US3585803A - Pile splice - Google Patents

Pile splice Download PDF

Info

Publication number
US3585803A
US3585803A US776013A US3585803DA US3585803A US 3585803 A US3585803 A US 3585803A US 776013 A US776013 A US 776013A US 3585803D A US3585803D A US 3585803DA US 3585803 A US3585803 A US 3585803A
Authority
US
United States
Prior art keywords
box
pin member
recess
shear ring
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US776013A
Inventor
John J Bardgette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Application granted granted Critical
Publication of US3585803A publication Critical patent/US3585803A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/52Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments
    • E02D5/523Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments composed of segments

Definitions

  • ABSTRACT A machined pile splice for use in construction of offshore platforms. A box member is attached to a pile member before it is driven. A pin member is attached to the pile section to be added.
  • a shear ring is located in opposing [54] PILE SPLICE recesses in both the box and pin members.
  • the shear ring is 5 Claims, 3 Drawing Figs. made slightly wedge-sha ed in cross section and is initially intalld'thb b h "hld tdb s e in e ox mem erw ere it IS e cen ere yacorru- [52] U.S.Cl. 2865155231, gated p g strip.
  • the box member is also provided with [51] ha.
  • the thread studs are screwed in, forcing the 3459442 8/1969 Day 5 285/32 X wedge-shaped shear ring into tighter contact with the lower arme e surface of the pin member recess and the upper surface of the FOREIGN PATENTS box member recess.
  • An O-ring is provided between the pin 1,097,465 1955 France 285/308 and box members to provide a fluid seal.
  • PILE ssucs BACKGROUN D OF THE INVENTION 1.
  • the present invention generally concerns method and apparatus for use in splicing pile sections. MOre particularly, the invention concerns using spliced pile sections in the construction of offshore platforms.
  • the crane operator swings the pile section being added over the previously driven pile section.
  • the crane operator lowers the section being added to insert the stabbing guide into the top of the receiving or previously driven pile section.
  • the guide forces the pile sections into approximately proper alignment.
  • the stabbing guide is fully inserted into the top of the driven pile section, the crane operator slacks off on the crane load line to allow the guide to take over support of the added pile section. This sequence proceeds smoothly during calm seas, but during moderately rough seas, it is not unusual for the roll of the derrick barge to result in pulling the stabbing guide completely out of the top of the driven pile.
  • the pile splice of the present invention eliminates welding pipe sections together during pile-driving operations. During rough sea conditions, this pile splice reduces the time required to place the pile sections subsequent to placement of the lead pile section.
  • This pile splice comprises a box and pin connection similar to drill pipe tool joints, but without threads. These connections are welded to pile sections during land phase fabrication.
  • a shear ring located in opposing recesses in both the box and pin acts in lieu of threads.
  • the shear ring is made slightly wedge-shaped in cross section and is initially installed in the box where it is held centered by a corrugated spring strip.
  • the box is also equipped with thread studs which force the shear ring into tight contact with the lower surface of the pin recess and the upper surface of the box recess.
  • the pin is inserted into the box.
  • the outer surface of the pin and the inner surface of the box are tapered.
  • the tip of the pin passes through the shear ring and the outer wall of the pin contacts the inner wall of the shear ring.
  • the ring is forced to spread and increase in diameter. This forces the ring deeper into the recessin the box which, in turn, causes the corrugated spring strip to flatten out.
  • the shear ring snaps out of the box recess and to the opposing pin recess.
  • this connection can be designed to resist all required stresses that the pile will be subjected to. (Piles for jacket-type oflshore platforms are not subjected to torsion.)
  • pile splice of the present invention allows the design of deeper pile penetrations and greater capacity when these conditions exist.
  • FIG. 1 is a side view of the pile splice made up in accordance with the present invention
  • FIG. 2 is a cross section through the box illustrating the arrangement of the box, spring strip and shear ring prior to insertion of the pin;
  • FIG. 3 is an isometric view of the shear ring.
  • FIG. 1 there is shown the top of a driven pile section 10 and the bottom of a pile section 11 tobe added.
  • Pile section 10 is welded as at 12 to a box member 13 provided with a recessed portion 14 and a series of threaded openings 15 extending from the outer surface into the recessed portion M.
  • An O-ring seal 16 is arranged on the inner surface of box member 13.
  • Pile section 11 is welded as at 20 to a pin member 21 provided with a recessed portion 22 which opposes recess 14 in box member 13 when the pin member is fully inserted into the box member.
  • pin member 21 The outer surface 23 of pin member 21 is tapered downwardly an inwardly and the inner surface 24 of box member 13 is tapered upwardly and outwardly.
  • a shoulder 25 formed on pin member 21 engages the upper end 26 of box member 13.
  • a shear ring 30, shown also in FIGS. 2 and 3, is arranged in recesses 14 and 22.
  • a threaded stud 31 protrudes through each threaded opening and bears against shear ring 30.
  • a corrugated spring strip 35 is arranged between shear ring 30 and box member 13.
  • pin member 21 is inserted into box member 13.
  • the tip of pin member 21 passes through shear ring 30, the outer wall 23 of the pin member contacts the inner wall of shear ring 30.
  • the ring is forced by the tapered wall 23 to spread and increase in diameter. In this manner, the shear ring is forced deeper into recess 14 which in turn causes the corrugated spring strip 35 to flatten out.
  • shear ring 30 snaps out of the box member recess 14 and into the opposing pin member recess 22.
  • the thread studs 31 are then screwed in threaded openings 15 to force the wedge-shaped shear ring 30 into tighter contact with the lower surface of the pin member recess and the upper surface of the box member recess. Such wedge action forces tight contact between the end of the box member and the shoulder of the pin member.
  • a pile splice comprising:
  • pin member attachedto one pile section, said pin member having an outer shoulder, a tapered outer surface, an inclined lower end and a recess formed therein;
  • box member attached to another pile section in which said pin member is insertable, said box member having an end engageable with said pin member shoulder when said pin member is fully inserted in said box member, said box member also having a tapered inner surface and recess formed therein, said pin member and box member recesses opposing each other when said pin member is fully inserted in said box member;
  • a shear ring initially arranged in said box recess and adapted to snap into said pin member recess and engage one surface of said pin member and an opposite surface of said box member when said pin member is fully inserted in said box member, the depth of said box member, the depth of said pin member recess being less than the thickness of said shear ring;
  • a pile splice as recited in claim 2 in which said means for wedging said shear ring includes:

Abstract

A machined pile splice for use in construction of offshore platforms. A box member is attached to a pile member before it is driven. A pin member is attached to the pile section to be added. A shear ring is located in opposing recesses in both the box and pin members. The shear ring is made slightly wedge-shaped in cross section and is initially installed in the box member where it is held centered by a corrugated spring strip. The box member is also provided with thread studs which force the shear ring into tight contact with the lower surface of the pin member recess and upper surface of the box member recess. The outer surface of the pin member and the inner surface of the box member are tapered. The tip of the pin member passes through the shear ring and outer wall of the pin member contacts the inner wall of the shear ring. As the tapered pin member continues through the shear ring, the ring is forced to increase in diameter which forces the ring deeper into the box member recess. After the pin member is fully inserted into the box member, the shear ring snaps out of the box member and into the opposing pin member recess. The thread studs are screwed in, forcing the wedge-shaped shear ring into tighter contact with the lower surface of the pin member recess and the upper surface of the box member recess. An O-ring is provided between the pin and box members to provide a fluid seal.

Description

United States Patent [72] inventor John J. Bardgette Primary ExaminerJac0b Shapiro Orleans Parish, La. Attorneys-Thomas B. McCulloch, Melvin F. Fincke, John S. [2 l] Appl. No. 776,013 Schneider, Sylvester W. Brock, J r., Kurt S. Myers and [22] Filed Nov. 15, 1968 Timothy L. Burgess [45] Patented June 22, 1971 [73] Assignee Fsso Production Research Company ABSTRACT: A machined pile splice for use in construction of offshore platforms. A box member is attached to a pile member before it is driven. A pin member is attached to the pile section to be added. A shear ring is located in opposing [54] PILE SPLICE recesses in both the box and pin members. The shear ring is 5 Claims, 3 Drawing Figs. made slightly wedge-sha ed in cross section and is initially intalld'thb b h "hld tdb s e in e ox mem erw ere it IS e cen ere yacorru- [52] U.S.Cl. 2865155231, gated p g strip. The box member is also provided with [51] ha. Cl l I b 5/52 thread studs which force the shear ring into tight contact with F16] 21/06 the lower surface of the p member recess and pp Surface so Fieldof Search ..6l/53 46 5 member The surface i 3m 318 member and the inner surface of the box member are tapered. The tip of the pin member passes through the shear ring and [56] References Cited outer wall of the pin member contacts the inner wall of the UNITED STATES PATENTS shear ring. As the tapered pin member continues through the 2 746 775 5/1956 Le d 285/321 x shear ring, the ring is forced to increase in diameter which 3345085 10/1967 H (mar 285/321 X forces the ring deeper into the box member recess. After the 3345'087 10/1967 285/321 x pin member is fully inserted into the box member, the shear 3'398q77 8/1968 Yoned: 285/321 X ring snaps out of the box member and into the opposing pin 5 7/1969 Ham 285/321 X member recess. The thread studs are screwed in, forcing the 3459442 8/1969 Day 5 285/32 X wedge-shaped shear ring into tighter contact with the lower arme e surface of the pin member recess and the upper surface of the FOREIGN PATENTS box member recess. An O-ring is provided between the pin 1,097,465 1955 France 285/308 and box members to provide a fluid seal.
| 2 l s l I 1 l =-1"i.-';:-.- Y='.-'- X@z'ZO i l I H! A i l 26 *2 5 i -16 l A 24 l J4 30 15 3| L l i 22 3| I z 5 I2 I RIVEN PILE PATENTED JUN22I97I 3585,803
w ag 12 DRIVEN PILE i A X '0 INVIjV/OR. JOHN J. BARDGETTE,
FIG. 3.
ATTORNEY.
PILE ssucs BACKGROUN D OF THE INVENTION 1. Field of the Invention The present invention generally concerns method and apparatus for use in splicing pile sections. MOre particularly, the invention concerns using spliced pile sections in the construction of offshore platforms.
2. Description of the Prior Art The erection of an offshore platform of the jacket type commonly used by the oil industry involves three principle phases: (1) launch the lower jacket and set it on bottom; (2) install piling and connect the piling to the lower jacket; and (3) install deck units and connect the deck units to the piling. Of these three phases, installation of the piling normally consumes over 75 percent of total erection time. Installation of a piling can be subdivided into four principle operations: (I) placing the pile sections; (2) welding the pile sections together; (3) driving the pile sections; and (4) connecting the pile sections to the lower jacket. Of these four operations, welding the pile sections together normally consumes about 33 percent of the total pile installation time Current standard practice for pile installation provides for prefabrication of each pile into two or more sections, depending on the total length of pile required. The length of each individual section of pile is primarily dependent on the boom length of the crane on the derrick barge used in the pile installation. All pile sections, except the lead section, are equipped with an alignment or stabbing guide to aid field installation. This guide serves several functions. First, to expedite alignment of the pile section being added with previously driven pile section; second, to support the added pile section in position while the pile sections are being welded together; and third, to serve as a backing ring for welding purposes.
During field installation, the crane operator swings the pile section being added over the previously driven pile section. When the pile section being added is in approximate alignment with the driven pile section, the crane operator lowers the section being added to insert the stabbing guide into the top of the receiving or previously driven pile section. As the section to be added is lowered, the guide forces the pile sections into approximately proper alignment. When the stabbing guide is fully inserted into the top of the driven pile section, the crane operator slacks off on the crane load line to allow the guide to take over support of the added pile section. This sequence proceeds smoothly during calm seas, but during moderately rough seas, it is not unusual for the roll of the derrick barge to result in pulling the stabbing guide completely out of the top of the driven pile. When the pile section being added is in place and fully supported by the stabbing guide, the pile sections are checked for alignment before welding is started. Since most offshore platform piles are driven on a batter, and since piles and stabbing guides are fabricated from pipe with standard industry-accepted dimension tolerances, it is quite common for these pile sections to be out of alignment as a result of the movement exerted on the stabbing guide by the weight of the pile section. Such misalignment is commonly corrected by rotating the pile section to be added to the "best fit for matching roundness of the pile sections, measuring the center line misalignment, removing the pile section, adding a heel plate on the high side of the stabbing guide to use the guides length as a lever to force correct alignment and then restabbing the pile section to be added.
The machined pile splice described herein will mitigateor eliminate these important time-consuming installation problems. As soon as the pin is completely inserted in the box, the shear ring snaps into position and prevents unseating if the derrick barge rolls due to sea action. Since both box and pin are machined to relatively close tolerances, misalignment is not encountered.
SUMMARY OF THE INVENTION The pile splice of the present invention eliminates welding pipe sections together during pile-driving operations. During rough sea conditions, this pile splice reduces the time required to place the pile sections subsequent to placement of the lead pile section. This pile splice comprises a box and pin connection similar to drill pipe tool joints, but without threads. These connections are welded to pile sections during land phase fabrication. A shear ring located in opposing recesses in both the box and pin acts in lieu of threads. The shear ring is made slightly wedge-shaped in cross section and is initially installed in the box where it is held centered by a corrugated spring strip. The box is also equipped with thread studs which force the shear ring into tight contact with the lower surface of the pin recess and the upper surface of the box recess.
In makeup of this connection, the pin is inserted into the box. The outer surface of the pin and the inner surface of the box are tapered. The tip of the pin passes through the shear ring and the outer wall of the pin contacts the inner wall of the shear ring. As the tapered pin continues through the ring, the ring is forced to spread and increase in diameter. This forces the ring deeper into the recessin the box which, in turn, causes the corrugated spring strip to flatten out. After the pin is fully inserted into the box, the shear ring snaps out of the box recess and to the opposing pin recess. All thread studs are then screwed in forcing the wedge-shaped shear ring into tighter contact with the lower surface of the pin recess and the upper surface of the box recess. Such wedge action causes tight contact between the end of the box and the shoulder of the pin. When this connection is completely made up, the tight metal-to-metal contact between the end of the box and the shoulder of the pin transmits compressive load and driving energy between the pile sections. The shear stress developed in the shear ring transmits tensile load between pile sections.
By appropriate sizing and selection of grades of steel, this connection can be designed to resist all required stresses that the pile will be subjected to. (Piles for jacket-type oflshore platforms are not subjected to torsion.)
Aside from the obvious advantage of reducing water phase erection cost by reducing the time required to install piling, there is a functional advantage resulting from reducing the time required to drive a pile or more particularly, for reducing the downtime between periods of actual pile driving. The static capacity of soil is greater than its resistance to driving. When pile driving stops, the soil's grip starts increasing so that resistance to driving is greater when pile driving is resumed than it was when pile driving ceased; the longer the period of downtime, the greater the initial resistance to resumption of driving. Consequently, with a certain set of conditions (available hammer energy, required total pile penetration, depth of penetration to the last splice, and the time rate of soil capacity increase), excessive downtime to add a pile section might result in inability to drive the pile to a desired depth of penetration resulting in reduced pile capacity. The pile splice of the present invention allows the design of deeper pile penetrations and greater capacity when these conditions exist.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of the pile splice made up in accordance with the present invention;
FIG. 2 is a cross section through the box illustrating the arrangement of the box, spring strip and shear ring prior to insertion of the pin; and
FIG. 3 is an isometric view of the shear ring.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, there is shown the top of a driven pile section 10 and the bottom of a pile section 11 tobe added. Pile section 10 is welded as at 12 to a box member 13 provided with a recessed portion 14 and a series of threaded openings 15 extending from the outer surface into the recessed portion M. An O-ring seal 16 is arranged on the inner surface of box member 13. Pile section 11 is welded as at 20 to a pin member 21 provided with a recessed portion 22 which opposes recess 14 in box member 13 when the pin member is fully inserted into the box member. The outer surface 23 of pin member 21 is tapered downwardly an inwardly and the inner surface 24 of box member 13 is tapered upwardly and outwardly. A shoulder 25 formed on pin member 21 engages the upper end 26 of box member 13. A shear ring 30, shown also in FIGS. 2 and 3, is arranged in recesses 14 and 22. A threaded stud 31 protrudes through each threaded opening and bears against shear ring 30.
As shown, a corrugated spring strip 35 is arranged between shear ring 30 and box member 13. In operation, pin member 21 is inserted into box member 13. As the tip of pin member 21 passes through shear ring 30, the outer wall 23 of the pin member contacts the inner wall of shear ring 30. As pin member 21 continues through shear ring 30, the ring is forced by the tapered wall 23 to spread and increase in diameter. In this manner, the shear ring is forced deeper into recess 14 which in turn causes the corrugated spring strip 35 to flatten out. After the pin member is fully inserted into the box, as illustrated in FIG. 1, shear ring 30 snaps out of the box member recess 14 and into the opposing pin member recess 22. The thread studs 31 are then screwed in threaded openings 15 to force the wedge-shaped shear ring 30 into tighter contact with the lower surface of the pin member recess and the upper surface of the box member recess. Such wedge action forces tight contact between the end of the box member and the shoulder of the pin member.
Various modifications may be made in the preferred embodiment of the invention which have been described without departing from the spirit and scope thereof.
Having fully described the objects, advantages, apparatus and method of my invention, I claim:
1. A pile splice comprising:
a pin member attachedto one pile section, said pin member having an outer shoulder, a tapered outer surface, an inclined lower end and a recess formed therein;
a box member attached to another pile section in which said pin member is insertable, said box member having an end engageable with said pin member shoulder when said pin member is fully inserted in said box member, said box member also having a tapered inner surface and recess formed therein, said pin member and box member recesses opposing each other when said pin member is fully inserted in said box member;
a shear ring initially arranged in said box recess and adapted to snap into said pin member recess and engage one surface of said pin member and an opposite surface of said box member when said pin member is fully inserted in said box member, the depth of said box member, the depth of said pin member recess being less than the thickness of said shear ring;
means associated with said shear ring for urging said shear ring to snap into said pin member recess; and
spring means for wedging said shear ring against said one surface of said pin member recess and said opposite surface of said box member recess when said pin member is fully inserted in said box member, said wedge action causing tight metal-to-metal contact between the end of said box member and said shoulder of said pin member.
2. A pile splice as recited in claim 1 in which said spring means for urging said shear ring to snap into said pin member recess includes a corrugated spring strip initially arranged in said box recess between said shear ring and the wall of said box recess.
3. A pile splice as recited in claim 2 in which said means for wedging said shear ring includes:
a plurality of spaced-apart threaded openings extending from the outer surface of said box member to the interior of said box recess; and thread studs extending through each of said threaded

Claims (5)

1. A pile splice comprising: a pin member attached to one pile section, said pin member having an outer shoulder, a tapered outer surface, an inclined lower end and a recess formed therein; a box member attached to another pile section in which said pin member is insertable, said box member having an end engageable with said pin member shoulder when said pin member is fully inserted in said box member, said box member also having a tapered inner surface and recess formed therein, said pin member and box member recesses opposing each other when said pin member is fully inserted in said box member; a shear ring initially arranged in said box recess and adapted to snap into said pin member recess and engage one surface of said pin member and an opposite surface of said box member when said pin member is fully inserted in said box member, the depth of said box member, the depth of said pin member recess being less than the thickness of said shear ring; means associated with said shear ring for urging said shear ring to snap into said pin member recess; and spring means for wedging said shear ring against said one surface of said pin member recess and said opposite surface of said box member recess when said pin member is fully inserted in said box member, said wedge action causing tight metal-tometal contact between the end of said box member and said shoulder of said pin member.
2. A pile splice as recited in claim 1 in which said spring means for urging said shear ring to snap into said pin member recess includes a corrugated spring strip initially arranged in said box recess between said shear ring and the wall of said box recess.
3. A pile splice as recited in claim 2 in which said means for wedging said shear ring includes: a plurality of spaced-apart threaded openings extending from the outer surface of said box member to the interior of said box recess; and thread studs extending through each of said threaded openings, said thread studs abutting said shear ring to wedge said shear ring against said one surface of said pin member recess and said opposite surface of said box member recess when said pin member is fully inserted in said box member.
4. A pile splice as recited in claim 3 in which the surfaces of said shear ring which engage said surfaces of said recesses are tapered.
5. A pile splice as recited in claim 4 including an O-ring seal arranged between said pin member and box member.
US776013A 1968-11-15 1968-11-15 Pile splice Expired - Lifetime US3585803A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77601368A 1968-11-15 1968-11-15

Publications (1)

Publication Number Publication Date
US3585803A true US3585803A (en) 1971-06-22

Family

ID=25106209

Family Applications (1)

Application Number Title Priority Date Filing Date
US776013A Expired - Lifetime US3585803A (en) 1968-11-15 1968-11-15 Pile splice

Country Status (1)

Country Link
US (1) US3585803A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850460A (en) * 1973-04-23 1974-11-26 C Cole High strength structural connector
US4063422A (en) * 1974-11-20 1977-12-20 Gaston Marier Connector structure
US4074912A (en) * 1976-09-20 1978-02-21 Vetco Offshore Industries, Inc. Releasable rigid pile connector apparatus
US4094539A (en) * 1976-08-09 1978-06-13 Vetco, Inc. Rigid connector and piling
US4209193A (en) * 1977-05-17 1980-06-24 Vetco, Inc. Rigid connector for large diameter pipe
DE2945554A1 (en) * 1979-11-10 1981-05-21 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen Concrete pile driven plugged tube section coupling - involves bolts filling recess pockets formed in plugged and overlapping sockets ends
FR2493888A1 (en) * 1980-11-12 1982-05-14 Varco Int CONNECTION FOR PUSH PIPES
EP0110808A2 (en) * 1982-12-06 1984-06-13 Varco International, Inc. Self-aligning rigid pile connections
EP0149207A2 (en) * 1984-01-19 1985-07-24 Fried. Krupp Gesellschaft mit beschränkter Haftung Tool assembly comprising a percussion bit and a drill pipe
US4593944A (en) * 1984-01-23 1986-06-10 Vetco Offshore, Inc. Pile driving connector
US4668119A (en) * 1984-06-29 1987-05-26 Innse Innocenti Santeustacchio S.P.A. Coupling for connecting metal tubes end-to-end, particularly in marine pilings
US4799714A (en) * 1986-04-28 1989-01-24 Collet James R Sleeve type casing head adapter
US4801222A (en) * 1986-08-08 1989-01-31 Dyckerhoff & Widmann Aktiengesellschaft Pressure-tight pipe connection for a driven pipeline
US5228806A (en) * 1990-05-25 1993-07-20 Petroleo Brasileiro S.A.-Petrobras Gravity pile for platform foundation and process for its installation
WO1998022690A1 (en) * 1996-11-22 1998-05-28 Shell Internationale Research Maatschappij B.V. Connector for an expandable tubing string
WO1999042699A2 (en) * 1998-02-18 1999-08-26 Camco International Inc. Well lock with multiple shear planes
US6164558A (en) * 1993-12-02 2000-12-26 Holt; Earl R. Recirculating paint system having an improved push to connect fluid coupling assembly
US6179223B1 (en) 1999-08-16 2001-01-30 Illinois Tool Works Spray nozzle fluid regulator and restrictor combination
US20030214134A1 (en) * 2002-04-24 2003-11-20 Erez Allouche Joining mechanism for PVC pipe
US6682107B2 (en) * 2001-04-05 2004-01-27 Abb Vetco Gray Inc. Preloaded squnch connector
US20100164223A1 (en) * 2008-12-29 2010-07-01 Diamond Offshore Drilling, Inc. Marine drilling riser connector with removable shear elements
US20100163250A1 (en) * 2008-12-31 2010-07-01 Schultz Roger L Well equipment for heated fluid recovery
US20110135401A1 (en) * 2009-06-03 2011-06-09 Keystone Engineering, Inc. Grouted pile splice and method of forming a grouted pile splice
US20130325367A1 (en) * 2011-02-25 2013-12-05 Florida Department Of Transportation Detection of static tip resistance of a pile
EP2711497A1 (en) * 2012-09-20 2014-03-26 SIR MECCANICA S.p.A. Modular shaft for machine tools
US20140119822A1 (en) * 2012-10-30 2014-05-01 Sir Meccanica S.P.A. Modular shaft for machine tools
EP2299049A3 (en) * 2009-08-28 2016-07-27 Tracto-Technik GmbH & Co.KG Coupling for drilling rods
US20180231165A1 (en) * 2017-02-14 2018-08-16 North American Pipe Corporation System, method and apparatus for ramped retainer for a pipe
US10563370B2 (en) * 2017-05-01 2020-02-18 Terra Sonic International, LLC Bolting adapter mechanism for sonic pile driving

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1097465A (en) * 1953-04-09 1955-07-06 Vickers Armstrongs Ltd Plug-in joint, especially for pipes
US2746775A (en) * 1951-10-02 1956-05-22 Machlett Lab Inc Mounting for articles
US3345085A (en) * 1965-02-08 1967-10-03 Huntsinger Associates Automatically alignable and connectible tool joint
US3345087A (en) * 1964-06-18 1967-10-03 Ventura Company Conduit connectors
US3398977A (en) * 1965-02-13 1968-08-27 Yoneda Rikizo Pipe coupling
US3455578A (en) * 1967-01-03 1969-07-15 Ventura Tool Co Fluid pressure releasable automatic tool joint
US3459442A (en) * 1967-11-29 1969-08-05 Shell Oil Co Subsea pipe coupling apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746775A (en) * 1951-10-02 1956-05-22 Machlett Lab Inc Mounting for articles
FR1097465A (en) * 1953-04-09 1955-07-06 Vickers Armstrongs Ltd Plug-in joint, especially for pipes
US3345087A (en) * 1964-06-18 1967-10-03 Ventura Company Conduit connectors
US3345085A (en) * 1965-02-08 1967-10-03 Huntsinger Associates Automatically alignable and connectible tool joint
US3398977A (en) * 1965-02-13 1968-08-27 Yoneda Rikizo Pipe coupling
US3455578A (en) * 1967-01-03 1969-07-15 Ventura Tool Co Fluid pressure releasable automatic tool joint
US3459442A (en) * 1967-11-29 1969-08-05 Shell Oil Co Subsea pipe coupling apparatus

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850460A (en) * 1973-04-23 1974-11-26 C Cole High strength structural connector
US4063422A (en) * 1974-11-20 1977-12-20 Gaston Marier Connector structure
US4094539A (en) * 1976-08-09 1978-06-13 Vetco, Inc. Rigid connector and piling
US4074912A (en) * 1976-09-20 1978-02-21 Vetco Offshore Industries, Inc. Releasable rigid pile connector apparatus
US4209193A (en) * 1977-05-17 1980-06-24 Vetco, Inc. Rigid connector for large diameter pipe
DE2945554A1 (en) * 1979-11-10 1981-05-21 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen Concrete pile driven plugged tube section coupling - involves bolts filling recess pockets formed in plugged and overlapping sockets ends
FR2493888A1 (en) * 1980-11-12 1982-05-14 Varco Int CONNECTION FOR PUSH PIPES
EP0110808A3 (en) * 1982-12-06 1984-10-17 Varco International, Inc. Self-aligning rigid pile connections
EP0110808A2 (en) * 1982-12-06 1984-06-13 Varco International, Inc. Self-aligning rigid pile connections
EP0149207A2 (en) * 1984-01-19 1985-07-24 Fried. Krupp Gesellschaft mit beschränkter Haftung Tool assembly comprising a percussion bit and a drill pipe
EP0149207A3 (en) * 1984-01-19 1987-10-07 Fried. Krupp Gesellschaft mit beschränkter Haftung Tool assembly comprising a percussion bit and a drill pipe
US4593944A (en) * 1984-01-23 1986-06-10 Vetco Offshore, Inc. Pile driving connector
US4668119A (en) * 1984-06-29 1987-05-26 Innse Innocenti Santeustacchio S.P.A. Coupling for connecting metal tubes end-to-end, particularly in marine pilings
US4799714A (en) * 1986-04-28 1989-01-24 Collet James R Sleeve type casing head adapter
US4801222A (en) * 1986-08-08 1989-01-31 Dyckerhoff & Widmann Aktiengesellschaft Pressure-tight pipe connection for a driven pipeline
US5228806A (en) * 1990-05-25 1993-07-20 Petroleo Brasileiro S.A.-Petrobras Gravity pile for platform foundation and process for its installation
US6164558A (en) * 1993-12-02 2000-12-26 Holt; Earl R. Recirculating paint system having an improved push to connect fluid coupling assembly
US6572029B1 (en) 1993-12-02 2003-06-03 Illinois Tool Works Inc. Recirculating paint system having an improved push to connect fluid coupling assembly
WO1998022690A1 (en) * 1996-11-22 1998-05-28 Shell Internationale Research Maatschappij B.V. Connector for an expandable tubing string
US6209653B1 (en) 1998-02-18 2001-04-03 Camco International Inc. Well lock with multiple shear planes and related methods
GB2351309A (en) * 1998-02-18 2000-12-27 Camco Int Well lock with multiple shear planes
WO1999042699A3 (en) * 1998-02-18 1999-10-21 Camco Int Well lock with multiple shear planes
GB2351309B (en) * 1998-02-18 2002-12-04 Camco Int A method of setting a well lock
WO1999042699A2 (en) * 1998-02-18 1999-08-26 Camco International Inc. Well lock with multiple shear planes
US6179223B1 (en) 1999-08-16 2001-01-30 Illinois Tool Works Spray nozzle fluid regulator and restrictor combination
US6682107B2 (en) * 2001-04-05 2004-01-27 Abb Vetco Gray Inc. Preloaded squnch connector
US20030214134A1 (en) * 2002-04-24 2003-11-20 Erez Allouche Joining mechanism for PVC pipe
US6918618B2 (en) * 2002-04-24 2005-07-19 Ipex Inc. Joining mechanism for PVC pipe
US9714547B2 (en) * 2008-12-29 2017-07-25 Diamond Offshore Drilling, Inc. Marine drilling riser connector with removable shear elements
US20100164223A1 (en) * 2008-12-29 2010-07-01 Diamond Offshore Drilling, Inc. Marine drilling riser connector with removable shear elements
US8485268B2 (en) 2008-12-31 2013-07-16 Halliburton Energy Services, Inc. Recovering heated fluid using well equipment
US8286701B2 (en) * 2008-12-31 2012-10-16 Halliburton Energy Services, Inc. Recovering heated fluid using well equipment
US20100163250A1 (en) * 2008-12-31 2010-07-01 Schultz Roger L Well equipment for heated fluid recovery
US8444349B2 (en) 2009-06-03 2013-05-21 Keystone Engineering Inc. Grouted pile splice and method of forming a grouted pile splice
US20110135401A1 (en) * 2009-06-03 2011-06-09 Keystone Engineering, Inc. Grouted pile splice and method of forming a grouted pile splice
EP2299049A3 (en) * 2009-08-28 2016-07-27 Tracto-Technik GmbH & Co.KG Coupling for drilling rods
US20130325367A1 (en) * 2011-02-25 2013-12-05 Florida Department Of Transportation Detection of static tip resistance of a pile
US9995643B2 (en) * 2011-02-25 2018-06-12 University Of Florida Research Foundation, Inc. Detection of static tip resistance of a pile
EP2711497A1 (en) * 2012-09-20 2014-03-26 SIR MECCANICA S.p.A. Modular shaft for machine tools
US20140119822A1 (en) * 2012-10-30 2014-05-01 Sir Meccanica S.P.A. Modular shaft for machine tools
US20180231165A1 (en) * 2017-02-14 2018-08-16 North American Pipe Corporation System, method and apparatus for ramped retainer for a pipe
US10746335B2 (en) * 2017-02-14 2020-08-18 North American Pipe Corporation System, method and apparatus for ramped retainer for a pipe
US11441714B2 (en) 2017-02-14 2022-09-13 North American Pipe Corporation System, method and apparatus for ramped retainer for a pipe
US10563370B2 (en) * 2017-05-01 2020-02-18 Terra Sonic International, LLC Bolting adapter mechanism for sonic pile driving

Similar Documents

Publication Publication Date Title
US3585803A (en) Pile splice
US4293148A (en) Pile connector
US5228806A (en) Gravity pile for platform foundation and process for its installation
JPS588892A (en) Connecting method and joint assembly
CA2513462A1 (en) Anchor installation system
GB2226063A (en) Production system for subsea oil wells
US4335752A (en) Flanged pipe
US4710061A (en) Offshore well apparatus and method
US2141107A (en) Splice for steel bearing piles
NO122586B (en)
KR102489555B1 (en) Connection structure of helical pile and extension pile and construction method using the same
KR20200001808A (en) Pile for mooring and installation method thereof
DE2833866A1 (en) Offshore riser joint - with swivelling forked levers and eye bolts on bell and spigot ends
US6039507A (en) Method and device for assembling cluster platforms
US10472791B1 (en) Removing submerged piles of offshore production platforms
CN218667528U (en) Structure for avoiding pile slipping risk of super-large-diameter single-pile foundation
EP1010815B1 (en) Splice for a drilled pile
Lee et al. Lessons learned from several suction caisson installation projects in clay
Forrest et al. Design guide for piledriven plate anchors
Ng et al. Malikai Project-Design of TLP foundation pile at geologically challenging area, offshore Malaysia
CN217399388U (en) Waterproof equipment bridge steel construction case roof beam
JPH05295725A (en) Joint of steel pipe pile
Lang Jr et al. Structural Design, Fabrication, And Installation Of Offshore Conductor Pipe
CA1073811A (en) Marine riser tool
Cao et al. Validation of the use of beam column method for suction caisson design