US3591079A - Heating system and heat generating pump - Google Patents

Heating system and heat generating pump Download PDF

Info

Publication number
US3591079A
US3591079A US880112A US3591079DA US3591079A US 3591079 A US3591079 A US 3591079A US 880112 A US880112 A US 880112A US 3591079D A US3591079D A US 3591079DA US 3591079 A US3591079 A US 3591079A
Authority
US
United States
Prior art keywords
fluid
pump
housing
stator
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US880112A
Inventor
Theodore F Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Application granted granted Critical
Publication of US3591079A publication Critical patent/US3591079A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/038Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from the cooling liquid of the propulsion plant and from a viscous fluid heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V40/00Production or use of heat resulting from internal friction of moving fluids or from friction between fluids and moving bodies

Definitions

  • the pump has a thermally responsive bellows that [54] HEATING SYSTEM AND HEAT GENERATING moves a blocker plate to a retracted position under predetermined temperature conditions exposing a stator to the fluid 6 Chums 3 Drawmg Figs flow path so that the temperature of the fluid is increased by [52] US. Cl 237/8 A, turbulent fluid friction and by the friction between stator 237/123 8, 415/12, 123/1425 R blades and the fluid.
  • the bellows expands to move the blocker F02n 17/04 plate to a fluid-blocking position so that the stator is out of the [50] Field of Search 237/2, 8; flow path and fluid friction is decreased thereby enabling the pump to operate at its highest efficiency.
  • This invention relates to a fluid pump for a heating system incorporating a special stator in the pump which is disposed in .the fluid flow path under predetermined temperature conditions to effect fluid turbulence and an increase in fluid temperature; under other predetermined temperature conditions the stator is out of the fluid flow path to increase pump operating efficiency.
  • the present invention concerns a fluid pump for a heating system which provides for the rapid rise of the temperature of the circulated fluid and is readily adaptable for vehicular as well as other uses.
  • the pump of this invention requires few components and is highly compact to meet the space requirements for installation on a vehicle engine.
  • the pump housing has stationary fins formed therein which are exposed to the fluid being pumped under predetermined conditions so that the fluid friction effects a rapid increase of the temperature of the circulated fluid.
  • temperatureresponsive operator means position a baffle member over the stationary fins to block quantity fluid flow to these fins and thereby reduces fluid friction so that the pump can subsequently operate more efficiently.
  • a thermal bellows operates to position the baffle plate to an inactive or. to a blocking position in response to temperature conditions of the circulated fluid.
  • An object of this invention is to provide a new and improved fluid pump which has heat generating fins exposed to the fluid under certain conditions of pump operation to .cause turbulent fluid friction so that the fluid temperature increases and which has a blocker plate moved to a fluid blocking position by temperature-responsive means after predetermined elevated temperatures have been obtained to thereby increase pump efficiency.
  • Another object ofthis invention is to provide a new and improved heat generating pump having an impeller which circulates fluid within a pump housing to an outlet side of the pump through stator means which causes fluid turbulence and friction resulting in a substantial temperature rise as the pump is operating; after predetermined fluid temperatures have been obtained, a fluid blocker plate is moved into position to block the stator from the flow path so that it cannot convert power into heat while the fluid is being pumped thereby permitting the pump to subsequently operate without power absorption by the stator.
  • Another object of this invention is to provide a new and improved heating system comprising a fluid pump hydraulically connected to a heater core in which the pump has an impeller which pumps system fluid against a stator when the fluid is below a predetermined temperature to thereby increase the temperature of the fluid and function as a pump and heater and in which the stator is substantially removed from the flow path when the fluid reaches a predetermined temperature to permit the pump to operate only as a pump and to operate with greater efficiency.
  • Another object of this invention is to provide a new and improved heating system for vehicles in which an engine-driven fluid pump is provided with a stator exposed to the fluid being pumped to generate fluid turbulence and thereby heat the fluid circulated to the vehicle engine and to the heater core disposed in the interior of a vehicle; as the temperature of the circulated fluid rises, a thermally responsive operator mechanism gradually removes the stator from the fluid circuit so that turbulence is decreased thereby increasing pump efficiency; after the fluid circulated by the pump reaches a predetermined temperature, a thermostatically controlled valve opens to permit fluid to flow from the engine block into the radiator and back into the intake ofthe pump.
  • FIG. 1 is a side elevational view of a fluid pump constructed in accordance with the invention.
  • FIG. 2 is a view taken generally along the line 2-2 of FIG. 1.
  • FIG. 3 is a perspective view of a vehicle engine and heating system for a vehicle.
  • FIG. 3 there is a heating system 10 for heating the interior of a vehicle.
  • the system includes a centrifugal fluid pump 12 which draws the fluid from a radiator 14 through hose l5 and pumps it into the water jacket and in the cylinder head of an internal combustion engine 18. From the cylinder head the fluid flows into a heater core 20 through a hose 22 and from the heater core back into the pump through a hose 24. Also the fluid flows from the cylinder head to the radiator 14 through a passage provided by a housing 26 and a hose 28.
  • thermostat 30 in housing 26 which is closed at predetermined low temperatures to block flow through the radiator so that circulation is from the pump through the water jacket back through a bypass 32 leading into the intake of the pump 12 and also from the pump through the heater core and back into the pump as described above. This enables the engine to raise the temperature in'the heater system in a shorter time period as compared to a similar system without a thermostat.
  • FIGS. 1 and 2 show details of this pump which has a tiered and generally cylindrical housing 40 that is formed with an outwardly extending flange 42 seated in fluid sealing contact with a bottom plate 44 of a pump cover 45.
  • the pump housing is secured to the bottom plate and to the engine 18 by bolts 46 which are threaded into an embossed portion 47 of the engine block.
  • the pump cover 45 has an outer wall 48 whichis spaced from the bottom plate 44 to provide an annular fluid intake chamber 50 connected to a fluid conducting pipe 52. Pipe 52 terminates in a suction port 53 formed at one side of the pump connected to radiator hose 15. As shown, chamber 50 communicates with the interior of the housing by ports 54 formed in the bottom plate 44.
  • a fluid circulating impeller 56 is rotatably mounted in the housing by a cylindrical drive shaft 58 rotatably journaled in a bearing collar 60 in the pump cover 45.
  • the impeller has an annular plate 62 integral with shaft 58 in which there are formed a series of openings 64 which permit the fluid to flow in from the suction port 53 and chamber 50 into the interior of the housing.
  • the plate 62 of the impeller has projecting radial fins 66 which pump the fluid from the interior of the housing out of the fluid outlet passage 68 formed in the housing as shown best by FlG. 2.
  • This outlet passage is hydraulically connected by a suitable passage, not shown, to the engine water jacket.
  • the housing there are fixed, inwardly extending radial fins 70 which project from an upper part of the housing as shown in FIG. I.
  • an annular blocker plate 74 having slots 76 cut therein which accommodate the fins 70 that serve as guides for raising and lowering the blocker plate in the housing between the fill line and the phantom line positions.
  • the positioning of the blocker plate is accomplished by an expanding and contracting thermal bellows 78, which has one end plate 80 connected to the inside housing 40 and an opposite end plate 82 connected to the blocker plate.
  • the bellows preferably has a corrugated cylindrical wall of metal such as brass and has a suitable quantity of thermally expansible liquid or gas sealed therein. Fluid can enter in the part of the housing containing the bellows around the outer edge of the blocker plate and through the clearance between the fins 70 and slots 76 so that the bellows can readily sense the temperature of the fluid.
  • the bellows will expand when the temperature is higher than a predetermined temperature to move the plate and hold it in the phantom line position of FlG. 1.
  • the blocker plate closes off the portion of the housing containing fins 70 and prevents the impeller from pumping the fluid into the stationary radial fins 70. Under these conditions the pump will act as a highly efficient centrifugal pump.
  • the thermal bellows moves the blocker plate to the full line position whereby the fixed radial fins 70 are exposed.
  • a pulley 86 for driving the impeller is fixed to the impeller shaft 58 and is driven by the engine through belt 88.
  • Fluid conducting pipe 90 in the pump cover communicates with chamber 50 and has a suction port 92 for connection with hose 24 from heater core 20.
  • the pump cover also has an intake pipe as illustrated in FIG. 3 connected to bypass 32.
  • the thermal bellows has contracted and moved the blocking plate 74 to the solid line position in FIG. 1 thereby exposing the fixed fins 70.
  • the pump takes in fluid from port 92 and from the bypass 32, and large quantities of this fluid are propelled against the fixed fins causing fluid turbulence and frictional drag between fluid layers of different velocities. This turbulent fluid friction plus the friction between the fins and the fluid causes a temperature rise of the fluid which is additive to that caused by the heat of the engine.
  • the thermal bellows When the fluid reaches a predetermined temperature; 185 F., for example, the thermal bellows will have expanded completely to move the blocker plate to the fluid-blocking position shown in phantom lines in FIG. 1. Under these conditions the centrifugal pump pumps the fluid from the suction ports directly to the output with its greatest efficiency with minimal friction loss since it is not pumping against the fixed fins. Also at 185 F. the thermostat opens and fluid flows through the radiator as previously described.
  • this invention provides important advantages in that the pump raises fluid temperatures when they are needed. Furthermore, the stator mechanism for raising the temperature of the fluid is effectively blocked after predetermined fluid temperatures have been reached so that it will not absorb power to thereby allow the pump to subsequently operate at its highest efficiency.
  • a fluid pump comprising a housing having fluid inlet means and fluid outlet means, rotor means rotatably mounted in said housing for pumping said fluid in a flow path from said fluid inlet means to said fluid outlet means, drive means operatively connected to said rotor means for rotating said rotor means, stator means operatively disposed in said housing in said flow path so that fluid friction effects an increase in the thermal energy of the fluid pumped to said outlet, and operator means responsive to the attainment of a redetermined thermal energy level of said fluid for removing said stator from the fluid flow path thereby permitting said pump to operate without power absorption from said stator.
  • a fluid pump for pumping and heating fluid comprising a housing, a rotatable impeller mounted in said housing for imparting pressure and kinetic energy to the fluid to pump said fluid from said inlet through said outlet, a plurality offixed fins disposed in said housing for frictionally contacting said fluid to effect fluid turbulence and an increase in the temperature of said fluid as said fluid is pumped by said impeller, and fluid blocking means movably mounted in said housing and movable from a position in which said fins are fully exposed to the fluid pumped by said impeller to a blocking position in which said blocking means covers the major portion of said fins to reduce power absorption by 'said fins.
  • a fluid pump comprising a housing having an inlet and an outlet, a bladed impeller for pumping fluid from said inlet through said outlet, a stator having a plurality of fins fixed to the interior of said housing and facing said impeller, a blocker plate having a plurality of recesses formed therein for receiving the fins of said stator and for mounting said plate for axial sliding movement on said fins, temperature responsive operator means secured to the interior of said housing and to one side of said plate for moving said plate between a fluid blocking position adjacent to said impeller and a retracted position spaced from said impeller whereby said fins are fully exposed to said fluid so that the thermal energy thereof is increased by fluid friction in response to rotation of said im peller.
  • a pump for pumping and heating a-liquid comprising a housing, liquid inlet and outlet means, an impeller mounted for rotation in said housing for imparting pressure and kinetic energy to the liquid pumped from said inlet through said outlet means, said impeller having an annular head portion with a plurality of radial fins thereon and having a drive shaft extending to the exterior of said housing, drive means secured to said drive shaft for turning said impeller, stator means fixed in said housing for effecting fluid turbulence and absorbing power as said liquid is being pumped, said stator means having a plurality of radial fins circularly disposed in said housing adjacent to said fins on said impeller, blocker plate means having a plurality of radial slots which match and slidingly fit said fins of said stator, and thermally responsive bellows means secured in said housing and to said blocker plate to move said blocker plate between a position in which said stator is in the path of liquid being pumped from said inlet to said outlet to increase liquid frictionand the temperature of said liquid and a
  • a heating system for a vehicle comprising an engine having a fluid coolant passage therethrough, a fluid pump driven by said engine having fluid intake means and fluid outlet means, a heater core, first fluid conducting means operatively connecting said outlet means to the coolant passage of said engine, second fluid conducting means operatively connecting said coolant passage of said engine to said heater core, third fluid conducting means for operatively connecting said heater core to said fluid intake means so that said pump can circulate a fluid through said engine and said heater core, said pump having a rotatable impeller and having a stator movable into and out of the flow path of the fluid circulated by said pump, and temperature responsive actuator means for exposing said stator to said flow path under predetermined fluid temperature conditions to create fluid turbulence and friction so that said pump will function as a pump and fluid heater and to effectively remove said stator from said flow path under higher predetermined fluid temperature conditions so that said pump will operate only as a fluid pump.

Abstract

Heating system for heating the interior of a vehicle in which an engine driven fluid pump circulates fluid through the vehicle engine, the heater core and the engine radiator. The pump has a thermally responsive bellows that moves a blocker plate to a retracted position under predetermined temperature conditions exposing a stator to the fluid flow path so that the temperature of the fluid is increased by turbulent fluid friction and by the friction between stator blades and the fluid. As the fluid attains a predetermined thermal energy level, the bellows expands to move the blocker plate to a fluid-blocking position so that the stator is out of the flow path and fluid friction is decreased thereby enabling the pump to operate at its highest efficiency.

Description

I United States Patent 1 1 3,59 1 ,079
(72] Inventor Theodore F. Peters [56] References Cited m Mich UNITED STATES PATENTS N0 :i g 1969 2,354,948 8/1944 Dewey 1 416/39 Patented y 6' 97' 2.749.049 6/1956 Smith 237/8 A [73] Assignee General Motors Corporation Primary Examiner-Edward J. Michael Detroit Mich. Attorneys-W. E. Finken, A. M. Heiter and Charles R. White ABSTRACT: Heating system for heating the interior ofa vehicle in which an engine driven fluid pump circulates fluid through the vehicle engine, the heater core and the engine radiator. The pump has a thermally responsive bellows that [54] HEATING SYSTEM AND HEAT GENERATING moves a blocker plate to a retracted position under predetermined temperature conditions exposing a stator to the fluid 6 Chums 3 Drawmg Figs flow path so that the temperature of the fluid is increased by [52] US. Cl 237/8 A, turbulent fluid friction and by the friction between stator 237/123 8, 415/12, 123/1425 R blades and the fluid. As the fluid attains a predetermined ther- [51] lnt.Cl B60h l/(l8, mal energy level, the bellows expands to move the blocker F02n 17/04 plate to a fluid-blocking position so that the stator is out of the [50] Field of Search 237/2, 8; flow path and fluid friction is decreased thereby enabling the pump to operate at its highest efficiency.
' Y HEATING SYSTEM AND HEAT GENERATING PUMP i This invention relates to a fluid pump for a heating system incorporating a special stator in the pump which is disposed in .the fluid flow path under predetermined temperature conditions to effect fluid turbulence and an increase in fluid temperature; under other predetermined temperature conditions the stator is out of the fluid flow path to increase pump operating efficiency.
It is often desirable to have the fluid circulated by a pump to attain a substantial rise in temperature as soon as possible. in automotive application, for example, a quick temperature rise of the fluid circulated to the heater core is often needed when it is cold and uncomfortable to provide for rapid defrosting of the windshield and for quick warmup of the vehicles interior improving occupant comfort.
Although present heating systems for automobiles are adequate for heating and defrosting purposes, they often do not function as rapidly as desired. Quick warmup systems prior to the present invention have met with only limited success and acceptance. The use of electric heater elements in the coolant system, for example, creates an undesirable drain on the battery. Systems for storage of heated fluids in special reservoirs utilizing improved insulations have not been widely employed because of space limitations and relatively high costs.
The present invention concerns a fluid pump for a heating system which provides for the rapid rise of the temperature of the circulated fluid and is readily adaptable for vehicular as well as other uses. The pump of this invention requires few components and is highly compact to meet the space requirements for installation on a vehicle engine.
In the preferred embodiment of the invention the pump housing has stationary fins formed therein which are exposed to the fluid being pumped under predetermined conditions so that the fluid friction effects a rapid increase of the temperature of the circulated fluid. As the fluid becomes sufficiently heated beyond predetermined temperatures, temperatureresponsive operator means position a baffle member over the stationary fins to block quantity fluid flow to these fins and thereby reduces fluid friction so that the pump can subsequently operate more efficiently. In the preferred embodiment a thermal bellows operates to position the baffle plate to an inactive or. to a blocking position in response to temperature conditions of the circulated fluid.
An object of this invention is to provide a new and improved fluid pump which has heat generating fins exposed to the fluid under certain conditions of pump operation to .cause turbulent fluid friction so that the fluid temperature increases and which has a blocker plate moved to a fluid blocking position by temperature-responsive means after predetermined elevated temperatures have been obtained to thereby increase pump efficiency.
Another object ofthis invention is to provide a new and improved heat generating pump having an impeller which circulates fluid within a pump housing to an outlet side of the pump through stator means which causes fluid turbulence and friction resulting in a substantial temperature rise as the pump is operating; after predetermined fluid temperatures have been obtained, a fluid blocker plate is moved into position to block the stator from the flow path so that it cannot convert power into heat while the fluid is being pumped thereby permitting the pump to subsequently operate without power absorption by the stator.
Another object of this invention is to provide a new and improved heating system comprising a fluid pump hydraulically connected to a heater core in which the pump has an impeller which pumps system fluid against a stator when the fluid is below a predetermined temperature to thereby increase the temperature of the fluid and function as a pump and heater and in which the stator is substantially removed from the flow path when the fluid reaches a predetermined temperature to permit the pump to operate only as a pump and to operate with greater efficiency.
Another object of this invention is to provide a new and improved heating system for vehicles in which an engine-driven fluid pump is provided with a stator exposed to the fluid being pumped to generate fluid turbulence and thereby heat the fluid circulated to the vehicle engine and to the heater core disposed in the interior of a vehicle; as the temperature of the circulated fluid rises, a thermally responsive operator mechanism gradually removes the stator from the fluid circuit so that turbulence is decreased thereby increasing pump efficiency; after the fluid circulated by the pump reaches a predetermined temperature, a thermostatically controlled valve opens to permit fluid to flow from the engine block into the radiator and back into the intake ofthe pump.
These and other objects of the invention will become more apparent from the following detailed description and drawings in which:
FIG. 1 is a side elevational view ofa fluid pump constructed in accordance with the invention.
FIG. 2 is a view taken generally along the line 2-2 of FIG. 1.
FIG. 3 is a perspective view of a vehicle engine and heating system for a vehicle.
As shown in FIG. 3 there is a heating system 10 for heating the interior of a vehicle. The system includes a centrifugal fluid pump 12 which draws the fluid from a radiator 14 through hose l5 and pumps it into the water jacket and in the cylinder head of an internal combustion engine 18. From the cylinder head the fluid flows into a heater core 20 through a hose 22 and from the heater core back into the pump through a hose 24. Also the fluid flows from the cylinder head to the radiator 14 through a passage provided by a housing 26 and a hose 28. There is a thermostat 30 in housing 26 which is closed at predetermined low temperatures to block flow through the radiator so that circulation is from the pump through the water jacket back through a bypass 32 leading into the intake of the pump 12 and also from the pump through the heater core and back into the pump as described above. This enables the engine to raise the temperature in'the heater system in a shorter time period as compared to a similar system without a thermostat.
The pump 12 of this invention further reduces the warmup time for the fluid. FIGS. 1 and 2 show details of this pump which has a tiered and generally cylindrical housing 40 that is formed with an outwardly extending flange 42 seated in fluid sealing contact with a bottom plate 44 of a pump cover 45. The pump housing is secured to the bottom plate and to the engine 18 by bolts 46 which are threaded into an embossed portion 47 of the engine block.
The pump cover 45 has an outer wall 48 whichis spaced from the bottom plate 44 to provide an annular fluid intake chamber 50 connected to a fluid conducting pipe 52. Pipe 52 terminates in a suction port 53 formed at one side of the pump connected to radiator hose 15. As shown, chamber 50 communicates with the interior of the housing by ports 54 formed in the bottom plate 44. A fluid circulating impeller 56 is rotatably mounted in the housing by a cylindrical drive shaft 58 rotatably journaled in a bearing collar 60 in the pump cover 45. The impeller has an annular plate 62 integral with shaft 58 in which there are formed a series of openings 64 which permit the fluid to flow in from the suction port 53 and chamber 50 into the interior of the housing. The plate 62 of the impeller has projecting radial fins 66 which pump the fluid from the interior of the housing out of the fluid outlet passage 68 formed in the housing as shown best by FlG. 2. This outlet passage is hydraulically connected by a suitable passage, not shown, to the engine water jacket.
Also in the housing there are fixed, inwardly extending radial fins 70 which project from an upper part of the housing as shown in FIG. I. Mounted for axial movement on these fins is an annular blocker plate 74 having slots 76 cut therein which accommodate the fins 70 that serve as guides for raising and lowering the blocker plate in the housing between the fill line and the phantom line positions. The positioning of the blocker plate is accomplished by an expanding and contracting thermal bellows 78, which has one end plate 80 connected to the inside housing 40 and an opposite end plate 82 connected to the blocker plate. The bellows preferably has a corrugated cylindrical wall of metal such as brass and has a suitable quantity of thermally expansible liquid or gas sealed therein. Fluid can enter in the part of the housing containing the bellows around the outer edge of the blocker plate and through the clearance between the fins 70 and slots 76 so that the bellows can readily sense the temperature of the fluid.
The bellows will expand when the temperature is higher than a predetermined temperature to move the plate and hold it in the phantom line position of FlG. 1. In the phantom line position the blocker plate closes off the portion of the housing containing fins 70 and prevents the impeller from pumping the fluid into the stationary radial fins 70. Under these conditions the pump will act as a highly efficient centrifugal pump. When the fluid is sufficiently cool, the thermal bellows moves the blocker plate to the full line position whereby the fixed radial fins 70 are exposed. A pulley 86 for driving the impeller is fixed to the impeller shaft 58 and is driven by the engine through belt 88.
Fluid conducting pipe 90 in the pump cover communicates with chamber 50 and has a suction port 92 for connection with hose 24 from heater core 20. The pump cover also has an intake pipe as illustrated in FIG. 3 connected to bypass 32.
Assuming that the engine is started and the temperature of the fluid in the waterjacket and radiator is F. and that opening temperature for the thermostat is 185 F., the thermal bellows has contracted and moved the blocking plate 74 to the solid line position in FIG. 1 thereby exposing the fixed fins 70. The pump takes in fluid from port 92 and from the bypass 32, and large quantities of this fluid are propelled against the fixed fins causing fluid turbulence and frictional drag between fluid layers of different velocities. This turbulent fluid friction plus the friction between the fins and the fluid causes a temperature rise of the fluid which is additive to that caused by the heat of the engine. When the fluid reaches a predetermined temperature; 185 F., for example, the thermal bellows will have expanded completely to move the blocker plate to the fluid-blocking position shown in phantom lines in FIG. 1. Under these conditions the centrifugal pump pumps the fluid from the suction ports directly to the output with its greatest efficiency with minimal friction loss since it is not pumping against the fixed fins. Also at 185 F. the thermostat opens and fluid flows through the radiator as previously described.
As an example of the advancement in the art of my invention, it was found that a conventional eight-cylinder engine operating at cold idle without auxiliary heat producing means required 7 minutes to raise the fluid coolant temperature from 0 F. to 185 F.; under the sameconditions utilizing my invention, only slightly over 3 minutes were required to raise the temperature from 0 F. to 185 F.
From the above it will be appreciated that this invention provides important advantages in that the pump raises fluid temperatures when they are needed. Furthermore, the stator mechanism for raising the temperature of the fluid is effectively blocked after predetermined fluid temperatures have been reached so that it will not absorb power to thereby allow the pump to subsequently operate at its highest efficiency.
Although a preferred embodiment of this invention has been shown and described, it is clear that other embodiments will become apparent to those skilled in the art. Accordingly, this invention is limited to the claims which follow:
What l claim is:
1. A fluid pump comprising a housing having fluid inlet means and fluid outlet means, rotor means rotatably mounted in said housing for pumping said fluid in a flow path from said fluid inlet means to said fluid outlet means, drive means operatively connected to said rotor means for rotating said rotor means, stator means operatively disposed in said housing in said flow path so that fluid friction effects an increase in the thermal energy of the fluid pumped to said outlet, and operator means responsive to the attainment of a redetermined thermal energy level of said fluid for removing said stator from the fluid flow path thereby permitting said pump to operate without power absorption from said stator.
2. A fluid pump for pumping and heating fluid comprising a housing, a rotatable impeller mounted in said housing for imparting pressure and kinetic energy to the fluid to pump said fluid from said inlet through said outlet, a plurality offixed fins disposed in said housing for frictionally contacting said fluid to effect fluid turbulence and an increase in the temperature of said fluid as said fluid is pumped by said impeller, and fluid blocking means movably mounted in said housing and movable from a position in which said fins are fully exposed to the fluid pumped by said impeller to a blocking position in which said blocking means covers the major portion of said fins to reduce power absorption by 'said fins.
3. A fluid pump comprising a housing having an inlet and an outlet, a bladed impeller for pumping fluid from said inlet through said outlet, a stator having a plurality of fins fixed to the interior of said housing and facing said impeller, a blocker plate having a plurality of recesses formed therein for receiving the fins of said stator and for mounting said plate for axial sliding movement on said fins, temperature responsive operator means secured to the interior of said housing and to one side of said plate for moving said plate between a fluid blocking position adjacent to said impeller and a retracted position spaced from said impeller whereby said fins are fully exposed to said fluid so that the thermal energy thereof is increased by fluid friction in response to rotation of said im peller.
4. A pump for pumping and heating a-liquid comprising a housing, liquid inlet and outlet means, an impeller mounted for rotation in said housing for imparting pressure and kinetic energy to the liquid pumped from said inlet through said outlet means, said impeller having an annular head portion with a plurality of radial fins thereon and having a drive shaft extending to the exterior of said housing, drive means secured to said drive shaft for turning said impeller, stator means fixed in said housing for effecting fluid turbulence and absorbing power as said liquid is being pumped, said stator means having a plurality of radial fins circularly disposed in said housing adjacent to said fins on said impeller, blocker plate means having a plurality of radial slots which match and slidingly fit said fins of said stator, and thermally responsive bellows means secured in said housing and to said blocker plate to move said blocker plate between a position in which said stator is in the path of liquid being pumped from said inlet to said outlet to increase liquid frictionand the temperature of said liquid and a position in which said stator means is substantially blocked from the path of said liquid so that said impeller pumps liquid without substantial power absorption by said stator.
5. A heating system for a vehicle comprising an engine having a fluid coolant passage therethrough, a fluid pump driven by said engine having fluid intake means and fluid outlet means, a heater core, first fluid conducting means operatively connecting said outlet means to the coolant passage of said engine, second fluid conducting means operatively connecting said coolant passage of said engine to said heater core, third fluid conducting means for operatively connecting said heater core to said fluid intake means so that said pump can circulate a fluid through said engine and said heater core, said pump having a rotatable impeller and having a stator movable into and out of the flow path of the fluid circulated by said pump, and temperature responsive actuator means for exposing said stator to said flow path under predetermined fluid temperature conditions to create fluid turbulence and friction so that said pump will function as a pump and fluid heater and to effectively remove said stator from said flow path under higher predetermined fluid temperature conditions so that said pump will operate only as a fluid pump.
6. The system defined in claim 5 and further including a radiator having a fluid passageway therethrough, fourth fluid conducting means operatively connecting the coolant passage of said engine to said radiator, fifth fluid conducting means operatively connecting said radiator to said fluid intake means higher temperatures of said fluid, and bypass means connecting said coolant passage of said engine and said intake means of said pump to permit fluid flow directly from said engine into said fluid intake means of said pump.

Claims (6)

1. A fluid pump comprising a housing having fluid inlet means and fluid outlet means, rotor means rotatably mounted in said housing for pumping said fluid in a flow path from said fluid inlet means to said fluid outlet means, drive means operatively connected to said rotor means for rotating said rotor means, stator means operatively disposed in said housing in said flow path so that fluid friction effects an increase in the thermal energy of the fluid pumped to said outlet, and operator means responsive to the attainment of a predetermined thermal energy level of said fluid for removing said stator from the fluid flow path thereby permitting said pump to operate without power absorption from said stator.
2. A fluid pump for pumping and heating fluid comprising a housing, a rotatable impeller mounted in said housing for imparting pressure and kinetic energy to the fluid to pump said fluid from said inlet through said outlet, a plurality of fixed fins disposed in said housing for frictionally contacting said fluid to effect fluid turbulence and an increase in the temperature of said fluid as said fluid is pumped by said impeller, and fluid blocking means movably mounted in said housing and movable from a position in which said fins are fully exposed to the fluid pumped by said impeller to a blocking position in which said blocking means covers the major portion of said fins to reduce power absorption by said fins.
3. A fluid pump comprising a housing having an inlet and an outlet, a bladed impeller for pumping fluid from said inlet through said outlet, a stator having a plurality of fins fixed to the interior of said housing and facing said impeller, a blocker plate having a plurality of recesses formed therein for receiving the fins of said stator and for mounting said plate for axial sliding movement on said fins, temperature responsive operator means secured to the interior of said housing and to one side of said plate for moving said plate between a fluid blocking position adjacent to said impeller and a retracted position spaced from said impeller whereby said fins are fully exposed to said fluid so that the thermal energy thereof is increased by fluid friction in response to rotation of said impeller.
4. A pump for pumping and heating a liquid comprising a housing, liquid inlet and outlet means, an impeller mounted for rotation in said housing for imparting pressure and kinetic energy to the liquid pumped from said inlet through said outlet means, said impeller having an annular hEad portion with a plurality of radial fins thereon and having a drive shaft extending to the exterior of said housing, drive means secured to said drive shaft for turning said impeller, stator means fixed in said housing for effecting fluid turbulence and absorbing power as said liquid is being pumped, said stator means having a plurality of radial fins circularly disposed in said housing adjacent to said fins on said impeller, blocker plate means having a plurality of radial slots which match and slidingly fit said fins of said stator, and thermally responsive bellows means secured in said housing and to said blocker plate to move said blocker plate between a position in which said stator is in the path of liquid being pumped from said inlet to said outlet to increase liquid friction and the temperature of said liquid and a position in which said stator means is substantially blocked from the path of said liquid so that said impeller pumps liquid without substantial power absorption by said stator.
5. A heating system for a vehicle comprising an engine having a fluid coolant passage therethrough, a fluid pump driven by said engine having fluid intake means and fluid outlet means, a heater core, first fluid conducting means operatively connecting said outlet means to the coolant passage of said engine, second fluid conducting means operatively connecting said coolant passage of said engine to said heater core, third fluid conducting means for operatively connecting said heater core to said fluid intake means so that said pump can circulate a fluid through said engine and said heater core, said pump having a rotatable impeller and having a stator movable into and out of the flow path of the fluid circulated by said pump, and temperature responsive actuator means for exposing said stator to said flow path under predetermined fluid temperature conditions to create fluid turbulence and friction so that said pump will function as a pump and fluid heater and to effectively remove said stator from said flow path under higher predetermined fluid temperature conditions so that said pump will operate only as a fluid pump.
6. The system defined in claim 5 and further including a radiator having a fluid passageway therethrough, fourth fluid conducting means operatively connecting the coolant passage of said engine to said radiator, fifth fluid conducting means operatively connecting said radiator to said fluid intake means of said pump so that said pump can circulate from said engine to said radiator, a temperature controlled valve means operatively disposed in said fourth fluid conducting means for blocking flow from said engine to said radiator under predetermined low temperature of said fluid and for allowing flow from said engine to said radiator under predetermined higher temperatures of said fluid, and bypass means connecting said coolant passage of said engine and said intake means of said pump to permit fluid flow directly from said engine into said fluid intake means of said pump.
US880112A 1969-11-26 1969-11-26 Heating system and heat generating pump Expired - Lifetime US3591079A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88011269A 1969-11-26 1969-11-26

Publications (1)

Publication Number Publication Date
US3591079A true US3591079A (en) 1971-07-06

Family

ID=25375539

Family Applications (1)

Application Number Title Priority Date Filing Date
US880112A Expired - Lifetime US3591079A (en) 1969-11-26 1969-11-26 Heating system and heat generating pump

Country Status (1)

Country Link
US (1) US3591079A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918637A (en) * 1971-11-23 1975-11-11 Eberspaecher J Heater assembly for motor vehicle with water-cooled combustion engine
US4415307A (en) * 1980-06-09 1983-11-15 United Technologies Corporation Temperature regulation of air cycle refrigeration systems
EP0034242B1 (en) * 1980-02-16 1985-05-02 Klöckner-Humboldt-Deutz Aktiengesellschaft Space-air heating device
US4752183A (en) * 1986-03-31 1988-06-21 Aisin Seiki Kabushiki Kaisha Water pump
US4974778A (en) * 1988-09-22 1990-12-04 Robert Bosch Gmbh Heating system for occupant spaces in power vehicles with liquid-cooled internal combustion engines
DE19521029A1 (en) * 1995-06-14 1996-12-19 Suspa Compart Ag Heating device for the cooling water of an internal combustion engine provided with a cooling water pump
DE19521213A1 (en) * 1995-06-14 1996-12-19 Suspa Compart Ag Motor for motor vehicles with a heater
EP0784151A1 (en) 1996-01-11 1997-07-16 SUSPA COMPART Aktiengesellschaft Cooling water pump for an internal combustion engine
EP0800942A1 (en) * 1995-11-01 1997-10-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable capacity viscous heater
EP0775823A3 (en) * 1995-11-27 2000-08-16 Charles Madden Wind turbine driving pumping and heating devices
US20030215327A1 (en) * 2002-05-20 2003-11-20 Laing Karsten A. Motor pump with expansion tank
US20040140162A1 (en) * 2003-01-22 2004-07-22 Celini Dean A. Apparatus for setting fluid level in an automatic transmission
US20050205682A1 (en) * 2004-02-26 2005-09-22 Sanger Jeremy J Vehicle supplemental heating system
US20080060375A1 (en) * 2006-09-08 2008-03-13 Sanger Jeremy J Vehicle supplemental heating system
US20090000765A1 (en) * 2007-06-28 2009-01-01 Gm Global Technology Operations, Inc. Viscous Heater, Refrigerant Compressor and Control
US20130125853A1 (en) * 2008-09-12 2013-05-23 Ford Global Technologies, Llc Efficient Vehicle Component Heating
US8469283B2 (en) 2008-07-29 2013-06-25 Ventech, Llc Liquid heat generator with integral heat exchanger
US20140161431A1 (en) * 2012-12-07 2014-06-12 Hyundai Motor Company Reservoir for transmission fluid
US9841211B2 (en) 2015-08-24 2017-12-12 Ventech, Llc Hydrodynamic heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2354948A (en) * 1940-04-09 1944-08-01 Dewey David Brainard Means for controlling feathering members
US2749049A (en) * 1952-06-28 1956-06-05 Chrysler Corp Automotive heater booster

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2354948A (en) * 1940-04-09 1944-08-01 Dewey David Brainard Means for controlling feathering members
US2749049A (en) * 1952-06-28 1956-06-05 Chrysler Corp Automotive heater booster

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918637A (en) * 1971-11-23 1975-11-11 Eberspaecher J Heater assembly for motor vehicle with water-cooled combustion engine
EP0034242B1 (en) * 1980-02-16 1985-05-02 Klöckner-Humboldt-Deutz Aktiengesellschaft Space-air heating device
US4415307A (en) * 1980-06-09 1983-11-15 United Technologies Corporation Temperature regulation of air cycle refrigeration systems
US4752183A (en) * 1986-03-31 1988-06-21 Aisin Seiki Kabushiki Kaisha Water pump
US4974778A (en) * 1988-09-22 1990-12-04 Robert Bosch Gmbh Heating system for occupant spaces in power vehicles with liquid-cooled internal combustion engines
DE19521213A1 (en) * 1995-06-14 1996-12-19 Suspa Compart Ag Motor for motor vehicles with a heater
WO1997000377A1 (en) * 1995-06-14 1997-01-03 Suspa Compart Aktiengesellschaft Engine for motor vehicles equipped with a heater
DE19521029A1 (en) * 1995-06-14 1996-12-19 Suspa Compart Ag Heating device for the cooling water of an internal combustion engine provided with a cooling water pump
EP0800942A1 (en) * 1995-11-01 1997-10-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable capacity viscous heater
EP0800942A4 (en) * 1995-11-01 1998-05-20 Toyoda Automatic Loom Works Variable capacity viscous heater
US5845608A (en) * 1995-11-01 1998-12-08 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable capacity type viscous heater
EP0775823A3 (en) * 1995-11-27 2000-08-16 Charles Madden Wind turbine driving pumping and heating devices
EP0784151A1 (en) 1996-01-11 1997-07-16 SUSPA COMPART Aktiengesellschaft Cooling water pump for an internal combustion engine
US6986640B2 (en) * 2002-05-20 2006-01-17 Oliver Laing Motor pump with expansion tank
US20030215327A1 (en) * 2002-05-20 2003-11-20 Laing Karsten A. Motor pump with expansion tank
US20040140162A1 (en) * 2003-01-22 2004-07-22 Celini Dean A. Apparatus for setting fluid level in an automatic transmission
US8302876B2 (en) 2004-02-26 2012-11-06 Ventech, Llc Vehicle supplemental heating system
US20050205682A1 (en) * 2004-02-26 2005-09-22 Sanger Jeremy J Vehicle supplemental heating system
US8480006B2 (en) 2006-09-08 2013-07-09 Ventech, Llc Vehicle supplemental heating system
US20080060375A1 (en) * 2006-09-08 2008-03-13 Sanger Jeremy J Vehicle supplemental heating system
US8113440B2 (en) 2006-09-08 2012-02-14 Ventech Llc Vehicle supplemental heating system including spool valve manifold
US8162233B2 (en) 2006-09-08 2012-04-24 Ventech, Llc Vehicle supplemental heating system including pressure relief diaphragm
US20090000765A1 (en) * 2007-06-28 2009-01-01 Gm Global Technology Operations, Inc. Viscous Heater, Refrigerant Compressor and Control
US8469283B2 (en) 2008-07-29 2013-06-25 Ventech, Llc Liquid heat generator with integral heat exchanger
US20130125853A1 (en) * 2008-09-12 2013-05-23 Ford Global Technologies, Llc Efficient Vehicle Component Heating
US9404402B2 (en) * 2008-09-12 2016-08-02 Ford Global Technologies, Llc Efficient vehicle component heating
US20140161431A1 (en) * 2012-12-07 2014-06-12 Hyundai Motor Company Reservoir for transmission fluid
US9127762B2 (en) * 2012-12-07 2015-09-08 Hyundai Motor Company Reservoir for transmission fluid
US9841211B2 (en) 2015-08-24 2017-12-12 Ventech, Llc Hydrodynamic heater

Similar Documents

Publication Publication Date Title
US3591079A (en) Heating system and heat generating pump
US3720372A (en) Means for rapidly heating interior of a motor vehicle
US5573184A (en) Heating device for motor vehicles
US3217849A (en) Speed and temperature controlled coupling device
US4271945A (en) Electrically actuated viscous fan clutch
US5408960A (en) Pre-heater for liquid-cooled internal combustion engines
US4550695A (en) Fan device for internal combustion engine
US6121698A (en) Oil cooled motor and pump apparatus
JPH07115581B2 (en) Vehicle heating system
US2748570A (en) Combustion engine driven hydrodynamic brake fluid heater
US20050199207A1 (en) Heating device for motor vehicles
US3257808A (en) Fluid coupling fan drive
JPH02254010A (en) Heating device for vehicle
JP2709458B2 (en) Temperature-sensitive fluid fan coupling device
CN212155169U (en) Water pump capable of improving heat dissipation performance
US2760468A (en) Engine cooling system
US3960467A (en) Cooling device for a pump motor
KR20190002922A (en) Coolant water pump
KR960007740Y1 (en) Cooling fan clutch for car engine
KR100405674B1 (en) System for driving water pump
KR100482430B1 (en) Dual impeller water pump for automobile
KR20030018572A (en) Wind inflow device of an automotive radiator
KR19980045394A (en) Automotive engine cooler
KR100239327B1 (en) Clutch structure of cooling fan for cooling apparatus of the engine
JPH10297265A (en) Heater for vehicle