b. closure means within said valve body attached to a horizontal shaft; c. bearing means between said exit ports journaling said horizontal shaft, said bearing means permitting limited floating movement between said horizontal shaft and said valve body to permit self-alignment of said closure means upon said exit ports; d. at least one stuffing box in said valve body in substantially coaxial relationship to said horizontal shaft; e. shaft-rotating means mounted externally to said valve body in coaxial relationship to said stuffing box; and f. shaft-drive means passing through said stuffing box, said shaft-drive means including loose coupling means connecting said horizontal shaft with said shaft-rotating means to isolate the floating movement of said horizontal shaft from said stuffing box and said shaft-rotating means.
10. Valve according to claim 9 wherein said exit ports include outlet nozzles having hard-surfaced contact surfaces having a Rockwell C hardness of about 45.
11. Valve according to claim 9 wherein said bearing means for said horizontal shaft comprise vertically elongated slots.
12. Valve according to claim 9 wherein said shaft-drive means comprises in combination a loose spline attached to said shaft engaging a socket in a hollow drive shaft.
US3592221D 1969-12-01 1969-12-01 Plate swing valve Expired - Lifetime US3592221A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88107269A 1969-12-01 1969-12-01

Publications (1)

Publication Number Publication Date
US3592221A true US3592221A (en) 1971-07-13

Family

ID=25377725

Family Applications (1)

Application Number Title Priority Date Filing Date
US3592221D Expired - Lifetime US3592221A (en) 1969-12-01 1969-12-01 Plate swing valve

Country Status (4)

Country Link
US (1) US3592221A (en)
CA (1) CA925772A (en)
DE (1) DE2058353C3 (en)
GB (1) GB1327254A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827458A (en) * 1972-11-22 1974-08-06 Granda Corp Diverter valve for liquids
US4351361A (en) * 1975-03-17 1982-09-28 Exxon Research And Engineering Co. Valve with spring gate
US4388766A (en) * 1981-08-17 1983-06-21 Sanderson L Wayne Humidity-controlled diverter valve
USRE32722E (en) * 1975-07-31 1988-08-02 Combustion Research Corp. Ventilation system with thermal energy recovery
US5029608A (en) * 1990-06-08 1991-07-09 Triten Corporation Diverter valve
US5120021A (en) * 1989-06-15 1992-06-09 Grovag Grossventiltechnik Ag Isolators
WO1996035900A1 (en) * 1995-05-12 1996-11-14 Wes Technology Inc. Hydraulic actuator for isolators
US20090309354A1 (en) * 2006-05-16 2009-12-17 Nyhus Daniel A Flexible ducting system including an articulable sealed joint
US20130118615A1 (en) * 2011-11-16 2013-05-16 Charles Kevin Jonker Apparatus for Diverting a Flow of Material
WO2013139147A1 (en) * 2012-03-23 2013-09-26 湖南三一智能控制设备有限公司 Distribution valve of pumping system, pumping system and engineering machine
US20150247577A1 (en) * 2014-03-03 2015-09-03 Idea Logic LLC Diverter valve cartridge plate
US9611947B2 (en) * 2015-06-09 2017-04-04 Ge Aviation Systems Llc Valve assembly and method of controlling flow of fluid
US9719601B2 (en) 2014-07-22 2017-08-01 Hans D. Baumann Canted, single vane, three-way butterfly valve
CN110749702A (en) * 2019-10-29 2020-02-04 上海蓝魂环保科技有限公司 Marine seawater desulfurization tail gas detection equipment
US10890118B2 (en) * 2018-08-24 2021-01-12 Honda Motor Co., Ltd. Exhaust control valve of saddle-riding vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2035747A (en) * 1935-07-20 1936-03-31 Creath N Harris Two-way valve gate
US2040930A (en) * 1930-12-31 1936-05-19 Foster Whecler Corp Distributing mechanism
US2748600A (en) * 1953-05-28 1956-06-05 Anchor Mfg Co Dual protection gas meter by-pass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2040930A (en) * 1930-12-31 1936-05-19 Foster Whecler Corp Distributing mechanism
US2035747A (en) * 1935-07-20 1936-03-31 Creath N Harris Two-way valve gate
US2748600A (en) * 1953-05-28 1956-06-05 Anchor Mfg Co Dual protection gas meter by-pass

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827458A (en) * 1972-11-22 1974-08-06 Granda Corp Diverter valve for liquids
US4351361A (en) * 1975-03-17 1982-09-28 Exxon Research And Engineering Co. Valve with spring gate
USRE32722E (en) * 1975-07-31 1988-08-02 Combustion Research Corp. Ventilation system with thermal energy recovery
US4388766A (en) * 1981-08-17 1983-06-21 Sanderson L Wayne Humidity-controlled diverter valve
US5120021A (en) * 1989-06-15 1992-06-09 Grovag Grossventiltechnik Ag Isolators
US5029608A (en) * 1990-06-08 1991-07-09 Triten Corporation Diverter valve
WO1996035900A1 (en) * 1995-05-12 1996-11-14 Wes Technology Inc. Hydraulic actuator for isolators
US8141912B2 (en) * 2006-05-16 2012-03-27 The Boeing Company Flexible ducting system including an articulable sealed joint
US20090309354A1 (en) * 2006-05-16 2009-12-17 Nyhus Daniel A Flexible ducting system including an articulable sealed joint
US20130118615A1 (en) * 2011-11-16 2013-05-16 Charles Kevin Jonker Apparatus for Diverting a Flow of Material
US9732896B2 (en) * 2011-11-16 2017-08-15 Charles Kevin Jonker Apparatus for diverting a flow of material
WO2013139147A1 (en) * 2012-03-23 2013-09-26 湖南三一智能控制设备有限公司 Distribution valve of pumping system, pumping system and engineering machine
US20150247577A1 (en) * 2014-03-03 2015-09-03 Idea Logic LLC Diverter valve cartridge plate
US9719601B2 (en) 2014-07-22 2017-08-01 Hans D. Baumann Canted, single vane, three-way butterfly valve
US9611947B2 (en) * 2015-06-09 2017-04-04 Ge Aviation Systems Llc Valve assembly and method of controlling flow of fluid
US10890118B2 (en) * 2018-08-24 2021-01-12 Honda Motor Co., Ltd. Exhaust control valve of saddle-riding vehicle
CN110749702A (en) * 2019-10-29 2020-02-04 上海蓝魂环保科技有限公司 Marine seawater desulfurization tail gas detection equipment

Also Published As

Publication number Publication date
CA925772A (en) 1973-05-08
DE2058353B2 (en) 1979-08-23
DE2058353C3 (en) 1980-05-08
GB1327254A (en) 1973-08-22
DE2058353A1 (en) 1971-06-09

Similar Documents

Publication Publication Date Title
US3592221A (en) Plate swing valve
US3976094A (en) Guided slide valve
US4269166A (en) Stack damper valve
US3937247A (en) Valve for fluids containing abrasive particles
US4144902A (en) Isolation valve
US2451145A (en) Lined pipe
US3154326A (en) Coupling means, particularly releasable packing for piping or the like
JP7235667B2 (en) Fluid catalytic cracking unit valve
US10697556B2 (en) Boltless guided slide valve
US4018420A (en) Slide valve for closing a large pressurized gas conveying pipe
US4269218A (en) Rotary valve
US2599210A (en) Internally insulation lined vessel
US1998080A (en) Valve mechanism
US2074091A (en) Pressure control valve
EP0056374B1 (en) Guillotine damper
US2587704A (en) Tangential cylinder valve
US464195A (en) Valve for regenerative stoves or furnaces
US267234A (en) Valve
US1506021A (en) Valve
US3381702A (en) Water-cooled valve for blast furnace stoves
JPS6151707B2 (en)
US2898932A (en) Valve apparatus
US1024785A (en) Furnace gas-valve.
US3556473A (en) Valve assembly with replacement valve unit
US3126941A (en) Integral gas burner and valve