US3584244A - Oscillator circuit for an ultrasonic cleaner, utilizing a saturable core transformer - Google Patents

Oscillator circuit for an ultrasonic cleaner, utilizing a saturable core transformer Download PDF

Info

Publication number
US3584244A
US3584244A US831867A US3584244DA US3584244A US 3584244 A US3584244 A US 3584244A US 831867 A US831867 A US 831867A US 3584244D A US3584244D A US 3584244DA US 3584244 A US3584244 A US 3584244A
Authority
US
United States
Prior art keywords
transducer
impedance
oscillator
circuit
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US831867A
Inventor
Gary W Vest
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clevite Corp
Original Assignee
Clevite Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clevite Corp filed Critical Clevite Corp
Application granted granted Critical
Publication of US3584244A publication Critical patent/US3584244A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0253Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken directly from the generator circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/55Piezoelectric transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/71Cleaning in a tank

Definitions

  • a further object of the invention is to provide a circuit for ultrasonic cleaning apparatus in which excessive variations in power consumption do not occur with variations in water depth and there is no danger of excessive power input to an ultrasonic transducer and to an object being cleaned in case of low water depth.
  • the circuit may be employed in apparatus of the general type disclosed in the copending application of John P. Arndt and Edmond G. Franklin, Ser. No. 660,262 filed Aug. 14, I967 and assigned to the same assignee as the present invention.
  • a transducer drive circuit comprising a pair of transistors inseries energized by direct current which may be supplied by rectified, conventional alternating current lighting circuit.
  • An ultrasonic transducer of the piezoelectric type is employed which is connected in series with one of the transistors, across the other, so that by switching the transistors alternately on and off, power of suitable frequency is supplied to the ultrasonic transducer.
  • Switching is accomplished by means of a feedback transformer having a primary winding in series with the transducer and having a pair of secondary windings oppositely poled, each connected to the base of one of the transistors.
  • the transformer is provided with a saturable'core and the circuit constants are such as to drive the core into saturation which causes the circuit to operate in such a manner as to regulate the power.
  • FIG. 1 is a circuit diagram of a driving circuit for the trans' ducer employed in the cleaning apparatus
  • FIG. 2 is a view of a section of the apparatus cut by a vertical plane
  • FIG. 3 is a graph of input impedance plotted against frequency of voltage applied to a piezoelectric resonator
  • FIG. 4 is a plan view of the transducer and connections
  • FIG. 5 is an enlarged view of a portion of the graph of FIG. 3 near fundamental resonant frequency of the piezoelectric resonator
  • the circuit is employed with a receptacle or tank 11 such as shown in FIG. 2 composed of a suitable material such as stainless steel, e.g., for holding a liquid for subjecting material to be cleaned to the effect of ultrasonic vibration.
  • the tank is properly mounted to maintain the proper impedance characteristics.
  • a suitable transducer 18 For producing ultrasonic vibration of the tank 11 and the contained liquid 17 a suitable transducer 18 is provided.
  • a polarized dielectric ceramic composed of lead titanate and'lead zirconate with additives in proportions described in U.S. Pat. No. 2,906,710 issued to Kulcsar and Cmolik and manufactured in the manner described in said patent.
  • a disc may be employed comprising a solid solution of lead zirconate, lead titanate and additives.
  • An alkaline earth element such as calcium and strontium is substituted for l to 30 atom percent of the lead.
  • the mole ratio of lead and alkaline earth zirconate to lead and alkaline earth titanate in the solid solution is in the range from 63:65 to 45:44.
  • a still lower loss material may be employed, if desired, such as lead titanate, zirconium titanate with additives and substituents as described in the copending application of Don Berlincourt and Lawrence R. Sliker, Ser. No. 651,875 filed July 7, I967 and US. Pat. No. 3,068,177 issued to Sugden.
  • the transducer I8 may be in the form of a disc polarized transversely and driven at a frequency such that the drive frequency corresponds to the resonant vibration frequency of the disc in its radial mode. Accordingly, the tank 11 is formed with a suitable flat or plane surface to which the disc-shaped transducer 18 may be bonded.
  • piezoelectric transducers such as the disc 18 are customarily fabricated with silvered surfaces as shown in FIG. 4.
  • conducting strips 22 may be applied to the upper silvered surface 23, the cemented surface. Good results are obtained when the tank has rounded corners, particularly around the bottom edge of the tank and the junction between the sidewalls and the bottom which carries the transducer disc.
  • Increasing the diameter of the piezoelectric disc may make it possible also to transfer a greater amount of power to the oscillator disc.
  • the disc may, if desired, be made of a greater diameter than the bottom plane surface of the tank.
  • a suitable electrical circuit is utilized for applying voltage to the conductors 24 and 27 of the requisite frequency for maintaining ultrasonic vibration and means are provided for rendering the circuit substantially self-regulating with regard to power.
  • a switching circuit is utilized employing a pair of series connected transistors 31 and 32.
  • FIG. 1 A switching circuit for driving the piezoelectric transducer 18 is illustrated in FIG. 1. Utilizing a standard volt alternating current as source, 100 to volts of direct current may be made available in the circuit.
  • the alternating current supply is represented by a cap 35.
  • the transistors 31 and 32 are connected to the conductors 36 and 37 in series with a rectifier 38. Although the invention is not limited to the use of NPN transistors, in circuits shown by the way of illustration the transistors 31 and 32 are of the NPN type.
  • the transistor 31 has a collector 39, an emitter 41 and a base 42.
  • the transistor 32 has a collector 43, an emitter 44 and a base 45.
  • positive current bias may be provided for the bases. This is accomplished in the circuit illustrated by providing resistors 51 and 52 each connected by a conductor 49 to the rectifier 38 and connected to the bases 42 and 45 respectively.
  • a transformer 54 For driving the base 42 and 45 a transformer 54 is provided, having a primary winding 55 in series with the piezoelectric transducer 18 and a pair of secondary windings 56 and 57.
  • a saturable core transformer permits causing the circuit to have such an operating point that the power is substantially regulated to within permissible limits to avoid damage either to the piezoelectric transducer or the objects being cleaned while providing sufficient power to accomplish the requisite cleaning action in spite of variations in the depth of the fluid in the tank or the properties of the material being cleaned.
  • the transformer may be a current stepdown transformer.
  • the secondary winding 56 is connnected between the base 42 and the emitter circuit of the transistor 31, and the secondary winding 57 is connected between the base 45 and the emitter circuit of the transistor 32.
  • the polarities of the windings are such that the windings 56 and 57 are connected with opposite polarities to the transistor bases, and the upper ends of the windings 55 and 56 are of the same polarity.
  • the circuits of the secondary windings 56 and 57 include base resistors 58 and 59 respectively.
  • capacitors 61 and 62 are connected across the base resistors58 and 59 respectively.
  • the polarities of the secondary windings 56 and 57 are reversed on thetwo transistors 31 and 32; so that one is driven on while the other is driven off.
  • the apparatus is not limited to the use of water as a liquid in the cleaning tank 11, ordinarily water will be employed as the most economical liquid.
  • the piezoelectric disc 18 Since the piezoelectric disc 18 is closely coupled to the tank and the water load, the water depth in the tank effects the power transferred to the water and the resonant frequency of the transducer 18.
  • the transducer impedance varies irregularly with water depth and there may be a discontinuity in the characteristics curve, and there may be one or more low impedance points.
  • the circuit is given such properties as to limit power by suitable phase shift or change in power factor instead of continuous operation at the zero phase shift, minimum impedance point.
  • This is accomplished by use of the saturable core transformer with such a relationship between the input voltage and the primary turns as to cause the transformer to go into saturation during its operation.
  • a capacitor 86 is connected across the primary winding 55 and the capacitor 86 may also be shunted by a resistor 87.
  • the combination of the saturable core winding 55 and the capacitor 86 also overcomes the problem of a possibility of the circuit jumping from one resonant frequency of operation to another.
  • the transducer 18 being of the piezoelectric type, constitutes a frequency-sensitive impedance with one or more resonances in series with the primary transformer winding 55, but in order to obtain the desired power regulation the impedance of the resonant device 18 is preferably large in comparison with the impedance at the primary winding 55. It may, for example, be of the order of 15 to 30 times as great. In the example illustrated by FIG. 1, the normal ratio is 20.
  • Regulation is provided by variation in operating frequency as a result of the rate of saturation of the core of the transformer 54. This is adjusted by the relationship between the primary voltage and primary turns which determines the time required for a core to saturate.
  • the time corresponds approximately to a half-cycle of the series resonant circuit, that is the circuit of the piezoelectric transducer I8.
  • the time is made just a little shorter so as to cause the circuit to operate on the high frequency side of the curve of transducer impedance plotted against frequency. This eliminates the necessity for zero phase shift and makes it possible to operate on the slope of the resonant curve instead of at the minimum impedance point so as to avoid excessive power and burn-out of the equipment.
  • FIG. 3 is a graph of idealized characteristics of piezoelectric resonators which are applicable to the operation of an ultrasonic cleaner transducer.
  • the relative input impedance of a piezoelectric device is plotted in a vertical direction against relative frequency of applied voltage plotted in a horizontal direction.
  • the input impedance varies as a function of frequency and as explained by FIG. 3 will appear capacitive for very low frequency.
  • the magnitude of impedance decreases toward a minimum at the fundamental series resonant frequencyf, (as appears in FIG.
  • FIG. 3 indicates one distinct minimum impedance point to exist at the fundamental resonant frequency which, as just stated, is also a frequency of pure resistance. While FIG. 3 may be an approximate representation of a simple piezoelectric resonator, it will be found that certain types of ultrasonic transducers are likely to have not just one minimum impedance or zero phase shift frequency, but rather a number of such frequencies, both in the general vicinity of the expected resonance and scattered across the spectrum. It is also to be expected that as the loading on a transducer is varied (that is by changing water depth, number of objects in a tank, or type of object being cleaned), some of these resonant frequencies will disappear and new ones will be formed. Likewise, the impedance levels at the different frequencies will vary considerably with changes in loading.
  • an oscillator ultrasonic cleaner drive circuit utilizing a saturating core in accordance with the invention can synchronize to the resonant frequency of an ultrasonic transducer in such a manner as to overcome the previously discussed limitations of prior art ultrasonic generators.
  • the generator in accordance with the invention as indicated by the circuit of FIG. I, in effect is biased to operate in the vicinity ofa series resonant or minimum impedance frequency of the transducer, rather than for instance at anti resonance or elsewhere, because of the fact that load current feedback is used to drive the circuit.
  • Transistorized drive circuits are generally more efficient and less expensive at lower frequencies.
  • a fundamental factor which makes the generator possible is that operating frequency is controlled by the impedance level of the ultrasonic transducer in combination with the saturation time of a transformer core and does not require that zero phase shift exist around the feedback path.
  • the feedback transformer 54 of FIG. 1 is driven into saturation and saturating time required establishes a frequency at which the circuit operates. In this situation, zero phase shift need not exist around the feedback loop and the transducer impedance magnitude rather than the phase angle becomes the frequency determining factor.
  • the effect which saturation of the feedback transformer has in controlling frequency is to cause the transistors to switch.
  • the core ,of the feedback transformer should saturate in a time period of slightly less than what would be the normal half-cycle time period of the transducer itself. This in essence means that the preferred operating frequency of such a generator would be slightly higher than the actual resonant frequency of the transducer. This does not imply that a saturating core .ultrasonic generator must operate only on a frequency higher than the resonant frequency may be advantageous for reasons which will become more obvious hereinafter.
  • a number of parameters in the circuit may be varied among which would be magnetic characteristics of the transformer core, the number of primary turns, transformer turns ratio, the secondary impedance, the primary impedance, the series impedance of the transducer, and the circuit supply voltage level.
  • the basic consideration in determining the saturating time of the transformer core is the ratio of the applied voltage to the number of primary turns (The higher the voltage the sooner the core saturates.) Once designed, the primary turns remain fixed, but the magnitude of primary voltage becomes the function of the voltage divider action between the impedance presented at the transformer primary and the transducer impedance in series with it.
  • the primary impedance is fixed in value and is much the smaller of the two, the primary voltage is essentially a function of the transducer impedance (or transducer current), which, as already stated, is subject to considerable fluctuation with loading conditions, operating frequency, etc.
  • circuit parameter values are selected on the basis of curve B so as to allow the core to saturate in a time period of slightly less than one-half cycle of the transducer resonant frequency when the transducer impedance is, for example, ohms (a typical value).
  • the generator will automatically operate at a frequency in the vicinity of point number 2 on curve B and will not drift higher or lower owing to the slope of this characteristic curve. This is because any tendency for frequency to increase would cause the transducer impedance to increase, reducing the feedback transformer primary voltage and thus automatically cancel the tendency (that is, lower the frequency) by lengthening the core saturation time.
  • any increase in Z would result in the generator operating closer to resonance in order to maintain the same impedance (curve A).
  • the circuit parameter value should be selected on the basis of an expected range of variations in transducer impedance to obtain the most satisfactory regulating action.
  • the locus operating points is within the rectangle 91 instead of within the rectangle 92 as in a-Zero phase shift" oscillator.
  • the generator discriminates between two or more resonances in the vicinity of each other in the following manner: Because of the relationship between saturating time and impedance, the circuit will first show preference to operate at the resonant frequency with the lowest value of Z,. This in most cases is the only deciding factor required. When two resonant frequencies exist, not extremely close in value to each other, but each having the same value of 2,, the generator will generally operate at that frequency which is closest to the originally established saturating time of the transformer core. If two resonant frequencies do exist, it is not uncommon in devices not employing my invention for the generator operating frequency to jump back and fourth between the two in a manner such as to obtain inadequate power delivery.
  • circuit shows in operating in the vicinity of some initially selected frequency is also desirable in suppressing tendencies to run at overtone frequencies. In some circumstances, however, this effect might not be great enough to completely prevent operation at the overtone. For instance, if the series resonant impedance of the fundamental frequency is slightly greater than at the first overtone, the circuit preference for lower impedance could take precedence and result in operation at the overtone were the shunt capacitor 86 not employed.
  • the capacitor 86 Since the capacitor 86 is connected across the feedback transformer primary, its capacitive reactance lowers the impedance to overtone frequencies. This results in a lower primary voltage or, more directly, an increase in core saturation time. Thus, any tendencies to run an overtone are adequately suppressed, forcing the circuit to run at the fundamental.
  • FREQUENCY MODULATION EMBODIMENT lf frequency modulation of the transducer oscillation is desired, this may be accomplished by selecting a relatively small capacitance for the element 66, for example one microfarad.
  • An oscillator comprising in combination a resonant transducer, electric power supply terminals, switch means having an element in circuit with said power supply terminals and said transducer, such switch means having control means, a feedback transformer having a saturable core, a primary winding means in circuit with the transducer, and secondary winding means coupled to the control means.
  • the switch means comprises a pair of transistors in series with the power supply terminals, the transistors having bases constituting control means therefore and the secondaryl winding means comprise a pan of secondary windings eac connected to one of said bases but with opposite polarity relationship.
  • An oscillator as described in claim 1 provided with means for shifting phase to regulate power.
  • An oscillator as described in claim 2 provided with means for regulating the power limit.

Abstract

A piezoelectric transducer for an ultrasonic cleaner is driven by a switching circuit having transistors connected in series. The transducer is connected in series with one transistor and the primary winding of a saturable core transformer providing feedback to the bases of the transistors.

Description

United States Patent H 13,ss4,244
Inventor Gary W. Vest Cleveland, Ohio 831,867
June 10, 1969 June 8, 1971 Clevite Corporation Appl. No. Filed Patented Assignee OSCILLATOR CIRCUIT FOR AN ULTRASONIC CLEANER, UTILIZING A SATURABLE CORE TRANSFORMER 10 Claims, 5 Drawing Figs.
U.S.Cl 3l0/8.1, 331/116, 331/158 Int. Cl H0lv 7/00 Field of Search 310/8.l;
References Cited UNITED STATES PATENTS 1/1967 Van Der Burgtetal... 3l0/8.1X 5/1967 Branson 259/1 3/1969 Shoh BIO/8.1 3/1969 Fukuyo et al. 331/116X 4/1969 Shoh 310/8.1 X 12/1969 Krenke 310/8 1 Primary Examiner-Wilton O. Hirshfield Assistant Examiner-Mark O. Budd Attorney-Frederic B. Schramm ABSTRACT: A piezoelectric transducer for an ultrasonic cleaner is driven by a switching circuit having transistors connected in series. The transducer is connected in series with one transistor and the primary winding of a saturable core transformer providing feedback to the bases of the transistors.
llllIllllllllllllllfllllllllllll k l q PATENTED JUN 8L9?! 159 244 SHEETIUFS Fig I mvEN'rOR GARY W. VEST fini ATTORNEY PATENTEU JUN 8 Ian sum 2 or 3 F6 mum RWUE J M 3 M\ 9 mm M We w vmm w n v m W y w w E M s F M K m C m vi m a a a LL/Jvdw (a/vwvaa) ear x20 a/ana7soza/a a0 QDNVOQc/W/ inc/NI INVENTOR GARY W. V657 PATENIEU JUN 8 ml SHEET 3 OF 3 FEEGUENCY f,
Fig. 5
muzwmmqvs Guam INVENTOR. GARY W. V55 T ATTOEHE v.
OSCILLATOR CIRCUIT FOR AN ULTRASONIC CLEANER, UTILIZING A SATURABLE CORE TRANSFORMER INTRODUCTORY DESCRIPTION It is an object of the invention to provide a drive circuit for an ultrasonic cleaner which is substantially self-regulating as to power consumption.
A further object of the invention is to provide a circuit for ultrasonic cleaning apparatus in which excessive variations in power consumption do not occur with variations in water depth and there is no danger of excessive power input to an ultrasonic transducer and to an object being cleaned in case of low water depth.
Other and further objects, features and advantages of the invention will. become apparent as the description proceeds.
The circuit may be employed in apparatus of the general type disclosed in the copending application of John P. Arndt and Edmond G. Franklin, Ser. No. 660,262 filed Aug. 14, I967 and assigned to the same assignee as the present invention.
In carrying out the invention in accordance with a preferred form thereof, a transducer drive circuit is employed comprising a pair of transistors inseries energized by direct current which may be supplied by rectified, conventional alternating current lighting circuit. An ultrasonic transducer of the piezoelectric type is employed which is connected in series with one of the transistors, across the other, so that by switching the transistors alternately on and off, power of suitable frequency is supplied to the ultrasonic transducer. Switching is accomplished by means of a feedback transformer having a primary winding in series with the transducer and having a pair of secondary windings oppositely poled, each connected to the base of one of the transistors. The transformer is provided with a saturable'core and the circuit constants are such as to drive the core into saturation which causes the circuit to operate in such a manner as to regulate the power.
A better understanding of the invention will be afforded by the following detailed description considered in conjunction with the accompanying drawings in which:
DRAWINGS FIG. 1 is a circuit diagram of a driving circuit for the trans' ducer employed in the cleaning apparatus,
FIG. 2 is a view of a section of the apparatus cut by a vertical plane,
FIG. 3 is a graph of input impedance plotted against frequency of voltage applied to a piezoelectric resonator,
FIG. 4 is a plan view of the transducer and connections, and
FIG. 5 is an enlarged view of a portion of the graph of FIG. 3 near fundamental resonant frequency of the piezoelectric resonator, and
Like reference characters are utilized throughout the drawing to designate like parts.
MECHANICAL CONSTRUCTION In the embodiment of the invention illustrated, the circuit is employed with a receptacle or tank 11 such as shown in FIG. 2 composed of a suitable material such as stainless steel, e.g., for holding a liquid for subjecting material to be cleaned to the effect of ultrasonic vibration. The tank is properly mounted to maintain the proper impedance characteristics.
For producing ultrasonic vibration of the tank 11 and the contained liquid 17 a suitable transducer 18 is provided. Although the invention is not limited to the use of a particular composition, it has been found that satisfactory results are accomplished by employing a polarized dielectric ceramic composed of lead titanate and'lead zirconate with additives in proportions described in U.S. Pat. No. 2,906,710 issued to Kulcsar and Cmolik and manufactured in the manner described in said patent. For example, a disc may be employed comprising a solid solution of lead zirconate, lead titanate and additives. An alkaline earth element such as calcium and strontium is substituted for l to 30 atom percent of the lead. The mole ratio of lead and alkaline earth zirconate to lead and alkaline earth titanate in the solid solution is in the range from 63:65 to 45:44. A still lower loss material may be employed, if desired, such as lead titanate, zirconium titanate with additives and substituents as described in the copending application of Don Berlincourt and Lawrence R. Sliker, Ser. No. 651,875 filed July 7, I967 and US. Pat. No. 3,068,177 issued to Sugden.
The transducer I8 may be in the form of a disc polarized transversely and driven at a frequency such that the drive frequency corresponds to the resonant vibration frequency of the disc in its radial mode. Accordingly, the tank 11 is formed with a suitable flat or plane surface to which the disc-shaped transducer 18 may be bonded.
It will be understood that piezoelectric transducers such as the disc 18 are customarily fabricated with silvered surfaces as shown in FIG. 4. v
For making electrical connections to the surfaces of the piezoelectric transducer 18, conducting strips 22 may be applied to the upper silvered surface 23, the cemented surface. Good results are obtained when the tank has rounded corners, particularly around the bottom edge of the tank and the junction between the sidewalls and the bottom which carries the transducer disc.
Although I am not able to explain the exact theory involving this feature, I believe that when the corners are rounded, more ultrasonic energy is transmitted up the sides of the tank into the liquid, thereby improving the distribution of energy throughout the tank. Furthermore, I believe the geometry of this tank has an effect upon the electrical impedance characteristics as seen across the transducer terminals.
Better cleaning is ordinarily obtained with relatively low vibration frequencies, preferably relatively close to the audible limit of frequency. Such low frequency has heretofore been difficult to obtain by the operation of the transducer disc in the thickness mode. Such low frequencies would ordinarily require a very thick resonant oscillator disc or the attachment of a mass to lower the frequency. A thin disc with a large diameter when operated in the radial mode of vibration makes it possible to get along with very little piezoelectric material because the diameter of the disc controls the frequency.
Increasing the diameter of the piezoelectric disc may make it possible also to transfer a greater amount of power to the oscillator disc.
In order to enable the utilization of a larger diameter disc, the disc may, if desired, be made of a greater diameter than the bottom plane surface of the tank.
ELECTRICAL DRIVE CIRCUIT A suitable electrical circuit is utilized for applying voltage to the conductors 24 and 27 of the requisite frequency for maintaining ultrasonic vibration and means are provided for rendering the circuit substantially self-regulating with regard to power. Preferably a switching circuit is utilized employing a pair of series connected transistors 31 and 32.
A switching circuit for driving the piezoelectric transducer 18 is illustrated in FIG. 1. Utilizing a standard volt alternating current as source, 100 to volts of direct current may be made available in the circuit. The alternating current supply is represented by a cap 35. The transistors 31 and 32 are connected to the conductors 36 and 37 in series with a rectifier 38. Although the invention is not limited to the use of NPN transistors, in circuits shown by the way of illustration the transistors 31 and 32 are of the NPN type. The transistor 31 has a collector 39, an emitter 41 and a base 42. Similarly, the transistor 32 has a collector 43, an emitter 44 and a base 45.
For starting the switch circuit, positive current bias may be provided for the bases. This is accomplished in the circuit illustrated by providing resistors 51 and 52 each connected by a conductor 49 to the rectifier 38 and connected to the bases 42 and 45 respectively.
For driving the base 42 and 45 a transformer 54 is provided, having a primary winding 55 in series with the piezoelectric transducer 18 and a pair of secondary windings 56 and 57. As will be explained more fully hereinafter the use of a saturable core transformer permits causing the circuit to have such an operating point that the power is substantially regulated to within permissible limits to avoid damage either to the piezoelectric transducer or the objects being cleaned while providing sufficient power to accomplish the requisite cleaning action in spite of variations in the depth of the fluid in the tank or the properties of the material being cleaned. As indicated in the drawing the transformer may be a current stepdown transformer. The secondary winding 56 is connnected between the base 42 and the emitter circuit of the transistor 31, and the secondary winding 57 is connected between the base 45 and the emitter circuit of the transistor 32. As indicated by the conventional dot representation in the drawing, the polarities of the windings are such that the windings 56 and 57 are connected with opposite polarities to the transistor bases, and the upper ends of the windings 55 and 56 are of the same polarity.
The circuits of the secondary windings 56 and 57 include base resistors 58 and 59 respectively. For improving the wave form of the switching circuit, capacitors 61 and 62 are connected across the base resistors58 and 59 respectively. The polarities of the secondary windings 56 and 57 are reversed on thetwo transistors 31 and 32; so that one is driven on while the other is driven off.
Although the apparatus is not limited to the use of water as a liquid in the cleaning tank 11, ordinarily water will be employed as the most economical liquid.
Since the piezoelectric disc 18 is closely coupled to the tank and the water load, the water depth in the tank effects the power transferred to the water and the resonant frequency of the transducer 18. The transducer impedance varies irregularly with water depth and there may be a discontinuity in the characteristics curve, and there may be one or more low impedance points.
In order to avoid excessive power at low impedance points the circuit is given such properties as to limit power by suitable phase shift or change in power factor instead of continuous operation at the zero phase shift, minimum impedance point. This is accomplished by use of the saturable core transformer with such a relationship between the input voltage and the primary turns as to cause the transformer to go into saturation during its operation. Moreover, a capacitor 86 is connected across the primary winding 55 and the capacitor 86 may also be shunted by a resistor 87. The combination of the saturable core winding 55 and the capacitor 86 also overcomes the problem of a possibility of the circuit jumping from one resonant frequency of operation to another.
The transducer 18, being of the piezoelectric type, constitutes a frequency-sensitive impedance with one or more resonances in series with the primary transformer winding 55, but in order to obtain the desired power regulation the impedance of the resonant device 18 is preferably large in comparison with the impedance at the primary winding 55. It may, for example, be of the order of 15 to 30 times as great. In the example illustrated by FIG. 1, the normal ratio is 20.
Regulation is provided by variation in operating frequency as a result of the rate of saturation of the core of the transformer 54. This is adjusted by the relationship between the primary voltage and primary turns which determines the time required for a core to saturate.
An initial relationship is established between the current flow in the primary winding and the time required to saturate. Then the circuit maintains that relationship. The time corresponds approximately to a half-cycle of the series resonant circuit, that is the circuit of the piezoelectric transducer I8. Preferably the time is made just a little shorter so as to cause the circuit to operate on the high frequency side of the curve of transducer impedance plotted against frequency. This eliminates the necessity for zero phase shift and makes it possible to operate on the slope of the resonant curve instead of at the minimum impedance point so as to avoid excessive power and burn-out of the equipment.
MODE OF OPERATING The principle of operation of the circuit will be better understood from a consideration of the graphs shown in FIGS. 3 and 5. FIG. 3 is a graph of idealized characteristics of piezoelectric resonators which are applicable to the operation of an ultrasonic cleaner transducer. In FIG. 3 the relative input impedance of a piezoelectric device is plotted in a vertical direction against relative frequency of applied voltage plotted in a horizontal direction. In any piezoelectric material, it will be found that the input impedance varies as a function of frequency and as explained by FIG. 3 will appear capacitive for very low frequency. As frequency increases, the magnitude of impedance decreases toward a minimum at the fundamental series resonant frequencyf, (as appears in FIG. 3), where it becomes purely resistive in nature. A further increase in frequency results in an increase in impedance but now inductive, which continues to increase until it reaches a maximum at the antiresonant frequency where it again is pure resistance. It will thus be found that with continual increases in frequency, electrical characteristics will undergo similar changes in impedance phase angle and magnitude in passing through various overtones and other characteristic resonances associated with the given piezoelectric device.
In the case of an ultrasonic generator, one is concerned with the behavior of a piezoelectric transducer at the fundamental and perhaps the lower order overtone frequencies.
FIG. 3 indicates one distinct minimum impedance point to exist at the fundamental resonant frequency which, as just stated, is also a frequency of pure resistance. While FIG. 3 may be an approximate representation of a simple piezoelectric resonator, it will be found that certain types of ultrasonic transducers are likely to have not just one minimum impedance or zero phase shift frequency, but rather a number of such frequencies, both in the general vicinity of the expected resonance and scattered across the spectrum. It is also to be expected that as the loading on a transducer is varied (that is by changing water depth, number of objects in a tank, or type of object being cleaned), some of these resonant frequencies will disappear and new ones will be formed. Likewise, the impedance levels at the different frequencies will vary considerably with changes in loading.
On all ultrasonic cleaning systems, some means must be employed to control the frequency at which the generator drives the transducer. If the generator is made to operate at a fixed frequency, poor performance will be encountered, since it is generally not possible to select one frequency which will always provide optimum operating conditions.
If a means is employed to enable the circuit to sense a zero phase shift or minimum impedance point (resonance), and thus force operation at that frequency, some improvement will result but again the situation is not optimum since there may be a problem in controlling at which resonance mode the circuit operates, as well as which particular resonant frequency within the mode. If this problem is somehow overcome, an additional problem to be encountered is that operation exactly at resonance is in itself not an optimum situation since output power will vary considerably with transducer impedance changes under varying loading conditions. In order to illustrate this effect, the circled portion of the curve of FIG. 3 has been enlarged and shown in FIG. 5.
As a hypothetical example, three variations of the curve in the vicinity of f, have been sketched in FIG. 5 to indicate possible values Z, might assume under different loading conditions. If an ultrasonic generator were used to drive the transducer exactly at f, with a fixed operating voltage of say 70 Vrms across the transducer, it would be found that under conditions defined by curve A, approximately 40 watts of power would be delivered to the transducer. Under the conditions indicated by curve C, however, 240 watts would be delivered. Such extreme variations in resonant impedance are realistic and constitute a serious problem in design of an ultrasonic cleaner. In some cases, damagingly high power levels may be applied to the object being cleaned, while in other situations the power might not even be adequate. In addition, power ratings for components in the ultrasonic generator must be selected on the basis of the worst case conditions," which is likely to increase the cost and size of the generator beyond that required for more normally encountered conditions.
However, an oscillator ultrasonic cleaner drive circuit utilizing a saturating core in accordance with the invention can synchronize to the resonant frequency of an ultrasonic transducer in such a manner as to overcome the previously discussed limitations of prior art ultrasonic generators.
The generator in accordance with the invention as indicated by the circuit of FIG. I, in effect is biased to operate in the vicinity ofa series resonant or minimum impedance frequency of the transducer, rather than for instance at anti resonance or elsewhere, because of the fact that load current feedback is used to drive the circuit.
In addition to the current feedback, other means are employed to' provide the generator with unique characteristics not existent in prior art ultrasonic generators. One of the most significant is the ability of the generator to shift its operating frequency automatically closer to or further from the resonant frequency of the transducer and thereby compensate for load impedance variations. The generator is also capable of dis criminating between various resonant frequencies in near vicinity of each other and will operate at the one providing optimum power delivery. In addition, it is capable of discrimination between the fundamental" resonance and.overtone resonances and thereby can be made to operate at a preferred resonance mode (which in most cases will be the fundamental for the following reasons).
l. Cavitation, the cleaning mechanism in ultrasonic'generators, can be produced at lower power levels.
2. Cleaning effectiveness is generally better because of larger size cavitation implosions 3. Transducer efficiency is higher.
4. Transistorized drive circuits are generally more efficient and less expensive at lower frequencies.
A fundamental factor which makes the generator possible is that operating frequency is controlled by the impedance level of the ultrasonic transducer in combination with the saturation time of a transformer core and does not require that zero phase shift exist around the feedback path.
For the sake of illustration, one may consider how a circuit similar to that of FIG. 1 would operate if the feedback transformer were not permitted to saturate and if current feedback were the only frequency determining mechanism employed. If one assumes that no phase shift is introduced within the feedback loop itself, the circuit will drive the transducer exactly at resonance. If, however, there were some phase shift present, operation would be fixed above or below resonance by an amount necessary to offset this phase shift. Hence, it can be shown that while the correct use of feedback would establish operation at a minimum impedance frequency, a necessary requirement for operation (and also a frequency determining mechanism) in'this illustration is that zero phase shift must be made to exist around the feedback loop.
In the actual situation, the feedback transformer 54 of FIG. 1 is driven into saturation and saturating time required establishes a frequency at which the circuit operates. In this situation, zero phase shift need not exist around the feedback loop and the transducer impedance magnitude rather than the phase angle becomes the frequency determining factor.
The effect which saturation of the feedback transformer has in controlling frequency is to cause the transistors to switch.
state immediately after the core saturates. The reason for this is that saturation reduces coupling between the primary and secondary windings of the transformer, resulting in negligible base drive to the transistors. The initially conducting transistor thus turns off, also stopping transducer current. A reverse polarity secondary voltage is then generated from the collapsing magnetic field within the feedback transformer, causing the previously off" transistor to begin conducting, and at the same time further forcing the other transistor to an off" condition.
It is believed that to use this type of system most advantageously, the core ,of the feedback transformer should saturate in a time period of slightly less than what would be the normal half-cycle time period of the transducer itself. This in essence means that the preferred operating frequency of such a generator would be slightly higher than the actual resonant frequency of the transducer. This does not imply that a saturating core .ultrasonic generator must operate only on a frequency higher than the resonant frequency may be advantageous for reasons which will become more obvious hereinafter.
In order to obtain the proper saturation time as well as other necessary operative conditions, a number of parameters in the circuit may be varied among which would be magnetic characteristics of the transformer core, the number of primary turns, transformer turns ratio, the secondary impedance, the primary impedance, the series impedance of the transducer, and the circuit supply voltage level. The basic consideration in determining the saturating time of the transformer core is the ratio of the applied voltage to the number of primary turns (The higher the voltage the sooner the core saturates.) Once designed, the primary turns remain fixed, but the magnitude of primary voltage becomes the function of the voltage divider action between the impedance presented at the transformer primary and the transducer impedance in series with it. Since the primary impedance is fixed in value and is much the smaller of the two, the primary voltage is essentially a function of the transducer impedance (or transducer current), which, as already stated, is subject to considerable fluctuation with loading conditions, operating frequency, etc.
However, if the circuit parameters previously mentioned have been properly chosen, when the generator is used to drive a transducer with irregular characteristics an equilibrium situation will be established whereby the generator operating frequency automatically adjusts itself to maintain a near constant transducer current, (or impedance) for varying conditions of operation such as power supply voltage changes, different loading situations, and shifts in the transducer resonant frequency. Since for line operation the power supply voltage remains relatively stable, this regulating effect to maintain a constant current will automatically result in power regulation as well.
The dynamic operation of the regulating effect can be illustrated as follows. By referring to FIG. 5, suppose that circuit parameter values are selected on the basis of curve B so as to allow the core to saturate in a time period of slightly less than one-half cycle of the transducer resonant frequency when the transducer impedance is, for example, ohms (a typical value). With these conditions established, the generator will automatically operate at a frequency in the vicinity of point number 2 on curve B and will not drift higher or lower owing to the slope of this characteristic curve. This is because any tendency for frequency to increase would cause the transducer impedance to increase, reducing the feedback transformer primary voltage and thus automatically cancel the tendency (that is, lower the frequency) by lengthening the core saturation time. The same reasoning applies to tendencies for the frequencies to drift lower.
Next may be considered the effect of a change in resonant impedance of the transducer. If Z were to decrease or if the first transducer were replaced by one having a lower Z, (that is curve C), the lower impedance would cause the core to saturate sooner, thus forcing operation further off resonance, but still at approximately the same 125 ohm impedance level.
Likewise, any increase in Z, would result in the generator operating closer to resonance in order to maintain the same impedance (curve A). Thus the circuit parameter value should be selected on the basis of an expected range of variations in transducer impedance to obtain the most satisfactory regulating action. The locus operating points is within the rectangle 91 instead of within the rectangle 92 as in a-Zero phase shift" oscillator.
The generator discriminates between two or more resonances in the vicinity of each other in the following manner: Because of the relationship between saturating time and impedance, the circuit will first show preference to operate at the resonant frequency with the lowest value of Z,. This in most cases is the only deciding factor required. When two resonant frequencies exist, not extremely close in value to each other, but each having the same value of 2,, the generator will generally operate at that frequency which is closest to the originally established saturating time of the transformer core. If two resonant frequencies do exist, it is not uncommon in devices not employing my invention for the generator operating frequency to jump back and fourth between the two in a manner such as to obtain inadequate power delivery.
However, where more than one resonance exists, my circuit will tend to operate closest to one in which it can most easily deliver the required amount of power-a situation which is highly desirable in an ultrasonic cleaner.
The preference the circuit shows in operating in the vicinity of some initially selected frequency is also desirable in suppressing tendencies to run at overtone frequencies. In some circumstances, however, this effect might not be great enough to completely prevent operation at the overtone. For instance, if the series resonant impedance of the fundamental frequency is slightly greater than at the first overtone, the circuit preference for lower impedance could take precedence and result in operation at the overtone were the shunt capacitor 86 not employed.
Since the capacitor 86 is connected across the feedback transformer primary, its capacitive reactance lowers the impedance to overtone frequencies. This results in a lower primary voltage or, more directly, an increase in core saturation time. Thus, any tendencies to run an overtone are adequately suppressed, forcing the circuit to run at the fundamental.
In the example given, it is desirable to operate at the fundamental frequency. Nevertheless, if operation at an overtone is desired, this may be accomplished by suitable selection of circuit elements and constants, and the principles of the invention may be employed to enhance operation at the preferred overtone.
FREQUENCY MODULATION EMBODIMENT lf frequency modulation of the transducer oscillation is desired, this may be accomplished by selecting a relatively small capacitance for the element 66, for example one microfarad.
In accordance with the provisions of the patent statutes the principle of operation of the invention has been described together with the apparatus now believed to represent the best embodiment thereof, but it is to be understood that the apparatus shown and described is only illustrative and that the invention may be carried out by other arrangements.
What I claim is:
1. An oscillator comprising in combination a resonant transducer, electric power supply terminals, switch means having an element in circuit with said power supply terminals and said transducer, such switch means having control means, a feedback transformer having a saturable core, a primary winding means in circuit with the transducer, and secondary winding means coupled to the control means.
2. An oscillator as described in claim 1, in which the switch means comprises a pair of transistors in series with the power supply terminals, the transistors having bases constituting control means therefore and the secondaryl winding means comprise a pan of secondary windings eac connected to one of said bases but with opposite polarity relationship.
3. An oscillator as described in claim 1 provided with means for shifting phase to regulate power.
4. An oscillator as described in claim 2 provided with means for regulating the power limit.
5. An oscillator as described in claim 3 wherein means are provided for shifting the frequency of operation to regulate impedance.
6. An oscillator as described in claim 5, wherein voltage is applied to the power supply terminals, and the relationship between voltage at the power supply terminals and the number of primary windings turns is chosen to give a rate of saturation of the saturable core transformer such that saturation time is of the order of magnitude of the duration of a cycle of the transducer resonant frequency.
7. An oscillator as described in claim 5 wherein at normal operation the circuit constants are adjusted to cause the time required to saturate the core of the transformer to correspond approximately to a half-cycle of the series resonant circuit of the transducer.
8. An oscillator as described in claim 7 wherein the time required to saturate the core of the transformer is slightly shorter than one-half cycle of the series resonant circuit so as to cause the circuit to operate on the high frequency side of the curve of transducer impedance plotted against frequency.
9. An oscillator as described in claim 1 wherein the impedance of the transducer is large in comparison with the impedance appearing across the primary winding of the saturable core transformer.
10. An oscillator as described in claim 9 wherein the ratio of impedance of the transducer to the impedance at the primary winding of the saturable core transformer is of the order of between 15 and 30 to l.
UNITED STA'IES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. gjglyzll Dated June 8, 1971 Inventor'(s) Ga]:E M Vast It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, line 6, "63:65" should be changed to read 63:35
same column, line 7, "45:44" should read 45:55
same column, line 69, after "in insert the Column 3, line 4, change "base" to read bases Column 6, line 18, after "resonant frequency" insert of the transducer, but that a slightly higher frequency Column 7, line 6, after "locus" insert of same column,
line 21, correct the spelling of "fourth" to read forth Claim 4, line 2 (in column 8) change "limit" to input Signed and sealed this 16th day of November 1971.
(SEAL) Attest:
EDWARD M.F'LETCHER,JR. ROBERT GOTTSCHALK Attesting Officer Acting Commissioner of Patents Column 4, line 19, change "capacitive" to read capacitative FORM 0-1050 \D-69 USCOMM-DC coma-poo I ll 5 GOVI'NIIN' FIIINV'Nu Olin l \l l" JiU'JJl

Claims (10)

1. An oscillator comprising in combination a resonant transducer, electric power supply terminals, switch means having an element in circuit with said power supply terminals and said transducer, such switch means having control means, a feedback transformer having a saturable core, a primary winding means in circuit with the transducer, and secondary winding means coupled to the control means.
2. An oscillator as described in claim 1, in which the switch means comprises a pair of transistors in series with the power supply terminals, the transistors having bases constituting control means therefore and the secondary winding means comprise a pair of secondary windings each connected to one of said bases but with opposite polarity relationship.
3. An oscillator as described in claim 1 provided with means for shifting phase to regulate power.
4. An oscillator as described in claim 2 provided with means for regulating the power limit.
5. An oscillator as described in claim 3 wherein means are provided for shifting the frequency of operation to regulate impedance.
6. An oscillator as described in claim 5, wherein voltage is applied to the power supply terminals, and the relationship between voltage at the power supply terminals and the number of primary windings turns is chosen to give a rate of saturation of the saturable core transformer such that saturation time is of the order of magnitude of the duration of a cycle of the transducer resonant frequency.
7. An oscillator as described in claim 5 wherein at normal operation the circuit constants are adjusted to cause the time required to saturate the core of the transformer to correspond approximately to a half-cycle of the series resonant circuit of the transducer.
8. An oscillator as described in claim 7 wherein the time required to saturate the core of the transformer is slightly shorter than one-half cycle of the series resonant circuit so as to cause the circuit to operate on the high frequency side of the curve of transducer impedance plotted against frequency.
9. An oscillator as described in claim 1 wherein the impedance of the transducer is large in comparison with the impedance appearing across the primary winding of the saturable core transformer.
10. An oscillator as described in claim 9 wherein the ratio of impedance of the transducer to the impedance at the primary winding of the saturable core transformer is of the order of between 15 and 30 to 1.
US831867A 1969-06-10 1969-06-10 Oscillator circuit for an ultrasonic cleaner, utilizing a saturable core transformer Expired - Lifetime US3584244A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83186769A 1969-06-10 1969-06-10

Publications (1)

Publication Number Publication Date
US3584244A true US3584244A (en) 1971-06-08

Family

ID=25260048

Family Applications (1)

Application Number Title Priority Date Filing Date
US831867A Expired - Lifetime US3584244A (en) 1969-06-10 1969-06-10 Oscillator circuit for an ultrasonic cleaner, utilizing a saturable core transformer

Country Status (1)

Country Link
US (1) US3584244A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980906A (en) * 1972-12-26 1976-09-14 Xygiene, Inc. Ultrasonic motor-converter systems
US4114194A (en) * 1976-04-22 1978-09-12 Clairol, Inc. Ultrasonic cleaner
US4469974A (en) * 1982-06-14 1984-09-04 Eaton Corporation Low power acoustic fuel injector drive circuit
EP0135907A2 (en) * 1983-09-28 1985-04-03 Siemens Aktiengesellschaft Circuitry for exciting a piezoelectric oscillator in an ultrasound therapy device
US20100060231A1 (en) * 2006-01-05 2010-03-11 Tpl, Inc. Method and Apparatus for Energy Harvesting and/or Generation, Storage, and Delivery
US20100315046A1 (en) * 2006-01-05 2010-12-16 Tpl, Inc. System for energy harvesting and/or generation, storage, and delivery
US8513854B1 (en) * 2012-03-29 2013-08-20 General Electric Company Piezoelectric driver
USD808091S1 (en) * 2016-08-19 2018-01-16 Newbee New Energy Technology Co., Ltd. Ultrasonic cleaner
USD825119S1 (en) * 2016-09-28 2018-08-07 Todd C. Wells Vibrating cleaner
USD850030S1 (en) * 2018-01-31 2019-05-28 Guangdong Gt Ultrasonic Co., Ltd. Ultrasonic cleaner
US20210328564A1 (en) * 2020-04-16 2021-10-21 Butterfly Network, Inc. Methods and circuitry for built-in self-testing of circuitry and/or transducers in ultrasound devices
USD942096S1 (en) * 2018-06-06 2022-01-25 Lead Young Technology Co., Ltd. Multifunctional underwear sterilizer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3296511A (en) * 1962-09-12 1967-01-03 Philips Corp Arrangement for the reproduction of ultrasonic oscillations
US3318578A (en) * 1965-03-22 1967-05-09 Branson Instr Cleaning apparatus
US3432691A (en) * 1966-09-15 1969-03-11 Branson Instr Oscillatory circuit for electro-acoustic converter
US3435368A (en) * 1965-03-06 1969-03-25 Hattori Tokeiten Kk Low frequency piezoelectric crystal oscillator having a single driving circuit
US3441875A (en) * 1967-08-15 1969-04-29 Branson Instr Electrical switching circuit using series connected transistors
US3487237A (en) * 1967-07-07 1969-12-30 Branson Instr Electrical generator for energizing a source of ultrasonic energy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3296511A (en) * 1962-09-12 1967-01-03 Philips Corp Arrangement for the reproduction of ultrasonic oscillations
US3435368A (en) * 1965-03-06 1969-03-25 Hattori Tokeiten Kk Low frequency piezoelectric crystal oscillator having a single driving circuit
US3318578A (en) * 1965-03-22 1967-05-09 Branson Instr Cleaning apparatus
US3432691A (en) * 1966-09-15 1969-03-11 Branson Instr Oscillatory circuit for electro-acoustic converter
US3487237A (en) * 1967-07-07 1969-12-30 Branson Instr Electrical generator for energizing a source of ultrasonic energy
US3441875A (en) * 1967-08-15 1969-04-29 Branson Instr Electrical switching circuit using series connected transistors

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980906A (en) * 1972-12-26 1976-09-14 Xygiene, Inc. Ultrasonic motor-converter systems
US4114194A (en) * 1976-04-22 1978-09-12 Clairol, Inc. Ultrasonic cleaner
US4469974A (en) * 1982-06-14 1984-09-04 Eaton Corporation Low power acoustic fuel injector drive circuit
EP0135907A2 (en) * 1983-09-28 1985-04-03 Siemens Aktiengesellschaft Circuitry for exciting a piezoelectric oscillator in an ultrasound therapy device
EP0135907A3 (en) * 1983-09-28 1985-06-05 Siemens Aktiengesellschaft
US20100315046A1 (en) * 2006-01-05 2010-12-16 Tpl, Inc. System for energy harvesting and/or generation, storage, and delivery
US20100060231A1 (en) * 2006-01-05 2010-03-11 Tpl, Inc. Method and Apparatus for Energy Harvesting and/or Generation, Storage, and Delivery
US7982439B2 (en) 2006-01-05 2011-07-19 Tpl, Inc. System for energy harvesting and/or generation, storage, and delivery
US8513854B1 (en) * 2012-03-29 2013-08-20 General Electric Company Piezoelectric driver
USD808091S1 (en) * 2016-08-19 2018-01-16 Newbee New Energy Technology Co., Ltd. Ultrasonic cleaner
USD825119S1 (en) * 2016-09-28 2018-08-07 Todd C. Wells Vibrating cleaner
USD850030S1 (en) * 2018-01-31 2019-05-28 Guangdong Gt Ultrasonic Co., Ltd. Ultrasonic cleaner
USD942096S1 (en) * 2018-06-06 2022-01-25 Lead Young Technology Co., Ltd. Multifunctional underwear sterilizer
US20210328564A1 (en) * 2020-04-16 2021-10-21 Butterfly Network, Inc. Methods and circuitry for built-in self-testing of circuitry and/or transducers in ultrasound devices

Similar Documents

Publication Publication Date Title
US3651352A (en) Oscillatory circuit for ultrasonic cleaning apparatus
US3584244A (en) Oscillator circuit for an ultrasonic cleaner, utilizing a saturable core transformer
US3432691A (en) Oscillatory circuit for electro-acoustic converter
US4554477A (en) Drive circuit for a plurality of ultrasonic generators using auto follow and frequency sweep
US3562792A (en) Piezoelectric transformer
US3743868A (en) Driving apparatus for piezoelectric ceramic elements
US5126695A (en) Semiconductor integrated circuit device operated with an applied voltage lower than required by its clock oscillator
US4334168A (en) High frequency, thermostatically self controlled oscillator
US2859346A (en) Crystal oscillator
US4670832A (en) Resonant inverter having improved control at enablement
US4081706A (en) Oscillatory circuit for an ultrasonic cleaning device with feedback from the piezoelectric transducer
US3278770A (en) Extremal-centering method and system
US3129366A (en) Power supply for an electro-mechanical vibrating transducer
US3596206A (en) Transistor oscillator including ultrasonic generator crystal
US5140231A (en) Drive circuit for vibratory-wave motor
US3922589A (en) Electrical control systems of electromagnetic vibrators
US3500089A (en) Ultrasonic cleaning apparatus
US3373374A (en) Self-tunable vehicle presence detector system
US3778648A (en) Piezoelectric transformers
US3075097A (en) Ultrasonic device
US3271644A (en) Power oscillator for an electromechanical vibrating transducer
US3487237A (en) Electrical generator for energizing a source of ultrasonic energy
US3125295A (en) Crystal
US3129346A (en) Frequency and time control
US2963680A (en) Electrical reactance devices