US3581307A - Direct view high intensity readout module having conical light conveyor tube - Google Patents

Direct view high intensity readout module having conical light conveyor tube Download PDF

Info

Publication number
US3581307A
US3581307A US733156A US3581307DA US3581307A US 3581307 A US3581307 A US 3581307A US 733156 A US733156 A US 733156A US 3581307D A US3581307D A US 3581307DA US 3581307 A US3581307 A US 3581307A
Authority
US
United States
Prior art keywords
light
high intensity
light conveyor
direct view
readout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US733156A
Inventor
Jack D Mckim
Harold W Ulmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3581307A publication Critical patent/US3581307A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/307Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being incandescent filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S385/00Optical waveguides
    • Y10S385/901Illuminating or display apparatus

Definitions

  • a direct view high intensity readout module arimarily designed for seven segment digital readout systems 'n which seven incandescent bulbs are connected to a different pin of a nine terminal vacuum tube base, one of the terminals being common and one of the terminals preferably being coupled for a period indication.
  • a light conveyor tube surrounds each of the incandescent bulbs on one end, the other end forming a segment of the seven segment numerical readout.
  • a heat sink is in physical contact with each of the seven light conveyor tubes.
  • a nonglare frosted face plate is cemented over the segment end of the light conveyor tubes.
  • the present invention relates to a direct view high intensity readout module and more particularly to a direct view high intensity readout module utilizing light conveyor tubes to form a segment from each individual light.
  • a plurality of light sources are electrically coupled to a base for further coupling to a socket in a device which is being read out.
  • a light conveyor tube which can be a conical stainless steel tube, surrounds each light source at one end and at the other end, is formed into the desired segment of light. In the conventional readout module, this will require seven light bulbs with seven conveyor tubes forming the seven segments for each module.
  • a heat sink is then put in contact with each of the light conveyor tubes for conducting heat away from the light source and a translucent cover, such as a piece of frosted Mylar, is cemented over the ends of the conveyor tubes forming the desired segmented readout.
  • the light conveyor tubes once they are installed, can be potted for holding the conveyor tubes in a rigid relative position with respect to each other.
  • the light conveyor tubes are constructed of a nonlight absorbing material. Examination of the shape of a cone deformed in this manner will show that much of the reflection of light travels in the preferred direction such as if it were reflected by innumerable mirrors.
  • An object of the present invention is to provide a direct view high intensity readout module which can utilize incandescent light sources.
  • Another object of the invention is the provision of a direct view high intensity readout module which can utilize conventional vacuum tube bases for coupling to related equipment.
  • a still further object of the invention is the provision of a direct view high intensity readout module in which the light disbursement is extremely uniform.
  • Yet another object of the invention is the provision of a direct view high intensity readout module which is simple and inexpensive to manufacture, extremely compact and is very durable.
  • FIG. I is a perspective view of a finished module according to the present invention.
  • FIG. 2 is a perspective view of a portion of the module of FIG. 1;
  • FIG. 3 is a side elevation of a typical setup for the manufacture of the invention.
  • FIG. 4 is a side elevation in cross section of a portion of the module of FIG. 1;
  • FIG. 5 is a top view of a readout socket utilized as part of the invention.
  • FIG. 6 is an exploded cross-sectional view taken along lines 6-6 of FIG. I. i
  • a direct view high intensity readout module is shown generally at I having a plurality of readout segments II, I2, I3, 14, 15,16 and 17.
  • a potting material I8 is shown generally surrounding the readout segments.
  • a plurality of bulb locations is shown at 19, two of which are surrounded by light conveyor tubes 11 and 16.
  • One end of the light conveyor tubes 11 and 16 surrounds a bulb and the other end is flattened forming readout segments.
  • a jig for the positioning of light conveyor tubes is shown at 21 having a plurality of positioning extensions 22 around which are placed conveyor tubes 17 and 15.
  • a heat sink 23 is shown dimensioned for surrounding light conveyor tubes and having a central potting hole 24.
  • a mounting base is shown for mounting light sources such as incandescent bulbs thereon at 26.
  • Mounting base 26 having a plurality of connecting pins 27, 28, 29, 31, 32, 33, 34, 36 and 39.
  • Each of pins 27 through 34 are adapted for receiving one lead ofa light bulb, the other lead of each light bulb being connected to common pin 39;
  • Connecting pin 36 is preferably utilized for lighting a period character shown at 20 in FIG. I.
  • FIG. 6 an exploded view is shown showing incandescent light bulbs at 19 being connected to pins 28 and 34 of socket base 26.
  • Three of the light conveyor tubes are shown at I7, 13 and 11, which are separated by potting material shown generally at I8.
  • Heat sink 23 having a central potting hole 24 is shown surrounding the potting material.
  • Translucent frosted cover 41 is shown spacially disposed to the unit.
  • a typical module is shown utilizing the principles of the present invention for use as a digital readout module.
  • a diffusing translucent frosted cover has not been placed over the segments 11 through 17, and the potting therebetween at 18, in the interest of clarity and illustration.
  • two light conveyor tubes II and 16 are shown positioned over two of the light sources (not shown) with the other light sources shown at I9. It can be seen, that the configuration of the light conveyor tubes, in this instance,
  • ajig is shown generally at 21 with raised portions 22 dimensioned for a press fit into the slot ends of the light conveyor tubes for positioning the light conveyor tubes prior to potting.
  • Two of the light conveyor tubes 17 and 15 are shown positioned over two of the raised portions 22.
  • a heat sink is shown at 23 which is dimensioned for a snug fit around the light conveyor tubes to conduct heat away from the light conveyor tubes.
  • a central potting hole is shown at 24 for filling the space between light conveyor tubes and the heat sink after it is assembled.
  • a typical readout base which is adapted for mounting the light sources, e.g., incandescent bulbs thereto.
  • the light sources e.g., incandescent bulbs thereto.
  • One lead from each of the incandescent bulbs is connected to pins 27, 28, 29, 31, 32, 33 and 34, and the other leads soldered to a ring attached to pin 39 which is the common return.
  • Pin 36 is preferably utilized as a light source to illuminate a dot shown at 20 in FIG. 1.
  • the entire unit is shown in an exploded view in FIG. 6 whereby two light sources shown as incandescent bulbs 19, are connected to pins 28 and 34 and to the common ground pin 39.
  • Incandescent bulbs I9 then fit into light conveyor tubes 17 and II which converge at the readout end of the module.
  • the potting material is shown surrounding the light conveyor tubes and within heat sink 23 at I8.
  • Translucent frosted cover 4] is shown ready to be positioned over the readout end of the module.
  • the entire unit is very economically and simply constructed and can utilize incandescent bulbs due to the use preferably of metallic light conveyor tubes.
  • a direct view high intensity readout module comprising: a plurality of light sources having first and second electric leads for energization thereof; I a hollow light conveyor tube having a conical reflecting inner surface surrounding each of said light sources on one end thereof, another end of each of said light conveyor tubes being shaped to form readout indicia said hollow light conveyor tubes having a geometry for causing a direct impingement of light from said light sources to all parts of said another end; and a translucent eover fixedly attached over the face of said readout indicia.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

A direct view high intensity readout module primarily designed for seven segment digital readout systems in which seven incandescent bulbs are connected to a different pin of a nine terminal vacuum tube base, one of the terminals being common and one of the terminals preferably being coupled for a period indication. A light conveyor tube surrounds each of the incandescent bulbs on one end, the other end forming a segment of the seven segment numerical readout. A heat sink is in physical contact with each of the seven light conveyor tubes. A nonglare frosted face plate is cemented over the segment end of the light conveyor tubes.

Description

(v a, an
pnited States Patem [72] Inventors Jack D. McKim P. O. Box 149, Del Mar, Calif. 92014; Harold W. Ulmer, 2941 San Luis Rey, Oceanside, Calif. 92057 [21] Appl. No. 733,156
[22] Filed May 29, 1968 [45] Patented May 25, I971 [54] DIRECT VIEW HIGH INTENSITY READOUT MODULE HAVING CONICAL LIGHT CONVEYOR [56] References Cited UNITED STATES PATENTS 3,164,918 1/1965 Brown l l 1 1 l l 1 n 13,ss1,307
Primary Examiner-Harold l. Pitts Attorney-Richard K. MacNeill ABSTRACT: A direct view high intensity readout module arimarily designed for seven segment digital readout systems 'n which seven incandescent bulbs are connected to a different pin of a nine terminal vacuum tube base, one of the terminals being common and one of the terminals preferably being coupled for a period indication. A light conveyor tube surrounds each of the incandescent bulbs on one end, the other end forming a segment of the seven segment numerical readout. A heat sink is in physical contact with each of the seven light conveyor tubes. A nonglare frosted face plate is cemented over the segment end of the light conveyor tubes.
IPATENTEDHAYZSIB?! 358L307 I SHEET 1 BF 2 FIG. 3
' INVENTORS JACK D; MIFK/M BY HAROLD W ULMER wand/(M 1 DIRECT VIEW HIGH INTENSITY READOU'IMODULE HAVING CONICAL LIGHT CONVEYOR TUBE BRIEF DESCRIPTION OF THE INVENTION The present invention relates to a direct view high intensity readout module and more particularly to a direct view high intensity readout module utilizing light conveyor tubes to form a segment from each individual light.
According to the invention, a plurality of light sources, such as incandescent bulbs, are electrically coupled to a base for further coupling to a socket in a device which is being read out. A light conveyor tube, which can be a conical stainless steel tube, surrounds each light source at one end and at the other end, is formed into the desired segment of light. In the conventional readout module, this will require seven light bulbs with seven conveyor tubes forming the seven segments for each module. A heat sink is then put in contact with each of the light conveyor tubes for conducting heat away from the light source and a translucent cover, such as a piece of frosted Mylar, is cemented over the ends of the conveyor tubes forming the desired segmented readout. If desired, the light conveyor tubes, once they are installed, can be potted for holding the conveyor tubes in a rigid relative position with respect to each other. The light conveyor tubes are constructed of a nonlight absorbing material. Examination of the shape of a cone deformed in this manner will show that much of the reflection of light travels in the preferred direction such as if it were reflected by innumerable mirrors.
It has been further found that if a face plate such as a piece of Mylar film or some other transparent material which is frosted on both sides is placed in close proximity to the end of the slit, the light emitted by the internally illuminated light conveyor tube shows a remarkable brightness and clarity, there being no noticeable variation in brightness over the entire segment area, and there is no side illumination of other areas of the face plate.
An object of the present invention is to provide a direct view high intensity readout module which can utilize incandescent light sources.
Another object of the invention is the provision of a direct view high intensity readout module which can utilize conventional vacuum tube bases for coupling to related equipment.
A still further object of the invention is the provision of a direct view high intensity readout module in which the light disbursement is extremely uniform.
Yet another object of the invention is the provision of a direct view high intensity readout module which is simple and inexpensive to manufacture, extremely compact and is very durable.
Other objects and many of the attendant advantages of the invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when .considered in connection with the accompanying drawing in which like reference numerals designate like parts throughout the figures thereof and wherein:
FIG. I is a perspective view of a finished module according to the present invention;
FIG. 2 is a perspective view of a portion of the module of FIG. 1;
FIG. 3 is a side elevation of a typical setup for the manufacture of the invention;
FIG. 4 is a side elevation in cross section of a portion of the module of FIG. 1;
FIG. 5 is a top view of a readout socket utilized as part of the invention; and
FIG. 6 is an exploded cross-sectional view taken along lines 6-6 of FIG. I. i
DETAILED DESCRIPTION .OF THE DRAWINGS Referring to FIG. I, a direct view high intensity readout module is shown generally at I having a plurality of readout segments II, I2, I3, 14, 15,16 and 17. A potting material I8 is shown generally surrounding the readout segments.
Referring to FIG. 2, a plurality of bulb locations is shown at 19, two of which are surrounded by light conveyor tubes 11 and 16. One end of the light conveyor tubes 11 and 16 surrounds a bulb and the other end is flattened forming readout segments.
Referring to FIG. 3, a jig for the positioning of light conveyor tubes is shown at 21 having a plurality of positioning extensions 22 around which are placed conveyor tubes 17 and 15.
Referring to FIG. 4, a heat sink 23 is shown dimensioned for surrounding light conveyor tubes and having a central potting hole 24.
Referring to FIG. 5, a mounting base is shown for mounting light sources such as incandescent bulbs thereon at 26. Mounting base 26 having a plurality of connecting pins 27, 28, 29, 31, 32, 33, 34, 36 and 39. Each of pins 27 through 34 are adapted for receiving one lead ofa light bulb, the other lead of each light bulb being connected to common pin 39; Connecting pin 36 is preferably utilized for lighting a period character shown at 20 in FIG. I.
Referring to FIG. 6, an exploded view is shown showing incandescent light bulbs at 19 being connected to pins 28 and 34 of socket base 26. Three of the light conveyor tubes are shown at I7, 13 and 11, which are separated by potting material shown generally at I8. Heat sink 23 having a central potting hole 24 is shown surrounding the potting material. Translucent frosted cover 41 is shown spacially disposed to the unit.
OPERATION Referring back to FIG. I, a typical module is shown utilizing the principles of the present invention for use as a digital readout module. A diffusing translucent frosted cover has not been placed over the segments 11 through 17, and the potting therebetween at 18, in the interest of clarity and illustration.
Referring to FIG. 2, two light conveyor tubes II and 16 are shown positioned over two of the light sources (not shown) with the other light sources shown at I9. It can be seen, that the configuration of the light conveyor tubes, in this instance,
is conical with the large end of the conical section being bent to form slots segments of the seven segment system utilized in digital readouts.
Referring to FIG. 3, ajig is shown generally at 21 with raised portions 22 dimensioned for a press fit into the slot ends of the light conveyor tubes for positioning the light conveyor tubes prior to potting. Two of the light conveyor tubes 17 and 15 are shown positioned over two of the raised portions 22.
Referring to FIG. 4, a heat sink is shown at 23 which is dimensioned for a snug fit around the light conveyor tubes to conduct heat away from the light conveyor tubes. A central potting hole is shown at 24 for filling the space between light conveyor tubes and the heat sink after it is assembled.
Referring to FIG. 5, a typical readout base is shown which is adapted for mounting the light sources, e.g., incandescent bulbs thereto. One lead from each of the incandescent bulbs is connected to pins 27, 28, 29, 31, 32, 33 and 34, and the other leads soldered to a ring attached to pin 39 which is the common return. Pin 36 is preferably utilized as a light source to illuminate a dot shown at 20 in FIG. 1.
The entire unit is shown in an exploded view in FIG. 6 whereby two light sources shown as incandescent bulbs 19, are connected to pins 28 and 34 and to the common ground pin 39. Incandescent bulbs I9 then fit into light conveyor tubes 17 and II which converge at the readout end of the module. The potting material is shown surrounding the light conveyor tubes and within heat sink 23 at I8. Translucent frosted cover 4] is shown ready to be positioned over the readout end of the module.
As can be seen, the entire unit is very economically and simply constructed and can utilize incandescent bulbs due to the use preferably of metallic light conveyor tubes.
i l 3 \s It should be understood. of course, that the foregoing disclosure relates to only a preferred embodiment of the inven' tion and that it is intended to cover only the changes and modifications of the example of the invention herein chosen for the purposes of the disclosure which do not constitute de partures from the spirit and scope of the invention We claim: 1. A direct view high intensity readout module comprising: a plurality of light sources having first and second electric leads for energization thereof; I a hollow light conveyor tube having a conical reflecting inner surface surrounding each of said light sources on one end thereof, another end of each of said light conveyor tubes being shaped to form readout indicia said hollow light conveyor tubes having a geometry for causing a direct impingement of light from said light sources to all parts of said another end; and a translucent eover fixedly attached over the face of said readout indicia. 24 The direct view high intensity readout module of claim 1 and further including:
a potting material surrounding said light conveyor tubes. 3. The direct view high intensity readout module of claim 1 and further including:
a common heat sink surrounding and abutting all of said light conveyor tubes.

Claims (3)

1. A direct view high intensity readout module comprising: a plurality of light sources having first and second electric leads for energization thereof; a hollow light conveyor tube having a conical reflecting inner surface surrounding each of said light sources on one end thereof, another end of each of said light conveyor tubes being shaped to form readout indicia, said hollow light conveyor tubes having a geometry for causing a direct impingement of light from said light sources to all parts of said another end; and a translucent cover fixedly attached over the face of said readout indicia.
2. The direct view high intensity readout module of claim 1 and further including: a potting material surrounding said light conveyor tubes.
3. The direct view high intensity readout module of claim 1 and further including: a common heat sink surrounding and abutting all of said light conveyor tubes.
US733156A 1968-05-29 1968-05-29 Direct view high intensity readout module having conical light conveyor tube Expired - Lifetime US3581307A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US73315668A 1968-05-29 1968-05-29

Publications (1)

Publication Number Publication Date
US3581307A true US3581307A (en) 1971-05-25

Family

ID=24946458

Family Applications (1)

Application Number Title Priority Date Filing Date
US733156A Expired - Lifetime US3581307A (en) 1968-05-29 1968-05-29 Direct view high intensity readout module having conical light conveyor tube

Country Status (1)

Country Link
US (1) US3581307A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790946A (en) * 1970-08-24 1974-02-05 Ind Electronics Eng Inc Bar segment readout unit
US3810168A (en) * 1971-03-31 1974-05-07 Tamura Electric Works Ltd Luminous display panel with geometric segment matrix and diffuser panel
US3895380A (en) * 1973-03-14 1975-07-15 Tamura Electric Works Ltd Digit display apparatus
US3918052A (en) * 1974-07-26 1975-11-04 Kenneth J Bricher Shallow display and digital clock including reflecting and masking means
US3918053A (en) * 1972-07-03 1975-11-04 Dialight Corp Digital display
US3963326A (en) * 1973-03-07 1976-06-15 Buchert Claude Charles Data display panels
US4141161A (en) * 1977-07-19 1979-02-27 Simmonds Precision Products, Inc. Reduced power incandescent bar type display device
US5659297A (en) * 1995-03-27 1997-08-19 Eaton Corporation Display system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US974943A (en) * 1910-11-08 Charles Cory & Son Illuminated announcement and display signal.
US3137082A (en) * 1962-07-13 1964-06-16 Jr Graydon A Phlieger Character indicating display device
US3164918A (en) * 1961-03-30 1965-01-12 American Optical Corp Display apparatus
US3174144A (en) * 1960-11-21 1965-03-16 Richard J O'neill Digital read-out and display unit
US3177483A (en) * 1960-10-17 1965-04-06 Marco Ind Company Variable indicia multiple unit illuminated read-out indicator
US3249932A (en) * 1964-06-17 1966-05-03 Honeywell Inc Electrical apparatus
US3253274A (en) * 1963-12-30 1966-05-24 Berman Nelson Character display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US974943A (en) * 1910-11-08 Charles Cory & Son Illuminated announcement and display signal.
US3177483A (en) * 1960-10-17 1965-04-06 Marco Ind Company Variable indicia multiple unit illuminated read-out indicator
US3174144A (en) * 1960-11-21 1965-03-16 Richard J O'neill Digital read-out and display unit
US3164918A (en) * 1961-03-30 1965-01-12 American Optical Corp Display apparatus
US3137082A (en) * 1962-07-13 1964-06-16 Jr Graydon A Phlieger Character indicating display device
US3253274A (en) * 1963-12-30 1966-05-24 Berman Nelson Character display device
US3249932A (en) * 1964-06-17 1966-05-03 Honeywell Inc Electrical apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790946A (en) * 1970-08-24 1974-02-05 Ind Electronics Eng Inc Bar segment readout unit
US3810168A (en) * 1971-03-31 1974-05-07 Tamura Electric Works Ltd Luminous display panel with geometric segment matrix and diffuser panel
US3918053A (en) * 1972-07-03 1975-11-04 Dialight Corp Digital display
US3963326A (en) * 1973-03-07 1976-06-15 Buchert Claude Charles Data display panels
US3895380A (en) * 1973-03-14 1975-07-15 Tamura Electric Works Ltd Digit display apparatus
US3918052A (en) * 1974-07-26 1975-11-04 Kenneth J Bricher Shallow display and digital clock including reflecting and masking means
US4141161A (en) * 1977-07-19 1979-02-27 Simmonds Precision Products, Inc. Reduced power incandescent bar type display device
US5659297A (en) * 1995-03-27 1997-08-19 Eaton Corporation Display system

Similar Documents

Publication Publication Date Title
US3714414A (en) Ornamental lighting means
US3581307A (en) Direct view high intensity readout module having conical light conveyor tube
US4742432A (en) Matrix of light-emitting elements and method of manufacturing same
KR101177937B1 (en) Led lamp with central optical light guide
US3174144A (en) Digital read-out and display unit
US3136489A (en) Safety work light
DE3881025D1 (en) CIRCUIT FOR A HIGH-PERFORMANCE LAMP WITH A HIGH DISCHARGE.
US2878418A (en) Miniature filamentary numerical display
DE3883554D1 (en) Fluorescent lamp with an incandescent lamp base.
US3553520A (en) High intensity driving lamps particularly for road vehicles
ATE129831T1 (en) DISCHARGE LAMP WITH NORMALIZED BASE.
US3614412A (en) Photoflash lamp assembly
US3858341A (en) Segment type, electric light figure indicator
IT977811B (en) HIGH PRESSURE GAS DISCHARGE LAMP WITH METALLIC CROSSING CONDUCTOR
US3264462A (en) Key display device
US2109341A (en) Electric lighting apparatus
US3249932A (en) Electrical apparatus
US3526763A (en) Electrically illuminated portable cosmetic mirror
US3559153A (en) Indicator bulb mounting
US1984777A (en) Photo-electric cell
ES355561A1 (en) Improvements in the construction of lamps for iluminating elements of luminous material with body of hermetic lamp. (Machine-translation by Google Translate, not legally binding)
US3543015A (en) Illuminated pushbutton switch
CA1059961A (en) Photo flashlamp unit
ES139449U (en) Signal pilot for vehicles. (Machine-translation by Google Translate, not legally binding)
US2153814A (en) Battery lamp