US3590924A - Dual nozzle sprinkler head - Google Patents

Dual nozzle sprinkler head Download PDF

Info

Publication number
US3590924A
US3590924A US786659A US3590924DA US3590924A US 3590924 A US3590924 A US 3590924A US 786659 A US786659 A US 786659A US 3590924D A US3590924D A US 3590924DA US 3590924 A US3590924 A US 3590924A
Authority
US
United States
Prior art keywords
extinguishant
fire
spray
coarse
apparatus recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US786659A
Inventor
Howard W Emmons
Cheng Yao
James B Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Factory Mutual Research Corp
Original Assignee
Factory Mutual Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Factory Mutual Research Corp filed Critical Factory Mutual Research Corp
Application granted granted Critical
Publication of US3590924A publication Critical patent/US3590924A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/08Control of fire-fighting equipment comprising an outlet device containing a sensor, or itself being the sensor, i.e. self-contained sprinklers

Definitions

  • Mar Attorney-Lane, Aitken, Dunner & Ziems AIS'I'RACT Method and apparatus for dispersing a fire eltinguishant in which dual noules are employed in each sprinkler head to form separately 3 fine mist for cooling and a sway of coarse droplets to penetrate a fire plume and reach fuel surfaces to extinguish a fire.
  • This invention relates to improved sprinkler heads and methods for operating fixed fire-extinguishing systems and, more particularly, it concerns dual-nozzle sprinkler heads for such extinguishing systems by which the particle or drop size of an extinguishant spray released upon the occurrence of a fire in a closure protected by the system is regulated to provide optimum fire-extinguishing capabilities in the system.
  • Sprinkler heads conventionally used in fire-extinguishing systems of the type designed to protect a building enclosure and its contents employ a nozzle through which an extinguishant such as water is passed, a heat-sensitive fusible releasing device, and a deflector positioned immediately ahead of the nozzle.
  • the deflector is designed to break up the solid jet of water issuing from the nozzle into a spray formed of small drops varying in size from less than I millimeter in diameter (e.g., several microns) to several millimeters in diameter. It is also known that the various drop size distributions within the extinguishing spray behave differently in the extinguishment of a fire.
  • Pressure regulation of the water jet issuing from the nozzle is inadequate from the standpoint of developing the most efiicient drop size distribution in a fire extinguishant spray, however, since an increase in pressure to produce a larger number of fine droplets results in sacrificing the number of large droplets in the spray which would penetrate the plume of combustion products and reach the fuel surfaces to extinguish the fire.
  • lowering the pressure to increase the number of large diameter drops in the spray results in the sacrifice of the ambient aircooling function of the fine droplets whereas a compromise between high and low pressure results in an increase of the intermediate size droplets contributing to runoff and water damage.
  • the remote sprinkler heads not only contributed very little to am bient air-cooling but also accomplished nothing insofar as extinguishmcnt of the fire was concerned. Hence, substantially all of the water issuing from the remote sprinkler heads constituted waste runoff of the type giving rise to severe water damage.
  • a fireextinguishing system is provided with two types of extinguishant nozzles, one of which is designed to develop a fine spray consisting of droplets almost entirely in a range where they completely evaporate to cool the ambient atmosphere while the other nozzle of the head is designed to develop droplets of a sufficiently large diameter that they penetrate the plume of combustion products and reach the burning fuel surface thereunder to extinguish the fire.
  • the two types of nozzles referred to will be embodied in one dual-nozzle sprin' kler head but it is contemplated that the invention may be practiced in systems using conventional, singlemozzle heads in which fine spray heads are spaced between coarse spray heads in the space to be protected by the system.
  • each of the nozzles will be provided with its own temperature release device so that the respective nozzles in each head may be actuated at different temperatures.
  • the nozzle from which the fine spray is emitted may be equipped with a low-temperature release to inhibit the spread of a fire whereas the coarse spray nozzle may be equipped with a high-temperature release so that it will be actuated upon the development of a plume of combustion products.
  • both nozzles may be actuated by a common release device.
  • a fixed fire-extinguishing system in which optimum drop size distribution in fire extinguishant spray is developed; the provision of a sprinkler head for fire extinguishing systems which develops drop size distribution in an extinguishant spray which is highly effective in the control and extinguishment ofa fire without excessive runoff and resulting water damage; the provision of a dual-nozzle sprinker head in which one of the nozzles is a high-pressure fine spray nozzle whereas the other is a low-pressure coarse spray nozzle; the provision of a dualnozzle sprinkler head of the type aforementioned in which the respective nozzles thereof may be released at different temperatures; and the provision of a unique method for developing a fire extinguishant spray.
  • FIG. 1 is a schematic illustration of three drop size distribution curves in which approximate drop diameter in an extinguishant spray is plotted against the occurrence frequency of drops by volume at the respective approximated drop diameters for conventional fire extinguishing sprinkler head;
  • FIG. 2 is a schematic diagram similar in type to FIG. 1 but depicting the spray developed in accordance with the present invention
  • FIG. 3 is a vertical cross section through one form of dual nozzle sprinkler head in accordance with the present invention.
  • FIG. 4 is a side elevation in partial cross section of another form of dual-nozzle sprinkler head in accordance with this invention'
  • FIG. 5 is a vertical cross section through still another modification of the dual-nozzle sprinkler head of this invention.
  • FIG. 6 is a schematic diagram showing an alternative form of fire-extinguishing system in relation to a building space protected thereby.
  • FIG. 7 is a schematic diagram illustrating the system of FIG. 6 in elevation.
  • FIGS. I and 2 of the drawings To facilitate an understanding of the concepts underlying the present invention, reference is made to the drop size dis tribution curves shown respectively in FIGS. I and 2 of the drawings.
  • FIG. 1 three such curves are shown depicting the approximate drop size distribution in a fire extinguishant spray issuing from a conventional sprinkler head.
  • curve I represents the drop size distribution for normal pressures on the order of pounds per square inch
  • curve II represents the drop diameter distribution at relatively higher pressures
  • curve III the drop diameter distribution at low pressures, it being assumed that the same sprinkler head is used in each instance.
  • Droplets between the diameters d, and d are depicted by the areas C and D in FIG. I which areas respectively represent droplets partially evaporated and those which tend to be pushed away from a rising hot plume of combustion products over a burning fuel source.
  • the relatively large size of the area D as compared with the areas A, B and C is significant in that it represents the proportion of extinguishanl in the spray from a conventional sprinkler head which not only contributes very little to the fire-extinguishing function of the spray, but moreover contributes to water damage as runoff.
  • the droplets represented by the areas A and C contribute to the fire extinguishing function by virtue of cooling ambient at mosphere through evaporation.
  • the large size droplets represented by the area B in FIG. I contribute to the fire-extinguishing function of the spray by penetrating the plume and reaching the burning fuel surfaces.
  • Curves II and III in FIG. 1 further illustrate the problem of varying the pressure at which a spray is emitted from the nozzle ofa conventional sprinkler head in that increased pressure to augment the cooling effect of the spray results in a sacrifice of available extinguishant to put out the fire at its source. Similarly, lowering the pressure to produce larger droplets within the spray gives rise to a sacrifice of the cooling by evaporation.
  • the distribution curve in FIG. 2 illustrates the drop diame ter size distribution in a fire extinguishant spray in accordance with this invention.
  • the fine spray nonle can be selected to develop a spray in which the drop diameters are essentially all smaller than I millimeter.
  • the volume of the spray issuing from the fine spray nozzle is depicted by the area A,and C, in FIG. 2.
  • the coarse spray nozlie develops a spray with drop size diameters in excess of d,, the volume of the spray issuing from the coarse spray nozzle being represented by area B, in FIG. 2. It will be noted that the drops in the size range between d, and d,, the volume of which is represented by the area D, in FIG.
  • FIGS. 3-5 of the drawings Alternative dual-nozzle sprinkler head embodiments for achieving the drop size distribution represented by the curve in FIG. 2 are illustrated in FIGS. 3-5 of the drawings.
  • the fine nozzle is a standard opposed jet nozzle 10 connected to,one outlet of a T-fitting I2 having its inlet connected to a vertically disposed water supply pipe [4.
  • a quartz bulb release I6 normally prevents the issuance of water or other extinguishant through the opposed jet nozzle I0 but ruptures upon a temperature increase to open the nozzle.
  • the coarse nozzle in the embodiment of FIG. 3 takes the form of a conventional pendant nozzle l7 having a discharge opening 18 and a serrated distributor plate 20 positioned thereunder.
  • the quartz bulb release 16 in the embodiment of FIG. 3 is preferably designed to release at a lower temperature than the fusible link 24 of the nozzle 17.
  • the nozzle [0 will first open to develop a fine spray or mist, the droplets of which will immediately evaporate to cool the ambient atmosphere. This cooling action tends to slow down the release of sprinkler heads positioned in the building enclosure remotely from the tire. Then as the temperature rises the fuse link 24 releases to permit the extinguishant to pass through the pendant nozzle I7 in relatively large or coarse droplets capable of penetrating the fire plume beneath the sprinkler head to extinguish the fire.
  • FIG. 4 a dual-nozzle sprinkler head in accordance with this invention is shown and which is adapted for use with a horizontal line 30.
  • an X'type fitting 32 is employed with the pendant low pressure nozzle I7 extending from a lower outlet arm 34 thereof and the fine nozzle coupled to the upwardly extending branch 36 of the fitting.
  • the fine spray nozzle in this instance takes the form of a radial spray or fog nozzle 38 equipped with a link lever fuse release 40.
  • the operation of the embodiment in FIG. 4 is essentially the same as that of FIG. 3 apart from the particular types of nozzles employed, each of which, by itself, is conventional.
  • FIG. 5 a further modification of the invention is illustrated wherein both fine spray and coarse nozzles are adapted to be actuated by a common release 42.
  • the nozzles are identical in type to the corresponding nozzles 10 and 17 in the embodiment of FIG. 3.
  • a valve member 44 having a serrated skirt 46 and a stem 48 is adapted to be seated upwardly against the supply line I4, Upon actuation, the valve moves downwardly so that the serrated skirt 46 thereof rests on the restricted orifice plate 28, thereby opening both nozzles.
  • the operation of the device to develop the fine and coarse sprays as aforementioned is the same as that described above with respect to FIG. 3, with the exception of the difference in release temperatures afforded by the embodiment of FIG. 3.
  • each of the dual nozzle sprinkler heads being a unit by itself, is simply installed according to specification without having to rely on individual workmen to effect proper positioning of the respective fine and coarse spray nozzles. It is possible, however, that separate single-nozzle heads be used and arranged in a manner to effect the basic fire-extinguishing technique of this invention. Such an arrangement is shown in FIGS. 6 and '7 of the drawings.
  • a plurality of coarse nozzle sprinkler heads 50 are arranged in conventional fashion beneath the ceiling 52 of a building space 54 to be protected.
  • An extinguishant such as water is supplied to the coarse nozzle heads 50 in conventional fashion by main and branch lines 56 and 58, respectively.
  • fine spray nozzle heads 60 are also provided in the ceiling of the building enclosure 54.
  • the fine spray heads 60 could be supplied with an extinguishant such as water from the pipes 56 and 58 through use of suitable connections, the fine spray nozzle heads 60 in the system shown in FIG. 6 are supplied with extinguishant by independent pipes depicted by dash lines 62.
  • FIGS. 6 and 7 which is essentially similar to that of the dual-nozzle sprinkler heads described above, is depicted in FIG. 7 of the drawings.
  • the existence of a fire plume 63 will activate automatically one or more of the coarse heads 50 thereover to provide a spray of large droplets 64 to penetrate the fire plume 63, reach the burning fuel surfaces 66 and extinguish the fire.
  • fine nozzle sprinkler heads 60 in the vicinity of the activated coarse noule head or heads 50 will be activated to disperse a fine spray 68 consisting essentially of small droplets which evaporate readily.
  • a sprinkler head for fixed fire-extinguishing systems comprising: a fitting having an inlet for connection to a source of extinguishant and at least two outlets, first discharge means in one of said outlets to disperse a finely divided spray of extinguishant, second discharge means in the other of said outlets to disperse relatively large droplets of extinguishant, and temperature-responsive means to actuate said first and second discharge means.
  • the apparatus recited in claim I including means for supplying extinguishant from said inlet to said second discharge means at a lower pressure than said first discharge means.
  • thermoresponsive means comprises separate fuse elements for each of said first and second discharge means.
  • valve member normally blocking said inlet, said valve member being movable under the control of said temperature-responsive means to an open position establishing fluid communication between said inlet and said first and second discharge means.
  • a plurality of coarse spray nozzles to develop one extinguishant spray of droplets having a size capable of penetrating a rising plume of combustion products
  • a plurality of fine spray nozzles to develop another extinguishant spray of fine droplets which readily evaporate and cool ambient atmosphere upon activation.

Abstract

Method and apparatus for dispersing a fire extinguishant in which dual nozzles are employed in each sprinkler head to form separately a fine mist for cooling and a spray of coarse droplets to penetrate a fire plume and reach fuel surfaces to extinguish a fire.

Description

United States Patent Howard W. Emrnons Sudlwry;
[72] Inventors Chen; Yeo. Wat on; James I. Smith. Wellesky Farms, all of. Mass.
[2| J Appl. Nov 22] Filed [45] Patented [73 I Assignee 786.659 Dec. 24, I968 July 6. I971 Batten-Providence Turnpike. Mus.
[S4] DUAL NOZZLE SPRINKLER HEAD ll Cllimg7Drl'Ii-Mm I52] U.S.C| t. 19/17, 169/1, 169/39. 239/545 (51] Int. arm: [50] FieldotSearch IGQILLS.
Fnctury Mutual Research Corporation [56] References Cited UNITED STATES PATENTS 2,043.7l4 6/1936 Schellin 239/214. [3 X 2,235,258 3/I94l Jones r r A v l69/37 UX 2,265,810 l2/l94l Lowe et al. [69/16 2.410.215 l0/l946 Houghton r 239/545 X 2.495.208 l/l950 Causer r r A v l69/37 X 3,220,482 I 1/1965 Eveleth [69/] Primary Examiner-M. Henson Wood, Jr. Auistam Examiner-Michael Y. Mar Attorney-Lane, Aitken, Dunner & Ziems AIS'I'RACT: Method and apparatus for dispersing a fire eltinguishant in which dual noules are employed in each sprinkler head to form separately 3 fine mist for cooling and a sway of coarse droplets to penetrate a fire plume and reach fuel surfaces to extinguish a fire.
PATENIEnJuL 6l97l 3.590.924
sum 1 BF 3 r CURVE n l (HIGH PRESSURE) PRIoR ART W DROPS COMPLETELY EVAPORATED m DROPS PENETRATE THE HoT PLUME m FNE SPRAY To SUPPRESS FIRE 535;: NOZZLE DROPS PARTIALLY EVAPORATED 9' 1:] RUN-OFF 5% B o COARSE s RAY 5E NOZZL E o" c I 2 t a 4 5 6 DROP DIAMETER IN MILLIMETERS s (APPROXIMATED) HowARD w. Erm h lg CHENG YAO &
JAMES B. SMITH PATENTEI] JUL 6 l9?! SHEET 2 SF 3 m i m MM H VMBW m M w me m s G A E wmM OHA HCJ DUAL NOZZLE SPRINKLER HEAD BACKGROUND OF THE INVENTION This invention relates to improved sprinkler heads and methods for operating fixed fire-extinguishing systems and, more particularly, it concerns dual-nozzle sprinkler heads for such extinguishing systems by which the particle or drop size of an extinguishant spray released upon the occurrence of a fire in a closure protected by the system is regulated to provide optimum fire-extinguishing capabilities in the system.
Sprinkler heads conventionally used in fire-extinguishing systems of the type designed to protect a building enclosure and its contents employ a nozzle through which an extinguishant such as water is passed, a heat-sensitive fusible releasing device, and a deflector positioned immediately ahead of the nozzle. The deflector is designed to break up the solid jet of water issuing from the nozzle into a spray formed of small drops varying in size from less than I millimeter in diameter (e.g., several microns) to several millimeters in diameter. It is also known that the various drop size distributions within the extinguishing spray behave differently in the extinguishment of a fire. In the case of a large industrial fire, for example, fine drops in the spray, approximately 500 microns in diameter or less, tend to evaporate completely and serve the important function of cooling the ambient atmosphere particularly at the upper level of the building enclosure where the sprinkler heads are located. Larger drops, on the other hand, are required to penetrate the rising plume of combustion products over burning fuel surfaces to reach the surfaces and extinguish the fire. Such large diameter drops are, therefore, essential to effective extinguishment of a large or fast growing fire. In conventional sprays, however, there are a significant number of drops falling between these size ranges which perform neither of the useful functions aforementioned because they tend to be pushed away from the rising hot plume of combustion products and fall to the lower level of the enclosure outside the fire zone. These intermediate size drops, therefore, contribute significantly to the amount of extinguishant runoff and unwanted water damage to the protected space.
Because the operating parameters of conventional sprinkler heads are fixed, control over the size of drops in a fire extinguishant spray has been limited heretofore by variations in extinguishant pressure, which in turn determines the velocity at which the extinguishant is emitted from the sprinkler head nozzle. In general, for a given orifice size higher pressures produce a larger number of small droplets in the spray whereas coarse or large diameter droplets are developed in sprays generated under lower pressures. Pressure regulation of the water jet issuing from the nozzle is inadequate from the standpoint of developing the most efiicient drop size distribution in a fire extinguishant spray, however, since an increase in pressure to produce a larger number of fine droplets results in sacrificing the number of large droplets in the spray which would penetrate the plume of combustion products and reach the fuel surfaces to extinguish the fire. Correspondingly, lowering the pressure to increase the number of large diameter drops in the spray results in the sacrifice of the ambient aircooling function of the fine droplets whereas a compromise between high and low pressure results in an increase of the intermediate size droplets contributing to runoff and water damage.
The problem of pressure balancing conventional sprinkler heads is further illustrated by tests conducted with such heads operated at normal pressures of about 40 pounds per square inch. It was found that at this normal operating condition, less than 24 percent of the drops in the spray, which was discharged about l4 feet directly above the fire, were large enough to penetrate the rising plume of a gallons per minute gasoline spray fire. Further tests under these operating conditions indicate that an 8- by 6-foot gasoline pan fire burning at a rate of about 4 gallons per minute would normally open or release up to 20 to 30 sprinkler heads spaced at 10- foot intervals in two normal directions, the vast majority of which were positioned remotely from the fire. Obviously, the remote sprinkler heads not only contributed very little to am bient air-cooling but also accomplished nothing insofar as extinguishmcnt of the fire was concerned. Hence, substantially all of the water issuing from the remote sprinkler heads constituted waste runoff of the type giving rise to severe water damage.
SUMMARY OF THE INVENTION In accordance with the present invention, a fireextinguishing system is provided with two types of extinguishant nozzles, one of which is designed to develop a fine spray consisting of droplets almost entirely in a range where they completely evaporate to cool the ambient atmosphere while the other nozzle of the head is designed to develop droplets of a sufficiently large diameter that they penetrate the plume of combustion products and reach the burning fuel surface thereunder to extinguish the fire. Preferably, the two types of nozzles referred to will be embodied in one dual-nozzle sprin' kler head but it is contemplated that the invention may be practiced in systems using conventional, singlemozzle heads in which fine spray heads are spaced between coarse spray heads in the space to be protected by the system. In some instances, it is contemplated that each of the nozzles will be provided with its own temperature release device so that the respective nozzles in each head may be actuated at different temperatures. For example, the nozzle from which the fine spray is emitted may be equipped with a low-temperature release to inhibit the spread of a fire whereas the coarse spray nozzle may be equipped with a high-temperature release so that it will be actuated upon the development of a plume of combustion products. However, it is also possible, in accordance with this invention, that both nozzles may be actuated by a common release device.
Accordingly, it is among the objects of the present invention to provide a fixed fire-extinguishing system in which optimum drop size distribution in fire extinguishant spray is developed; the provision ofa sprinkler head for fire extinguishing systems which develops drop size distribution in an extinguishant spray which is highly effective in the control and extinguishment ofa fire without excessive runoff and resulting water damage; the provision of a dual-nozzle sprinker head in which one of the nozzles is a high-pressure fine spray nozzle whereas the other is a low-pressure coarse spray nozzle; the provision of a dualnozzle sprinkler head of the type aforementioned in which the respective nozzles thereof may be released at different temperatures; and the provision of a unique method for developing a fire extinguishant spray.
Other objects and further scope of applicability of the present invention will become apparent from the detailed description to follow, taken in conjunction with the accompartying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic illustration of three drop size distribution curves in which approximate drop diameter in an extinguishant spray is plotted against the occurrence frequency of drops by volume at the respective approximated drop diameters for conventional fire extinguishing sprinkler head;
FIG. 2 is a schematic diagram similar in type to FIG. 1 but depicting the spray developed in accordance with the present invention;
FIG. 3 is a vertical cross section through one form of dual nozzle sprinkler head in accordance with the present invention;
FIG. 4 is a side elevation in partial cross section of another form of dual-nozzle sprinkler head in accordance with this invention',
FIG. 5 is a vertical cross section through still another modification of the dual-nozzle sprinkler head of this invention;
FIG. 6 is a schematic diagram showing an alternative form of fire-extinguishing system in relation to a building space protected thereby; and
FIG. 7 is a schematic diagram illustrating the system of FIG. 6 in elevation.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS To facilitate an understanding of the concepts underlying the present invention, reference is made to the drop size dis tribution curves shown respectively in FIGS. I and 2 of the drawings. In FIG. 1, three such curves are shown depicting the approximate drop size distribution in a fire extinguishant spray issuing from a conventional sprinkler head. Specifically, curve I represents the drop size distribution for normal pressures on the order of pounds per square inch; curve II represents the drop diameter distribution at relatively higher pressures, and curve III the drop diameter distribution at low pressures, it being assumed that the same sprinkler head is used in each instance. It might be mentioned also that these curves were developed using the drop diameter in millimeters as the horizontal coordinate or abscissa and plotting the number of drops at each size respectively as the vertical axis or ordinate in terms of the relative volume of extinguishant represented by the respective drop sizes. In an extinguishant spray from a conventional sprinkler head, therefore, the drops represented by the area A in FIG. I or less than the diameter d,. (approxi mately one-half millimeter) are completely evaporated under the conditions of a fire. Those drops of a size greater than d (approximately 2.8 millimeters) and larger are represented by the area B and in practice are believed to penetrate the fire plume to reach the burning fuel source. Droplets between the diameters d, and d, are depicted by the areas C and D in FIG. I which areas respectively represent droplets partially evaporated and those which tend to be pushed away from a rising hot plume of combustion products over a burning fuel source. The relatively large size of the area D as compared with the areas A, B and C is significant in that it represents the proportion of extinguishanl in the spray from a conventional sprinkler head which not only contributes very little to the fire-extinguishing function of the spray, but moreover contributes to water damage as runoff. On the other hand, the droplets represented by the areas A and C contribute to the fire extinguishing function by virtue of cooling ambient at mosphere through evaporation. Similarly, the large size droplets represented by the area B in FIG. I contribute to the fire-extinguishing function of the spray by penetrating the plume and reaching the burning fuel surfaces.
Curves II and III in FIG. 1 further illustrate the problem of varying the pressure at which a spray is emitted from the nozzle ofa conventional sprinkler head in that increased pressure to augment the cooling effect of the spray results in a sacrifice of available extinguishant to put out the fire at its source. Similarly, lowering the pressure to produce larger droplets within the spray gives rise to a sacrifice of the cooling by evaporation.
The distribution curve in FIG. 2 illustrates the drop diame ter size distribution in a fire extinguishant spray in accordance with this invention. By employing two separate nozzles, that is, a fine spray nozzle and a coarse spray nozzle, the fine spray nonle can be selected to develop a spray in which the drop diameters are essentially all smaller than I millimeter. The volume of the spray issuing from the fine spray nozzle is depicted by the area A,and C, in FIG. 2. The coarse spray nozlie, on the other hand, develops a spray with drop size diameters in excess of d,, the volume of the spray issuing from the coarse spray nozzle being represented by area B, in FIG. 2. It will be noted that the drops in the size range between d, and d,,, the volume of which is represented by the area D, in FIG.
2, is significantly reduced relative to the area D in FIG. I of the drawings.
Alternative dual-nozzle sprinkler head embodiments for achieving the drop size distribution represented by the curve in FIG. 2 are illustrated in FIGS. 3-5 of the drawings. In the embodiment of FIG. 3, the fine nozzle is a standard opposed jet nozzle 10 connected to,one outlet of a T-fitting I2 having its inlet connected to a vertically disposed water supply pipe [4. A quartz bulb release I6 normally prevents the issuance of water or other extinguishant through the opposed jet nozzle I0 but ruptures upon a temperature increase to open the nozzle. The coarse nozzle in the embodiment of FIG. 3 takes the form of a conventional pendant nozzle l7 having a discharge opening 18 and a serrated distributor plate 20 positioned thereunder. The release in this instance is a conventional link lever release 22 having a fuse 24 and a cap 26 which moves out of the opening 18 when the temperature about the fuse 24 exceeds a predetermined amount. Since the supply of water or other extinguishant from the pipe 14 to both nozzles I0 and I7 is under the same pressure head, a restricted orifice is positioned ahead of the outlet tube I8 of the coarse nozzle. The restricted orifice 28 will operate to reduce the velocity and thus the effective pressure at which the extinguishant is issued from the pendant coarse nozzle 17.
The quartz bulb release 16 in the embodiment of FIG. 3 is preferably designed to release at a lower temperature than the fusible link 24 of the nozzle 17. In this manner, as the heat of the fire initially develops, the nozzle [0 will first open to develop a fine spray or mist, the droplets of which will immediately evaporate to cool the ambient atmosphere. This cooling action tends to slow down the release of sprinkler heads positioned in the building enclosure remotely from the tire. Then as the temperature rises the fuse link 24 releases to permit the extinguishant to pass through the pendant nozzle I7 in relatively large or coarse droplets capable of penetrating the fire plume beneath the sprinkler head to extinguish the fire.
In FIG. 4 a dual-nozzle sprinkler head in accordance with this invention is shown and which is adapted for use with a horizontal line 30. In this instance an X'type fitting 32 is employed with the pendant low pressure nozzle I7 extending from a lower outlet arm 34 thereof and the fine nozzle coupled to the upwardly extending branch 36 of the fitting. The fine spray nozzle in this instance takes the form of a radial spray or fog nozzle 38 equipped with a link lever fuse release 40. The operation of the embodiment in FIG. 4 is essentially the same as that of FIG. 3 apart from the particular types of nozzles employed, each of which, by itself, is conventional.
In FIG. 5 a further modification of the invention is illustrated wherein both fine spray and coarse nozzles are adapted to be actuated by a common release 42. In this instance, the nozzles are identical in type to the corresponding nozzles 10 and 17 in the embodiment of FIG. 3. However, a valve member 44 having a serrated skirt 46 and a stem 48 is adapted to be seated upwardly against the supply line I4, Upon actuation, the valve moves downwardly so that the serrated skirt 46 thereof rests on the restricted orifice plate 28, thereby opening both nozzles. The operation of the device to develop the fine and coarse sprays as aforementioned is the same as that described above with respect to FIG. 3, with the exception of the difference in release temperatures afforded by the embodiment of FIG. 3.
The use of dual-nozzle sprinkler heads of the type shown in FIGS. 3-5 of the drawings is preferred because of the facility offered thereby for installation. In other words, each of the dual nozzle sprinkler heads, being a unit by itself, is simply installed according to specification without having to rely on individual workmen to effect proper positioning of the respective fine and coarse spray nozzles. It is possible, however, that separate single-nozzle heads be used and arranged in a manner to effect the basic fire-extinguishing technique of this invention. Such an arrangement is shown in FIGS. 6 and '7 of the drawings.
As shown in FIG. 6, a plurality of coarse nozzle sprinkler heads 50 are arranged in conventional fashion beneath the ceiling 52 of a building space 54 to be protected. An extinguishant such as water is supplied to the coarse nozzle heads 50 in conventional fashion by main and branch lines 56 and 58, respectively. Also provided in the ceiling of the building enclosure 54 are fine spray nozzle heads 60 spaced between the coarse spray heads 50. Although the fine spray heads 60 could be supplied with an extinguishant such as water from the pipes 56 and 58 through use of suitable connections, the fine spray nozzle heads 60 in the system shown in FIG. 6 are supplied with extinguishant by independent pipes depicted by dash lines 62. The use of separate supply lines is advantageous in that the line pressures supplying the respective coarse and fine nozzle heads 50 and 60 can be adjusted independently. The operation of the system shown in FIGS. 6 and 7, which is essentially similar to that of the dual-nozzle sprinkler heads described above, is depicted in FIG. 7 of the drawings. As shown, the existence of a fire plume 63 will activate automatically one or more of the coarse heads 50 thereover to provide a spray of large droplets 64 to penetrate the fire plume 63, reach the burning fuel surfaces 66 and extinguish the fire. In the meanwhile, fine nozzle sprinkler heads 60 in the vicinity of the activated coarse noule head or heads 50 will be activated to disperse a fine spray 68 consisting essentially of small droplets which evaporate readily. The evaporation of these fine droplets will tend to cool the interior of the building space 54 particularly along the ceiling 52 thereof. As a result, only those coarse nozzle sprinkler heads 50 which are required to extinguish the fire 63 will be activated. Not only will this mode of operation avoid unnecessary water damage due to remote sprinkler heads being actuated ineffectivcly, but also the inactive condition of the remote sprinkler heads will serve to ensure an ample supply of water to the sprinkler heads actuated directly by the heat of the fire.
Thus it will be appreciated that by this invention, there is provided extremely effective method and apparatus for developing a fire-extinguishing spray. By the use of fine and coarse spray nozzles, the drop size distribution in the spray developed by the sprinkler system is effective both from the standpoint of providing a fine spray or mist for cooling the atmosphere over a fire and as well to provide drop sizes suffciently large in size to penetrate a fire plume and reach the burning fuel surfaces thereof. Also and equally significant, the amount of extinguishant runoff due both to particle size distribution and unnecessary release of remote sprinkler heads is reduced to a minimum.
It will be appreciated that various modifications can be made in the present invention as described above. Accordingly, it is expressly intended that the foregoing description is illustrative of preferred embodiments only, not limiting, that the true spirit and scope of the present invention be determined by the appended claims.
lclaim:
l. A sprinkler head for fixed fire-extinguishing systems, said head comprising: a fitting having an inlet for connection to a source of extinguishant and at least two outlets, first discharge means in one of said outlets to disperse a finely divided spray of extinguishant, second discharge means in the other of said outlets to disperse relatively large droplets of extinguishant, and temperature-responsive means to actuate said first and second discharge means.
2. The apparatus recited in claim I including means for supplying extinguishant from said inlet to said second discharge means at a lower pressure than said first discharge means.
3. The apparatus recited in claim 2 wherein said means for supplying extinguishant from said inlet to said second discharge means comprises means establishing a restricted orifice in said other outlet.
4. The apparatus recited in claim I wherein said temperature-responsive means comprises separate fuse elements for each of said first and second discharge means.
5. The apparatus recited in claim 4 wherein the fuse element for said first discharge means is releasable at a lower temperature than the fuse element for said second discharge means.
6. The apparatus recited in claim 1 comprising a valve member normally blocking said inlet, said valve member being movable under the control of said temperature-responsive means to an open position establishing fluid communication between said inlet and said first and second discharge means.
7. In a fixed fire-extinguishing system of the type in which an extinguishant is supplied to automatically actuated sprinkler heads located in a space to be protected, a plurality of coarse spray nozzles to develop one extinguishant spray of droplets having a size capable of penetrating a rising plume of combustion products, and a plurality of fine spray nozzles to develop another extinguishant spray of fine droplets which readily evaporate and cool ambient atmosphere upon activation.
8. The apparatus recited in claim 7 wherein both said coarse spray nozzles and said fine spray nozzles are included in each ofa plurality of sprinkler head units.
9. The apparatus recited in claim 7 including separate means for supplying extinguishant to said fine and coarse nozzles respectivel y.
10. The apparatus recited in claim 7 including first means automatically responsive to a fire in said space for controlling the opening of said coarse spray nozzles, and second means automatically responsive to a fire in said space for controlling the opening of said fine spray nozzles, said second means opening said fine spray nozzles in advance of the opening of said coarse spray nozzles by said first means.
II. The apparatus recited in claim 10 wherein said coarse and fine spray nozzles and said first and second means are included in each of a plurality of sprinkler head units, said first and seconds means being responsive to heat generated by the fire.

Claims (11)

1. A sprinkler head for fixed fire-extinguishing systems, said head comprising: a fitting having an inlet for connection to a source of extinguishant and at least two outlets, first discharge means in one of said outlets to disperse a finely divided spray of extinguishant, second discharge means in the other of said outlets to disperse relatively large droplets of extinguishant, and temperature-responsive means to actuate said first and second discharge means.
2. The apparatus recited in claim 1 including means for supplying extinguishant from said inlet to said second discharge means at a lower pressure than said first discharge means.
3. The apparatus recited in claim 2 wherein said means for supplying extinguishant from said inlet to said second discharge means comprises means establishing a restricted orifice in said other outlet.
4. The apparatus recited in claim 1 wherein said temperature-responsive means comprises separate fuse elements for each of said first and second discharge means.
5. The apparatus recited in claim 4 wherein the fuse element for said first discharge means is releasable at a lower temperature than the fuse element for said second discharge means.
6. The apparatus recited in claim 1 comprising a valve member normally blocking said inlet, said valve member being movable under the control of said temperature-responsive means to an open position establishing fluid communication between said inlet and said first and second discharge means.
7. In a fixed fire-extinguishing system of the type in which an extinguishant is supplied to automatically actuated sprinkler heads located in a space to be protected, a plurality of coarse spray nozzles to develop one extinguishant spray of droplets having a size capable of penetrating a rising plume of combustion products, and a plurality of fine spray nozzles to develop another extinguishant spray of fine droplets which readily evaporate and cool ambient atmosphere upon activation.
8. The apparatus recited in claim 7 wherein both said coarse spray nozzles and said fine spray nozzles are included in each of a plurality of sprinkler head units.
9. The apparatus recited in claim 7 including separate means for supplying extinguishant to said fine and coarse nozzles respectively.
10. The apparatus recited in claim 7 including first means automatically responsive to a fire in said space for controlling the opening of said coarse spray nozzles, and second means automatically responsive to a fire in said space for controlling the opening of said fine spray nozzles, said second means opening said fine spray nozzles in advance of the opening of said coarse spray nozzles by said first means.
11. The apparatus recited in claim 10 wherein said coarse and fine spray nozzles and said first and second means are included in each of a plurality of sprinkler head units, said first and seconds means being responsive to heat generated by the fire.
US786659A 1968-12-24 1968-12-24 Dual nozzle sprinkler head Expired - Lifetime US3590924A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78665968A 1968-12-24 1968-12-24

Publications (1)

Publication Number Publication Date
US3590924A true US3590924A (en) 1971-07-06

Family

ID=25139241

Family Applications (1)

Application Number Title Priority Date Filing Date
US786659A Expired - Lifetime US3590924A (en) 1968-12-24 1968-12-24 Dual nozzle sprinkler head

Country Status (1)

Country Link
US (1) US3590924A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684025A (en) * 1971-07-26 1972-08-15 Factory Mutual Res Corp Adaptive sprinkler head
US3684019A (en) * 1971-05-07 1972-08-15 Howard W Emmons Method for fighting a fire
US3703930A (en) * 1971-05-27 1972-11-28 Fmc Corp Automatic sprinkling system
US3743022A (en) * 1971-04-26 1973-07-03 Factory Mutual Res Corp Fire protection system
US3791450A (en) * 1972-04-03 1974-02-12 E Poitras On-off fire sprinkler
US3837406A (en) * 1972-07-27 1974-09-24 Fire Sprinkler Control Co Sprinkler head closure
US5810090A (en) * 1991-06-19 1998-09-22 Sundholm; Goeran Method for fire fighting
US6065546A (en) * 1997-04-23 2000-05-23 Bunka Shutter Co., Ltd. Fire extinguishing and smoke eliminating apparatus and method using water mist
US6155501A (en) * 1997-10-17 2000-12-05 Marketspan Corporation Colliding-jet nozzle and method of manufacturing same
US20030201105A1 (en) * 1999-05-28 2003-10-30 Viking Corporation Fast response sprinkler head and fire extinguishing system
US20060038029A1 (en) * 2003-03-19 2006-02-23 Siemens Transportation Systems Gmbh & Co Kg Sprinkler system for railway vehicles
US20070221389A1 (en) * 2006-03-21 2007-09-27 Victaulic Company Sprinkler with motion limited lever

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2043714A (en) * 1935-09-27 1936-06-09 Akron Brass Mfg Company Duplex nozzle construction
US2235258A (en) * 1940-06-25 1941-03-18 Fog Nozzle Co Fire extinguishing nozzle
US2265810A (en) * 1938-05-05 1941-12-09 Ernest A Lowe Fire extinguishing apparatus
US2410215A (en) * 1944-10-24 1946-10-29 Henry G Houghton Spray nozzle
US2495208A (en) * 1945-05-17 1950-01-24 Factory Mutual Res Corp Fog producing spray nozzle
US3220482A (en) * 1965-01-06 1965-11-30 Kempton A Eveleth Fire fighting apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2043714A (en) * 1935-09-27 1936-06-09 Akron Brass Mfg Company Duplex nozzle construction
US2265810A (en) * 1938-05-05 1941-12-09 Ernest A Lowe Fire extinguishing apparatus
US2235258A (en) * 1940-06-25 1941-03-18 Fog Nozzle Co Fire extinguishing nozzle
US2410215A (en) * 1944-10-24 1946-10-29 Henry G Houghton Spray nozzle
US2495208A (en) * 1945-05-17 1950-01-24 Factory Mutual Res Corp Fog producing spray nozzle
US3220482A (en) * 1965-01-06 1965-11-30 Kempton A Eveleth Fire fighting apparatus and method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743022A (en) * 1971-04-26 1973-07-03 Factory Mutual Res Corp Fire protection system
US3684019A (en) * 1971-05-07 1972-08-15 Howard W Emmons Method for fighting a fire
US3703930A (en) * 1971-05-27 1972-11-28 Fmc Corp Automatic sprinkling system
US3684025A (en) * 1971-07-26 1972-08-15 Factory Mutual Res Corp Adaptive sprinkler head
US3791450A (en) * 1972-04-03 1974-02-12 E Poitras On-off fire sprinkler
US3837406A (en) * 1972-07-27 1974-09-24 Fire Sprinkler Control Co Sprinkler head closure
US5810090A (en) * 1991-06-19 1998-09-22 Sundholm; Goeran Method for fire fighting
US6065546A (en) * 1997-04-23 2000-05-23 Bunka Shutter Co., Ltd. Fire extinguishing and smoke eliminating apparatus and method using water mist
US6155501A (en) * 1997-10-17 2000-12-05 Marketspan Corporation Colliding-jet nozzle and method of manufacturing same
US20030201105A1 (en) * 1999-05-28 2003-10-30 Viking Corporation Fast response sprinkler head and fire extinguishing system
US20050224238A1 (en) * 1999-05-28 2005-10-13 The Viking Corporation, A Corporation Of The State Of Michigan Fast response sprinkler head and fire extinguishing system
US7036603B2 (en) * 1999-05-28 2006-05-02 The Viking Corporation Fast response sprinkler head and fire extinguishing system
US7290618B2 (en) 1999-05-28 2007-11-06 The Viking Corporation Fast response sprinkler head and fire extinguishing system
US20060038029A1 (en) * 2003-03-19 2006-02-23 Siemens Transportation Systems Gmbh & Co Kg Sprinkler system for railway vehicles
US20070221389A1 (en) * 2006-03-21 2007-09-27 Victaulic Company Sprinkler with motion limited lever
US7584803B2 (en) 2006-03-21 2009-09-08 Victaulic Company Sprinkler with motion limited lever

Similar Documents

Publication Publication Date Title
US3590924A (en) Dual nozzle sprinkler head
US3684019A (en) Method for fighting a fire
EP0665761B1 (en) Spray-head for fighting fire
CA2668587C (en) Dual extinguishment fire suppression system using high velocity low pressure emitters
US8376059B2 (en) Fire suppression system using emitter with closed end cavity deflector
US2724614A (en) Spray sprinkler
US3802512A (en) Multiple deflector discharge head for fire protection systems
US20080073088A1 (en) Special application control sprinkler for use in fire protection
US3888313A (en) Discharge head and fire protection system utilizing said head
US7857069B2 (en) System valve activation methods for deluge-like wet pipe sprinkler system
US2101694A (en) Sprinkler head
US20060289174A1 (en) Deluge-like sprinkler fire scheme using high thermal sensitivity and high temperature rating sensing elements
US4741403A (en) Automatic fire extinguishing system
GB1307095A (en) Dual nozzle sprinkler heads
US2601899A (en) Combination water and foam sprinkler unit
WO1998004322A1 (en) Fire suppression mist nozzle arrangement
US2375297A (en) Apparatus for extinguishing fires
JP4182102B2 (en) Fire extinguishing equipment
JPH05253316A (en) Extinguishing equipment
KR101267421B1 (en) Water atomization spray system combined with drencher and fire extinguishing system using the same
KR20180128270A (en) An apparatus for delaying fire propagation interworking with an evaporative cooling apparatus
US3684023A (en) Fire protection system with a variable pressure floor
JPH11197264A (en) Fire extinguishing equipment
US2125057A (en) Fire extinguishing system and apparatus
US3708015A (en) A system for fire protection using recirculation of combustion products