US3579001A - Linear motor having radial armature plates - Google Patents
Linear motor having radial armature plates Download PDFInfo
- Publication number
- US3579001A US3579001A US866911A US3579001DA US3579001A US 3579001 A US3579001 A US 3579001A US 866911 A US866911 A US 866911A US 3579001D A US3579001D A US 3579001DA US 3579001 A US3579001 A US 3579001A
- Authority
- US
- United States
- Prior art keywords
- magnetic field
- armature
- fins
- members
- field members
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 claims description 12
- 238000004804 winding Methods 0.000 claims description 12
- 230000006698 induction Effects 0.000 claims description 8
- 230000002250 progressing effect Effects 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 230000004308 accommodation Effects 0.000 claims description 2
- 230000004907 flux Effects 0.000 abstract description 3
- 239000012530 fluid Substances 0.000 description 2
- 241000272186 Falco columbarius Species 0.000 description 1
- 235000017276 Salvia Nutrition 0.000 description 1
- 241001072909 Salvia Species 0.000 description 1
- 235000003407 Sigesbeckia orientalis Nutrition 0.000 description 1
- 240000003801 Sigesbeckia orientalis Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/025—Asynchronous motors
Definitions
- the armature plates are subjected to the magnetic flux films rawmg produced by the field structure resulting in axially directed [52] US. Cl.... 310/13 forces which displace the armature with respect to the field 511 1111.01 .II1102k41 02 structure.
- Pat o ,474,07-2-disclos motohinwhich a movfable magnetic. field structure cooperates with. twonrailsshap'edvstationary5;armatures arrangedv laterally omeither sideiofithei'fieldpstructure;.For certain special appli cations, thereis a need for linear motors of small size high thrustiandrelatively slow speed.
- Another object of the invention is to reduce to a minumum value the inactive portion of the conductors of the magnetic field structure.
- Still another object of the invention is to provide a linear motor having a wound magnetic field structure which will allow the speed of synchronization of the motor to be modified and the direction of operation to be reversed.
- FIG. 1 is a schematic perspective view of a linear motor according to the invention in which the housing and the guide elements have been removed.
- FIG. 2 is a front view of the motor of FIG. 1, a magnetic field element of which is shown hollow in accordance with an embodiment of the invention.
- FIG. 3 is a partial view similar to that of FIG. 2 of another embodiment of the invention with armature plates rigidly connected to an outer casing. 1
- a rod-shaped movable support member is slidably mounted in guides (not shown) and bears intermediate its ends a plurality of armature plates 12, 14, 16, 18, and 22 in the form of fins of conductive material arranged radially in axial planes.
- Each circuit 24 and 34 has a prismatic shape of a length less than that of the fins 12 to 22 and a trapezoidal base converging towards the axis 10 so as to define air gaps 36, 38, 40, 42, 44 and 46 in the shape of slots which receive the plates 12 to 22.
- the magnetic core members 24 to 34 may advantageously be laminated in radial planes and bear polyphase ring windings such as 48, 50 and 52 staggered in the axial direction and connected, in a manner well-ltnown to those skilled in the art, to a source of alternating current so as to'produce a moving magnetic field which progresses in the axial direction of the motor.
- polyphase ring windings such as 48, 50 and 52 staggered in the axial direction and connected, in a manner well-ltnown to those skilled in the art, to a source of alternating current so as to'produce a moving magnetic field which progresses in the axial direction of the motor.
- the operation of the motor of the invention is obvious.
- the armature plates 12 to 22, which are subjected to the action of the magnetic flux traversing the respective air gaps, are thechrs t son:
- FIG. 3 in which the same reference numbers, for reasons of clarity, designate parts identical or similar to those of FIG. 2, illustrates another embodiment of the invention with centripetal arrangement of the stationary armature plates 12 to 22 within a support 70.
- the field segments 24 to 34 are carried by a central element 72 and diverge centrifugally in a radialway. This reversed arrangement of the supports of the armatures and field structures changes in no way the operation of the motor of the invention.
- a linear induction motor comprising an armature and a generally ring-shaped magnetic field structure relatively movable one with respect to the other, said armature comprising a plurality of radially extending fins of electrically conductive material, said magnetic field structure including a plurality of elementary'multiphase wound magnetic field members extending between successive pairs of adjacent fins, respectively, to define a plurality of radially extending airgaps accommodation coextensive portions of said fins, respectively, along a major part of the radial length of said fins so thatsaid elementary field members, when multiphase energized,
- a motor according to claim 1 further comprising ringshaped peripheral support means to carry said elementary magnetic field members.
- a motor according to claim 1 further comprising ringshaped peripheral support means to carry said fins, and axial support means to carry said elementary magnetic field members.
- said elementary magnetic field members including magnetic core means filling in a major part of the wedge-shaped space included between said fins and carrying a ring winding having active conductors extending substantially along said major part of said radial length.
- said elementary magnetic field members comprising longitudinal extending cooling conduits.
- a linear induction motor comprising an armature having a plurality of planar radially extending fins of electrically conductive material, a generally wedge-shaped multiphase wound magnetic field member between each pair of adjacent fins to define a pair of opposed pole faces facing corresponding coex tensive portions of confronting inner surfaces of said pair of adjacent fins, respectively, and spaced apart a small distance therefrom, said coextensive portions having a radial length constituting a major part of the total radial length of said fins, whereby said magnetic field member, when multiphase energized, produces a magnetic field axially progressing along said pole faces to cause axial relative movement of said armature and said magnetic field member.
- a linear induction motor comprising an armature having a plurality of radially extending armature plates defining therebetween a plurality of intervals having a substantially sector-type cross section, a plurality of generally wedgeshaped multiphase wound magnetic field members inserted in said intervals, respectively, to define a plurality of radially extending pole faces closely spaced apart from said armature plates, said magnetic field members being substantially entirely located within said intervals, said magnetic field members being adapted to produce, when multiphase energized, adjacent said pole faces an axially progressing magnetic field causing axial relative movement of said armature and said magnetic field members.
- a linear induction motor comprising an armature having a plurality of radially extending armature plates of electrically conductive material, a plurality of generally wedge-shaped multiphase wound magnetic field members inserted between each pair of said armature plates, each of said magnetic field members defining a pair of dihedral pole faces closely spaced apart from the corresponding pair of plates, said magnetic field members being substantially entirely accommodated between said armature plates, said magnetic field members being adapted to produce, when multiphase energized, adjacent said pole faces an axially progressing magnetic field causing axial relative movement of said armature and said magnetic field members.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Linear Motors (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR173022 | 1968-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3579001A true US3579001A (en) | 1971-05-18 |
Family
ID=8656636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US866911A Expired - Lifetime US3579001A (en) | 1968-11-07 | 1969-10-16 | Linear motor having radial armature plates |
Country Status (7)
Country | Link |
---|---|
US (1) | US3579001A (enrdf_load_stackoverflow) |
BE (1) | BE740778A (enrdf_load_stackoverflow) |
CH (1) | CH503416A (enrdf_load_stackoverflow) |
DE (1) | DE1955829A1 (enrdf_load_stackoverflow) |
FR (1) | FR1591350A (enrdf_load_stackoverflow) |
GB (1) | GB1275479A (enrdf_load_stackoverflow) |
NL (1) | NL6916312A (enrdf_load_stackoverflow) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4209718A (en) * | 1978-10-23 | 1980-06-24 | Popov Alexandr D | Linear induction motor |
US4217507A (en) * | 1979-01-08 | 1980-08-12 | The Singer Company | Linear motor |
US4255680A (en) * | 1978-12-19 | 1981-03-10 | Popov Alexandr D | Linear induction motor |
US4347463A (en) * | 1980-04-03 | 1982-08-31 | Westinghouse Electric Corp. | Electromagnetic projectile launcher with self-augmenting rails |
WO1999042245A1 (de) * | 1998-02-18 | 1999-08-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Linearantrieb |
US20040222704A1 (en) * | 2001-12-21 | 2004-11-11 | Volvo Technology Corporation | Electric machine |
US11846609B2 (en) | 2019-10-13 | 2023-12-19 | Mts Systems Corporation | Electric actuator |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2811445C2 (de) * | 1978-03-13 | 1982-04-22 | Christian Ing.(grad.) 1000 Berlin Herrmann | Asynchrone Linearmaschine und umlaufende Wechselstrommaschine |
DE2847410C2 (de) * | 1978-11-02 | 1983-12-29 | Rostovskij-na-Donu institut inženerov železnodorožnogo transporta, Rostov-na-Donu | Linearer Asynchronmotor |
GB8805420D0 (en) * | 1988-03-08 | 1988-04-07 | Framo Dev Ltd | Electrically powered pump unit |
DE4122601A1 (de) * | 1991-07-08 | 1993-01-14 | Magnet Motor Gmbh | Linearbeschleuniger |
DE19733726C2 (de) * | 1997-08-04 | 2000-10-05 | Gruendl & Hoffmann | Reluktanzmotor, insbesondere Linear-Reluktanzmotor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1422427A (en) * | 1919-04-01 | 1922-07-11 | Fauchon-Villeplee Andre Octave | Electric apparatus for propelling projectiles |
US2112264A (en) * | 1931-04-16 | 1938-03-29 | Frank B Hopewell | Electrodynamic apparatus |
-
1968
- 1968-11-07 FR FR173022A patent/FR1591350A/fr not_active Expired
-
1969
- 1969-10-15 CH CH1549669A patent/CH503416A/fr not_active IP Right Cessation
- 1969-10-16 US US866911A patent/US3579001A/en not_active Expired - Lifetime
- 1969-10-24 BE BE740778D patent/BE740778A/xx unknown
- 1969-10-29 NL NL6916312A patent/NL6916312A/xx unknown
- 1969-11-06 DE DE19691955829 patent/DE1955829A1/de active Pending
- 1969-11-06 GB GB54390/69A patent/GB1275479A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1422427A (en) * | 1919-04-01 | 1922-07-11 | Fauchon-Villeplee Andre Octave | Electric apparatus for propelling projectiles |
US2112264A (en) * | 1931-04-16 | 1938-03-29 | Frank B Hopewell | Electrodynamic apparatus |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4209718A (en) * | 1978-10-23 | 1980-06-24 | Popov Alexandr D | Linear induction motor |
US4255680A (en) * | 1978-12-19 | 1981-03-10 | Popov Alexandr D | Linear induction motor |
US4217507A (en) * | 1979-01-08 | 1980-08-12 | The Singer Company | Linear motor |
US4347463A (en) * | 1980-04-03 | 1982-08-31 | Westinghouse Electric Corp. | Electromagnetic projectile launcher with self-augmenting rails |
WO1999042245A1 (de) * | 1998-02-18 | 1999-08-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Linearantrieb |
US6285098B1 (en) | 1998-02-18 | 2001-09-04 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forderung E.V. | Linear drive |
US20040222704A1 (en) * | 2001-12-21 | 2004-11-11 | Volvo Technology Corporation | Electric machine |
US6940190B2 (en) * | 2001-12-21 | 2005-09-06 | Volvo Technology Corporation | Electric machine |
US11846609B2 (en) | 2019-10-13 | 2023-12-19 | Mts Systems Corporation | Electric actuator |
Also Published As
Publication number | Publication date |
---|---|
CH503416A (fr) | 1971-02-15 |
DE1955829A1 (de) | 1970-06-11 |
BE740778A (enrdf_load_stackoverflow) | 1970-04-01 |
NL6916312A (enrdf_load_stackoverflow) | 1970-05-11 |
FR1591350A (enrdf_load_stackoverflow) | 1970-04-27 |
GB1275479A (en) | 1972-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3579001A (en) | Linear motor having radial armature plates | |
US5495131A (en) | Parallel air gap serial flux A.C. electrical machine | |
US8232689B2 (en) | Electromagnetic machines | |
US4725750A (en) | Permanent magnet rotary machine | |
US3599020A (en) | Linear actuator with alternating magnetic poles | |
US2880335A (en) | Induction motor | |
US4087711A (en) | Rotating electric machine having a toroidal-winding armature | |
US20110037327A1 (en) | Linear electromagnetic machines | |
US3045135A (en) | Synchronous induction motor | |
SE315654B (enrdf_load_stackoverflow) | ||
US5426338A (en) | High-power electrical machinery with toroidal permanent magnets | |
US4307310A (en) | Segmented magnet dynamoelectric machine with series connected rotor conductors | |
US3135879A (en) | Linear motor | |
US6037691A (en) | Dual excitation electrical machine, and especially motor vehicle alternator | |
US3590293A (en) | Dynamoelectric machine having a stationary assembly of the permanent magnet type | |
US3699365A (en) | Electrodynamic linear motor | |
US3005116A (en) | Discontinuous induction type dynamoelectric machines | |
CN111953108A (zh) | 非重叠绕组无铁心直线永磁同步电机 | |
US3453459A (en) | Electric generators | |
US4185216A (en) | Circumferentially-segmented magnet homopolar dynamoelectric machine | |
GB2455113A (en) | Electromagnetic machines having windings formed of laminated conductors. | |
US3239702A (en) | Multi-disk electromagnetic power machinery | |
GB1422522A (en) | Dynamo-electric machines of the relictance type | |
US3293469A (en) | Electrical alternator | |
US4041337A (en) | Segmented magnet homopolar dynamoelectric machines having fluid cooled liquid metal current collecting zones |