US3582981A - Solenoid driver circuit - Google Patents

Solenoid driver circuit Download PDF

Info

Publication number
US3582981A
US3582981A US808178A US3582981DA US3582981A US 3582981 A US3582981 A US 3582981A US 808178 A US808178 A US 808178A US 3582981D A US3582981D A US 3582981DA US 3582981 A US3582981 A US 3582981A
Authority
US
United States
Prior art keywords
terminal
capacitor
transistor
voltage source
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US808178A
Inventor
Stephen A Dalyai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Application granted granted Critical
Publication of US3582981A publication Critical patent/US3582981A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H47/043Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current making use of an energy accumulator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/64Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors having inductive loads

Definitions

  • solenoid or electromagnet is used herein in its broadest sense and includes generally a coil for producing a magnetic flux and an element in the form of an armature or plunger movable in response to such flux in, for example, relays, actuators, valves and the like to produce either a direct result or a control operation.
  • auxiliary relay contacts which, in effect, are used to insert a current limiting resistance in series with the solenoid coil once the armature or plunger is in its attracted position.
  • Use of auxiliary contacts, however, to connect a currentlimiting resistor in series with a solenoid winding following energization of the latter has the disadvantages of wear and unreliability inherent in movable mechanical parts, and the further disadvantage of increased physical size of the device.
  • Use of an auxiliary contact to shunt a portion of a solenoid coil and to reinsert such portion effectively in the circuit upon energization of the solenoid has the aforementioned disadvantages as well as that of delayed operation of the solenoid.
  • Another object of the present invention is to reduce device heating.
  • Still another object of this invention is to reduce power supply current drain.
  • a still further object of the present invention is to reduce voltage source requirements in solenoid control applications.
  • first and second transistors normally biased to cutoff.
  • the transistors are arranged such that an input signal will cause both transistors to saturate.
  • a capacitor charged to the circuit bias supply voltage is connected to the emitter of the first transistor and the collector of the second transistor.
  • the transistors saturate and the solenoid coil connected to the collector of the first transistor experiences a voltage twice that of the circuit bias supply.
  • the second transistor provides a path to ground for discharging the capacitor leaving the voltage across the solenoid at a level equal to the supply voltage for the remainder of the input signal.
  • a transistor voltage doubler be provided for increasing the speed of operation of a relay.
  • a further feature of this invention is the provision of a switching transistor for disabling the voltage doubler.
  • transistor 13 and transistor 14 saturate.
  • the voltage of the emitter of transistor 14 is the voltage at the lower-voltage (right-hand) terminal of capacitor 17, or the negative of the voltage of source 15.
  • the collector voltage decreases to the voltage at the emitter of transistor 14.
  • the circuit enters a third phase wherein the terminal of coil 11 connected to the collector of transistor 14 also decreases to the voltage at the emitter of transistor 14. Since the voltage at the other terminal of coil 11 is connected to the positive terminal of voltage source 15, the resultant voltage across coil 11 is twice the voltage level of voltage source 15. This high-level voltage supplies the initial current surge required to operate the solenoid.
  • transistor 13 Since transistor 13 has also been caused to saturate at the incidence of an input signal from source [2, a path is provided between the higher-voltage (left-hand) terminal of capacitor 17 and ground terminal 19. When capacitor 17 has completely discharged through this path, the emitter and consequently the collector of transistor 14 approach ground potential. As a result, the terminal of coil 11 connected to the collector of transistor 14 also approaches ground potential and the total voltage across the coil approaches the voltage of the voltage source 15. This corresponds to the holding condition of the solenoid. Again, as source 12 ceases to supply an input signal, the circuit enters the first phase wherein transistor 13 an transistor 14 again assume the cutoff condition, and capacitor 17 charges to the level of voltage source 15.
  • biasing resistors 24, 25, 26 and 27 provide the requisite bias voltages to effect proper operation of the circuit of the illustrative embodiment shown in the figure.
  • Diodes 28, 29 and 30 are unidirectional current devices used in a conventional way to prevent current flow in portions of the circuit as required for proper operation.
  • a relationship can be derived to determine the minimum value of capacitor 17 required to supply an operating current to the solenoid for a prescribed time.
  • the symbols used represent the elements shown on the drawing and the subscripts of those symbols correspond to the numerical designations of those elements as they appear in the FIGURE.
  • Coil ll, capacitor 17 and the forward resistances of transistor M and diode 18 form a series RLC circuit.
  • the values of capacitor 17 and collector supply voltage V can be determined for the underdamped, critically damped and overdamped conditions.
  • lnthe critically damped condition for example, the current in coil 11, i,,, is given by the following relation L is the inductance ofcoil 11.
  • R is the resultant resistance formed when the forward resistances of transistor 14 and diode 18 are combined in series
  • V is the collector supply voltage
  • I is the steady state base current of transistor 14
  • I is the steady state collector current of transistor 14
  • V is the collector to emitter voltage drop of transistor 14
  • V is the base to emitter voltage drop of transistor 14.
  • V is the voltage drop across diode 18.
  • L will be small and can be ignored.
  • the current in coil 11, i is given by V V and l,, l and where R is the resistance of coil 11.
  • the value of capacitor 17 is then given by the following relation based on Equation (2) above where 1,, is the operate current of the solenoid and T is the operate time of the solenoid.
  • the value of resistor 16 should be chosen such that the desired recovery time T (that is, the time required to fully recharge capacitor C is equal to five times the time constant of the R C combination.
  • Apparatus for operating a solenoid in response to an externally applied signal comprising:
  • a voltage source having first and second terminals, said voltage source first terminal being connected to said solenoid coil first terminal,
  • first and second transistor switches responsive to said externally applied signal for simultaneously connecting said capacitor second terminal to said solenoid coil second terminal and said capacitor first terminal to said voltage source second terminal
  • a source of direct current voltage having a reference terminal and a voltage level terminal, said voltage level terminal being connected to a first of said two coil terminals, a storage capacitor having first and second output terminals,
  • a combination in accordance with claim 2 wherein said means connecting said storage capacitor first terminal to said voltage source reference terminal includes a diode poled to conduct current from said storage capacitor second terminal to said voltage source reference terminal.
  • said switching means includes a first transistor having base, collector and emitter electrodes, said first transistor collector electrode being connected to said storage capacitor first terminal and said first transistor emitter electrode being connected to said voltage source reference terminal.
  • said switching means further includes a second transistor having base, emitter and collector electrodes, said second transistor collector electrode being connected to the second of said two coil terminals and said second transistor emitter terminal being connected to said storage capacitor second terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

A circuit for operating and holding a solenoid in response to an applied signal includes two transistor switches. The first switch closes a path between a capacitor and the solenoid coil to attain a voltage level necessary to operate the solenoid. The second switch closes a path between the capacitor and ground discharging the capacitor thereby decreasing the voltage applied to the coil after a predetermined time to a lower level required during the hold condition.

Description

United States Patent [72] Inventor Stephen A. Dalyai Old Bridge, NJ. 211 App]. No. 808,178 (22] Filed Mar. 18, 1969 [45] Patented June 1, 1971 [73] Assignee Bell Telephone Laboratories, Incorporated Murray Hill, Berkeley Heights, NJ.
[54] SOLENOID DRIVER CIRCUIT Claims, 1 Drawing Fig.
[52] U.S.Cl 317/l48.5, 317/151, 317/154 [51] Int. Cl Htllh 47/32 [50] Field ofSearch 317/123 CD, 151,148.5, 154
[56] References Cited UNITED STATES PATENTS 3,021,454 2/1962 Pickens r. 317/148.5
3,391,307 7/1968 Hans-Joachim Stock 317/151 3,140,428 7/1964 Shepard, .lr 3 17/1 48.5
3,248,633 4/1966 Guarrera 320/1 3,454,839 7/1969 Mclntosh 317/l48.5
FORElGN PATENTS 899,090 6/1962 Great Britain 317/123CD Primary Examiner-Lee T. Hix Assistant ExaminerC. L. Yates Altorneys-R. .l. Guenther and Kenneth B. Hamlin fl BOO-Q 1L ,fll 12 I53 SOURCE N 164540000 zv ezoon zsczilzooon 2s xii 2200 n 2 mi 10,000 n SOLENOID DRlVER CIRCUIT This invention relates to circuits for controlling solenoids, and more particularly to circuits for producing both operating and holding currents in solenoids.
The term solenoid or electromagnet is used herein in its broadest sense and includes generally a coil for producing a magnetic flux and an element in the form of an armature or plunger movable in response to such flux in, for example, relays, actuators, valves and the like to produce either a direct result or a control operation.
lt is well recognized that a relatively large current is required to flow in the coil ofa solenoid in order to cause the armature or plunger to move from a normal unattractcd position to its magnetically attracted position at which time only a relatively small current is required to flow to maintain the armature or plunger in such attracted position. A distinction is thus made between these two currents of different magnitude, the former being referred to as the operating current and the latter current of smaller magnitude being referred to as the holding current.
It is desirable that the magnitudes of these two required currents be as small as possible to minimize the generation of heat in prolonged energization of the solenoid or electromagnet. Efforts in the past have been devoted to reduction of these currents and such efforts have usually resulted in an expensive or complicated structure. One such approach involved the use of auxiliary relay contacts which, in effect, are used to insert a current limiting resistance in series with the solenoid coil once the armature or plunger is in its attracted position. Use of auxiliary contacts, however, to connect a currentlimiting resistor in series with a solenoid winding following energization of the latter has the disadvantages of wear and unreliability inherent in movable mechanical parts, and the further disadvantage of increased physical size of the device. Use of an auxiliary contact to shunt a portion of a solenoid coil and to reinsert such portion effectively in the circuit upon energization of the solenoid has the aforementioned disadvantages as well as that of delayed operation of the solenoid.
Still other prior art techniques have incorporated the use of transistors as controllable impedance elements in multipath arrangements, providing a first impedance path to cause the device to operate and a second impedance path to effect holding the device operative. These techniques suffer from the disadvantages that they require large numbers of elements and increased cost.
Accordingly, it is an object of the present invention to decrease the time required to operate a solenoid.
Another object of the present invention is to reduce device heating.
Still another object of this invention is to reduce power supply current drain.
A still further object of the present invention is to reduce voltage source requirements in solenoid control applications.
These and other objects of the present invention are realized in a specific illustrative embodiment that includes first and second transistors normally biased to cutoff. The transistors are arranged such that an input signal will cause both transistors to saturate. A capacitor charged to the circuit bias supply voltage is connected to the emitter of the first transistor and the collector of the second transistor. At the in cidence of an input signal, the transistors saturate and the solenoid coil connected to the collector of the first transistor experiences a voltage twice that of the circuit bias supply. The second transistor provides a path to ground for discharging the capacitor leaving the voltage across the solenoid at a level equal to the supply voltage for the remainder of the input signal.
it is accordingly a feature of the present invention that a transistor voltage doubler be provided for increasing the speed of operation ofa relay.
A further feature of this invention is the provision of a switching transistor for disabling the voltage doubler.
A complete understanding of the present invention and of the above and other features and advantages thereof may be gained from a consideration of the following detailed descrip tion of an illustrative embodiment of that invention presented in connection with the accompanying single FIGURE draw mg.
It is to be noted that the values assigned the various ele ments shown on the drawing are illustrative only and may be replaced by more appropriate values if usage so dictates.
Initially, when there is no input signal to the circuit from source 12, source [2 provides a potential near ground resulting in both transistor 13 and transistor 14 being biased to cutoff. Since transistor 13 and transistor 14 are in cutoff, no substantial current flows through either of them. In this state or initial phase, capacitor 17 is charged to the voltage of the voltage source lS by means of the series circuit comprising voltage source l5, resistor 16, capacitor 17 and diode 18 to ground terminal 19.
At the incidence of a positive-going input signal from source 12, transistor 13 and transistor 14 saturate. At the beginning of this second phase, the voltage of the emitter of transistor 14 is the voltage at the lower-voltage (right-hand) terminal of capacitor 17, or the negative of the voltage of source 15. As transistor 14 saturates, the collector voltage decreases to the voltage at the emitter of transistor 14. At this time, the circuit enters a third phase wherein the terminal of coil 11 connected to the collector of transistor 14 also decreases to the voltage at the emitter of transistor 14. Since the voltage at the other terminal of coil 11 is connected to the positive terminal of voltage source 15, the resultant voltage across coil 11 is twice the voltage level of voltage source 15. This high-level voltage supplies the initial current surge required to operate the solenoid.
Since transistor 13 has also been caused to saturate at the incidence of an input signal from source [2, a path is provided between the higher-voltage (left-hand) terminal of capacitor 17 and ground terminal 19. When capacitor 17 has completely discharged through this path, the emitter and consequently the collector of transistor 14 approach ground potential. As a result, the terminal of coil 11 connected to the collector of transistor 14 also approaches ground potential and the total voltage across the coil approaches the voltage of the voltage source 15. This corresponds to the holding condition of the solenoid. Again, as source 12 ceases to supply an input signal, the circuit enters the first phase wherein transistor 13 an transistor 14 again assume the cutoff condition, and capacitor 17 charges to the level of voltage source 15.
Additionally, biasing resistors 24, 25, 26 and 27 provide the requisite bias voltages to effect proper operation of the circuit of the illustrative embodiment shown in the figure. Diodes 28, 29 and 30 are unidirectional current devices used in a conventional way to prevent current flow in portions of the circuit as required for proper operation.
In the illustrative embodiment shown on the drawing, a relationship can be derived to determine the minimum value of capacitor 17 required to supply an operating current to the solenoid for a prescribed time. (The symbols used represent the elements shown on the drawing and the subscripts of those symbols correspond to the numerical designations of those elements as they appear in the FIGURE.)
Coil ll, capacitor 17 and the forward resistances of transistor M and diode 18 form a series RLC circuit. Using straightforward circuit analysis techniques, the values of capacitor 17 and collector supply voltage V can be determined for the underdamped, critically damped and overdamped conditions. lnthe critically damped condition, for example, the current in coil 11, i,,,, is given by the following relation L is the inductance ofcoil 11. v
R, is the resultant resistance formed when the forward resistances of transistor 14 and diode 18 are combined in series,
V is the collector supply voltage,
I is the steady state base current of transistor 14,
I is the steady state collector current of transistor 14,
V is the collector to emitter voltage drop of transistor 14,
V is the base to emitter voltage drop of transistor 14, and
V is the voltage drop across diode 18. In many applications, L will be small and can be ignored. Where L,, is small enough to be ignored, the current in coil 11, i is given by V V and l,, l and where R is the resistance of coil 11. The value of capacitor 17 is then given by the following relation based on Equation (2) above where 1,, is the operate current of the solenoid and T is the operate time of the solenoid.
Further, according to well-known techniques, the value of resistor 16 should be chosen such that the desired recovery time T (that is, the time required to fully recharge capacitor C is equal to five times the time constant of the R C combination. Thus,
While a particular illustrative embodiment of the present invention has been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspects. in particular, switching devices other than transistors may be used as may other energy storage devices. Similarly, diodes may be eliminated in favor of other current steering devices.
lclaim:
1. Apparatus for operating a solenoid in response to an externally applied signal comprising:
a solenoid coil having first and second terminals,
a voltage source having first and second terminals, said voltage source first terminal being connected to said solenoid coil first terminal,
a capacitor having first and second terminals,
means for charging said capacitor by establishing a charging path from said voltage source first terminal through said capacitor to said voltage source second terminal,
first and second transistor switches responsive to said externally applied signal for simultaneously connecting said capacitor second terminal to said solenoid coil second terminal and said capacitor first terminal to said voltage source second terminal, and
means responsive to said second transistor switch for interrupting said charging path.
2. In combination in a solenoid driver circuit:
an inductive coil having two terminals,
a source of direct current voltage having a reference terminal and a voltage level terminal, said voltage level terminal being connected to a first of said two coil terminals, a storage capacitor having first and second output terminals,
means connecting said storage capacitor first terminal to said voltage source voltage level terminal and means connecting said storage capacitor second terminal to said voltage source reference terminal for charging said capacitor,
switching means responsive to external stimuli for simul taneously connecting said capacitor second output terminal to the second of said two coil terminals and said capacitor first output terminal to said voltage source reference terminal, and
means responsive to said external stimuli for disconnecting said storage capacitor second output terminal from said voltage source reference terminal.
3. A combination in accordance with claim 2 wherein said means connecting said storage capacitor first terminal to said voltage source reference terminal includes a diode poled to conduct current from said storage capacitor second terminal to said voltage source reference terminal.
4. A combination in accordance with claim 2 wherein said switching means includes a first transistor having base, collector and emitter electrodes, said first transistor collector electrode being connected to said storage capacitor first terminal and said first transistor emitter electrode being connected to said voltage source reference terminal.
5. A combination in accordance with claim 4 wherein said switching means further includes a second transistor having base, emitter and collector electrodes, said second transistor collector electrode being connected to the second of said two coil terminals and said second transistor emitter terminal being connected to said storage capacitor second terminal.

Claims (5)

1. Apparatus for operating a solenoid in response to an externally applied signal comprising: a solenoid coil having first and second terminals, a voltage source having first and second terminals, said voltage source first terminal being connected to said solenoid coil first terminal, a capacitor having first and second terminals, means for charging said capacitor by establishing a charging path from said voltage source first terminal through said capacitor to said voltage source second terminal, first and second transistor switches responsive to said externally applied signal for simultaneously connecting said capacitor second terminal to said solenoid coil second terminal and said capacitor first terminal to said voltage source second terminal, and means responsive to said second transistor switch for interrupting said charging path.
2. In combination in a solenoid driver circuit: an inductive coil having two terminals, a source of direct current voltage having a reference terminal and a voltage level terminal, said voltage level terminal being connected to a first of said two coil terminals, a storage capacitor having first and second output terminals, means connecting said storage capacitor first terminal to said voltage source voltage level terminal and means connecting said storage capacitor second terminal to said voltage source reference terminal for charging said capacitor, switching means responsive to external stimuli for simultaneously connecting said capacitor second output terminal to the second of said two coil terminals and said capacitor first output terminal to said voltage source reference terminal, and means responsive to said external stimuli for disconnecting said storage capacitor second output terminal from said voltage source reference terminal.
3. A combination in accordance with claim 2 wherein said means connecting said storage capacitor first terminal to said voltage source reference terminal includes a diode poled to conduct current from said storage capacitor second terminal to said voltage source reference terminal.
4. A combination in accordance with claim 2 wherein said switching means includes a first transistor having base, collector and emitter electrodes, said first transistor collector electrode being connected to said storage capacitor first terminal and said first transistor emitter electrode being connected to said voltage source reference terminal.
5. A combination in accordance with claim 4 wherein said switching means further includes a second transistor having base, emitter and collector electrodes, said second transistor collector electrode being connected to the second of said two coil terminals and said second transistor emitter terminal being connected to said storage capacitor second terminal.
US808178A 1969-03-18 1969-03-18 Solenoid driver circuit Expired - Lifetime US3582981A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80817869A 1969-03-18 1969-03-18

Publications (1)

Publication Number Publication Date
US3582981A true US3582981A (en) 1971-06-01

Family

ID=25198077

Family Applications (1)

Application Number Title Priority Date Filing Date
US808178A Expired - Lifetime US3582981A (en) 1969-03-18 1969-03-18 Solenoid driver circuit

Country Status (1)

Country Link
US (1) US3582981A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078709A (en) * 1977-02-10 1978-03-14 International Tapetronics Corporation Ball latch solenoid and tape transport mechanism incorporating same
EP0041118A2 (en) * 1980-05-30 1981-12-09 International Business Machines Corporation Driver circuit for an electromagnetic device having a coil and a movable armature
US4316056A (en) * 1979-06-01 1982-02-16 Siemens Aktiengesellschaft Control circuit for electromagnetically-operated recorders in teleprinting devices
EP0091648A1 (en) * 1982-04-10 1983-10-19 HONEYWELL and PHILIPS MEDICAL ELECTRONICS B.V. Energizing circuit for magnetic valves
US4731728A (en) * 1985-01-10 1988-03-15 Pitney Bowes Inc. Postage meter with means for preventing unauthorized postage printing
US5784244A (en) * 1996-09-13 1998-07-21 Cooper Industries, Inc. Current limiting circuit
US20050212656A1 (en) * 1994-11-15 2005-09-29 Micro Enhanced Technology, Inc. Electronic access control device
US10403122B2 (en) 2005-12-23 2019-09-03 Invue Security Products Inc. Programmable security system and method for protecting merchandise

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021454A (en) * 1958-04-11 1962-02-13 Bendix Corp Control circuit for electromagnetic devices
GB899090A (en) * 1958-04-15 1962-06-20 Licentia Gmbh A transistor arrangement for the rapid switching on and off of an inductive load
US3140428A (en) * 1961-08-21 1964-07-07 Jr Francis H Shepard Solenoid firing circuit
US3248633A (en) * 1962-11-23 1966-04-26 John J Guarrera Circuit for controlling electromechanical load
US3391307A (en) * 1964-07-01 1968-07-02 Morat Gmbh Franz Capacitor fed electromagnetic winding arrangment
US3454839A (en) * 1966-03-23 1969-07-08 Alex C Mcintosh Electronic switching circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021454A (en) * 1958-04-11 1962-02-13 Bendix Corp Control circuit for electromagnetic devices
GB899090A (en) * 1958-04-15 1962-06-20 Licentia Gmbh A transistor arrangement for the rapid switching on and off of an inductive load
US3140428A (en) * 1961-08-21 1964-07-07 Jr Francis H Shepard Solenoid firing circuit
US3248633A (en) * 1962-11-23 1966-04-26 John J Guarrera Circuit for controlling electromechanical load
US3391307A (en) * 1964-07-01 1968-07-02 Morat Gmbh Franz Capacitor fed electromagnetic winding arrangment
US3454839A (en) * 1966-03-23 1969-07-08 Alex C Mcintosh Electronic switching circuit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078709A (en) * 1977-02-10 1978-03-14 International Tapetronics Corporation Ball latch solenoid and tape transport mechanism incorporating same
US4316056A (en) * 1979-06-01 1982-02-16 Siemens Aktiengesellschaft Control circuit for electromagnetically-operated recorders in teleprinting devices
EP0041118A2 (en) * 1980-05-30 1981-12-09 International Business Machines Corporation Driver circuit for an electromagnetic device having a coil and a movable armature
US4310868A (en) * 1980-05-30 1982-01-12 International Business Machines Corporation Fast cycling, low power driver for an electromagnetic device
EP0041118A3 (en) * 1980-05-30 1982-03-31 International Business Machines Corporation Driver circuit for an electromagnetic device having a coil and a movable armature
EP0091648A1 (en) * 1982-04-10 1983-10-19 HONEYWELL and PHILIPS MEDICAL ELECTRONICS B.V. Energizing circuit for magnetic valves
US4731728A (en) * 1985-01-10 1988-03-15 Pitney Bowes Inc. Postage meter with means for preventing unauthorized postage printing
US20050212656A1 (en) * 1994-11-15 2005-09-29 Micro Enhanced Technology, Inc. Electronic access control device
US8587405B2 (en) 1994-11-15 2013-11-19 O.S. Security Electronic access control device
US5784244A (en) * 1996-09-13 1998-07-21 Cooper Industries, Inc. Current limiting circuit
US10403122B2 (en) 2005-12-23 2019-09-03 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US10600313B2 (en) 2005-12-23 2020-03-24 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US11721198B2 (en) 2005-12-23 2023-08-08 Invue Security Products Inc. Programmable security system and method for protecting merchandise

Similar Documents

Publication Publication Date Title
US3287608A (en) Time delay control circuit
JPH0213116A (en) Inductive load controller
US3235841A (en) Pulse source arrangement
EP0047614B1 (en) Circuit for controlling an electromagnet
US3582981A (en) Solenoid driver circuit
GB1027501A (en) Control means for simultaneously activating selected current operated devices
US5360979A (en) Fast turn-off circuit for solid-state relays or the like
US3590334A (en) Static economizer circuit for power contactors
US3912941A (en) Isolation circuit for arc reduction in a dc circuit
US4185315A (en) Apparatus with a single input connectable to electrical energizing sources of different character
US3135874A (en) Control circuits for electronic switches
EP0041118A2 (en) Driver circuit for an electromagnetic device having a coil and a movable armature
US3127522A (en) Time controlled switch using saturable core input
US5111381A (en) H-bridge flyback recirculator
US4318154A (en) Fast relay turn on circuit with low holding current
GB1589663A (en) Power supply circuits
US3204120A (en) Switching circuit
US3678344A (en) Electromagnetic relay operation monitor
US3214601A (en) Protective circuit
KR900017296A (en) Simplified Driver for Controlled Flux Ferrite Phase Transformers
US3214606A (en) Retentive memory bistable multivibrator circuit with preferred starting means
US3624358A (en) Magnetic brake
US3732467A (en) Relay release delay circuit
US3737732A (en) Time delay relay
US3666998A (en) Relay input circuit