US3575264A - Oil pumping system - Google Patents

Oil pumping system Download PDF

Info

Publication number
US3575264A
US3575264A US807801A US3575264DA US3575264A US 3575264 A US3575264 A US 3575264A US 807801 A US807801 A US 807801A US 3575264D A US3575264D A US 3575264DA US 3575264 A US3575264 A US 3575264A
Authority
US
United States
Prior art keywords
oil
outlet
pump
inlet
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US807801A
Inventor
John G Johnson
George N Miller Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Applied Americas Inc
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3575264A publication Critical patent/US3575264A/en
Assigned to MCQUAY-PERFEX, INC., A CORP. OF MN reassignment MCQUAY-PERFEX, INC., A CORP. OF MN ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: WESTINGHOUSE ELECTRIC CORPORATION, A CORP. OF PA
Assigned to MCQUAY INC. reassignment MCQUAY INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MCQUAY-PREFEX INC.
Assigned to SNYDER GENERAL CORPORATION reassignment SNYDER GENERAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MCQUAY INC.
Assigned to CITICORP INDUSTRIAL CREDIT, INC. reassignment CITICORP INDUSTRIAL CREDIT, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCQUAY INC., A MN CORP.
Assigned to CITICORP INDUSTRIAL CREDIT INC. reassignment CITICORP INDUSTRIAL CREDIT INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SNYDERGENERAL CORPORATION
Anticipated expiration legal-status Critical
Assigned to CITICORP NORTH AMERICA, INC. reassignment CITICORP NORTH AMERICA, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SNYDERGENERAL CORPORATION, A MN CORP.
Assigned to SNYDERGENERAL CORPORATION, A CORP. OF MINNESOTA, MCQUAY INC., A CORP. OF MINNESOTA reassignment SNYDERGENERAL CORPORATION, A CORP. OF MINNESOTA RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP NORTH AMERICA, INC.
Assigned to SNYDERGENERAL CORPORATION A CORP. OF DELAWARE reassignment SNYDERGENERAL CORPORATION A CORP. OF DELAWARE RELEASE BY SECOND PARTY OF A SECURITY AGREEMENT RECORDED AT REEL 5013 FRAME 592. Assignors: CITICORP NORTH AMERICA, INC. A CORP. OF DELAWARE
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/36Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with feed by pumping action of the member to be lubricated or of a shaft of the machine; Centrifugal lubrication
    • F16N7/363Centrifugal lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems
    • F16N7/40Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems in a closed circulation system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/02Conditioning lubricant for aiding engine starting, e.g. heating
    • F01M5/025Conditioning lubricant for aiding engine starting, e.g. heating by prelubricating, e.g. using an accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2210/00Applications
    • F16N2210/16Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2260/00Fail safe
    • F16N2260/40Pre-lubrication

Definitions

  • a centrifugal refrigerant compressor has an 9 clalmss D'awmg internal oil pump consisting of an oil pumping plate on the u.s.c
  • the field of the invention is centrifugal refrigerant compressors of the type disclosed in the US. Pat. No. 3,163,999 of J. L. Ditzler and R. T. Kirchner, in which an impeller is driven by stepup speed gearing by an enclosed electric motor.
  • centrifugal refrigerant compressors of the type disclosed in the US. Pat. No. 3,163,999 of J. L. Ditzler and R. T. Kirchner, in which an impeller is driven by stepup speed gearing by an enclosed electric motor.
  • Such compressors have been lubricated, during operation, by external oil pumps driven by electric motors.
  • This invention uses such an external pump for startup, and uses an internal oil pump for circulating the oil through the bearings of the compressor after startup.
  • a centrifugal refrigerant compressor has its gas impeller driven by stepup speed gearing by an internal electric motor.
  • the shaft of the impeller and that of the motor have bearings.
  • the impeller shaft has attached thereto an oil-pumping plate, which with an associated thrust plate, acts as an oil pump when the compressor is operating at normal speed.
  • An external oil pump driven by an electric motor circulates oil through the internal oil pump and the bearings at startup of the compressor.
  • a pressurestat responsive to the oil pressure opens a normally closed switch that turns off the motor of the external oil pump, although both pumps could be continued in operation if that is desired.
  • FIGS. 1A and 11B together are a diagrammatic view of a centrifugal refrigerant compressor, and a lubrication system of the latter, embodying this invention, with an external oil pump and gas and oil separator unit shown, on FIG. 1B, in section;
  • FIG. 2 is an enlarged side view, in section, of the oilpumping plate; its associated thrust plate, and the adjacent compressor structure, of FIG. IA;
  • FIG. 3 is a view along the lines 3-3 of FIG. 2, of the face of the oil-pumping plate that faces the thrust plate;
  • FIG. 4 is a section along the lines of FIG. 3;
  • FIG. 5 is an enlarged side view, in section, of the check valve within the external oil pump and gas and oil separator unit of FIG. IB.
  • centrifugal compressor C is of the type disclosed in the previously mentioned patent. It has an impeller 10, has a gas inlet passage Ill aligned with the inlet of the impeller 10, and has a scroll-shaped wall 12 around the impeller 16.
  • the impeller has a shaft 113 with bearings 14 and I5, and having a pinion gear 16 attached thereto between the bearings 14 and 15.
  • the inner end of the shaft 13 has an oil-pumping plate 18 attached thereto.
  • a thrust plate 19 extends around the shaft I3 closely adjacent to the plate 13.
  • a speed stepup gear 20 is meshed with the gear I6, and is attached to motor shaft 21 having bearings 22 and 23 on opposite sides of the gear 20.
  • the inner end of the shaft 21 has rotor 25 of compressor motor CM attached thereto.
  • the motor CM has a stator 26 with windings 39, and has lead wires 27, 26 and 29 connected to the windings 39.
  • the bearing 14 has an oil supply passage 33, and an oil drain passage 34.
  • the bearing has an oil supply passage 35, and an oil drain passage 36.
  • the bearing 23 has an oil supply passage 46, and an oil drain passage 41.
  • the oil supply passages 33, 35, 37 and 46 connect with a common oil supply passage 43.
  • the oil drain passages 34, 36, 38 and 41 connect with a common oil drain passage 44.
  • the thrust plate 19 has an oil inlet passage 52 which connects through tube 55 with the outlet of a conventional jet pump 56, and has an oil outlet passage 57 which connects through tube 53, filter 59, cooler 60, check valve 61 and tube 62 with standby oil supply tank 63.
  • the latter has a piston-type plate 64 therein, and between the bottom of the latter and the bottom of the tank 63 is a coiled spring 65 which urges the plate 64 upwardly.
  • a tube 66 connects the tube 62 to the internal oil supply passage 43.
  • Tube 67 connects with the tube 66, and connects through check valve 68 with the inlet of the jet pump 56.
  • the latter has a nozzle 70 therein which converges from its inlet towards and discharges into cylindrical outlet passage 71 within the pump 56.
  • Tube 72 connected to the oil outlet of a conventional, external, oil pump and oil and gas separator unit 73 connects with the interior of the pump 56 between the nozzle 76 and the passage 71.
  • the internal oil drain passage 44 is connected by tube 74 to the oil inlet of the unit 73.
  • the latter is similar in construction and operation to the unit 47 disclosed in the previously mentioned patent.
  • Refrigerant is separated from the oil within the unit 73, and passes through tube 76 into the gas inlet passage 11 of the compressor C.
  • the unit 73 contains a centrifugal oil pump 77 driven by shaft 78 of electric motor 79.
  • the outlet of the pump 77 is connected by tube 81 and check valve to the tube 72.
  • the details of the check valve 80 are shown by FIG. 5 of the drawings.
  • a pressurestat 83 having a normally open switch 84, and another pressurestat 85 having a normally closed switch 86, are connected by tube 87 to the tubes 67 and 74.
  • the compressor motor wires 27, 28 and 29 are connected by wires 88, 89 and 90 respectively, to switches 91, 92 and 93 respectively, of compressor motor starter CMS.
  • the switches 91, 92 and 93 are connected to electric supply lines L3, L2 and L1 respectively.
  • the starter CMS has an energizing winding 94 connected through switch 95 of control thermostat 96 and through the pressurestat switch 84 to the line L1, and connected directly to the line L2.
  • the motor 79 of the pump 77 within the unit 73 is connected by wire 97 and the thermostat switch 95 to the line L1, and by wire 98 and the pressurestat switch 86 to the line L2.
  • the oil inlet passage 52 connects through passages 100 and 101 with passage 102 within the thrust plate 19.
  • the passage 102 connects with passages 103 within the plate 19, which converge towards the shaft 13, and which connect with annular passage 104 around the shaft 13.
  • the passage 104 connects with the space between the plates 18 and I9, and through passages 105 extending through the plate I8, with the space between the plate 13 and a thrust plate 106 attached to inner wall 107, and connects with passage 108 around the plate 18.
  • the passage 108 connects through passage I09 within the plate 19, and through passages I10 and III with the oil outlet passage 57.
  • the oil pumping plate 18 has radial slots 114 closed at their outer ends, and connecting at their inner ends with the passage 164. Between adjacent slots 114 are flat outer face portions 115, each containing a dimple 116.
  • the check valve 80 (within the unit 73) has an oil inlet opening in its inner end and which connects with the oil tube 81 of FIG. 118; has an oil inlet opening 141 in its outer end and which connects with the oil sump of the unit 73, and has an oil outlet opening 142 in its top which connects with the oil outlet tube 72.
  • the check valve 80 has a cylindrical passage 144 near its inner end; has a cylindrical passage 148 coaxial with and having a smaller diameter than the passage 144, near its longitudinal center, and has a cylindrical passage 145 near its outer end coaxial with and having a smaller diameter than the passage 148.
  • the passage 145 connects with the oil inlet opening 141 and with the oil outlet opening 142.
  • a piston rod 146 is slidable within the passage 145, and has a piston head 147 on its inner end which is slidable within the passage 144.
  • the head 147 and the inner end portion of the piston rod 146 have an axial passage 150 which connects with the inlet opening 140.
  • the rod 146 has an annular slot 149 which connects with the outer ends of radial passages 151, the inner ends of which connect with the passage 156.
  • a coiled spring extends around the piston rod 146; has its inner end within a slot in the head 147, and has its outer end within the passage 146 in contact with wall 157 at the outer end of the passage 146.
  • thermostat 96 When the thermostat 96 calls for cooling, it closes its switch 95 which energizes, through the closed switch 86 of the pressurestat 85, the motor 79 of the external oil pump 77.
  • the closed thermostat switch 95 also energizes, after a time delay, the winding 94 of the compressor motor starter CMS, through the switch 84 of the pressurestat 83, which closes when the oil pressure from the pump 77 has increased to normal pressure.
  • the external oil pump 77 draws drained oil from the bearings of the compressor C through the tubes 74 and 44.
  • the oil pressure against the piston head 147 within the check valve 80 within the unit 73 causes the piston rod 146 to move to the left (facing FIG. 5), covering with its left end, the oil inlet opening 141 which connects with the oil sump of the unit 73.
  • the spring 155 is compressed by this movement.
  • This movement of the piston rod 146 aligns the annular slot 149 with the oil outlet opening 142 so that oil entering the inlet opening 140 flows through the passages 150 and 151 into the slot 149 and from the latter into the oil outlet opening 142, and from the latter through the tube 72 into the jet pump 56.
  • the oil flowing from the external pump 77 through the tube 72 into the jet pump 56 also by injector action, aids in producing the above described flow through the check valve 68, the tubes 67, 66, and 62 etc.
  • the oil pressure produced by its oil-pumping plate 18 added to that produced by the external oil pump 77 provides an oil pressure sufficiently above normal for the pressurestat 85 to open its switch 86, deenergizing the motor 79 of the external oil pump 77, stopping the latter.
  • the reduced oil pressure at the oil inlet 140 of the check valve 80 within the unit 73 permits the spring 155 to move the piston rod 146 to the right (facing FIG. 5) to the position shown by FIG. 5, uncovering the oil inlet opening 141 connecting with the oil sump of the unit 73, and moving the slot 149 from alignment with the oil outlet opening 142.
  • the outlet opening 142 and the tube 72 are connected through the passage 145 and the oil inlet opening 141 with the oil within the oil sump.
  • the oil flowing from the oil-pumping plate 18 throughthe tube 67 and the check valve 68 into the jet pump 56 induces through the tube 72, the opening 142 in the check valve 80, and the opening 141 in the latter, the flow of oil from the oil sump within the unit 73 into the jet pump 56, and forces that oil through the tube 55 and the following tubes and passages into the passage 104.
  • Makeup oil flows into the oil sump within the unit 73 from the bearings of the compressor through the passage 44 and the tube 74.
  • the pressurestat and its switch 86 can be omitted so that the pump 77 operates continuously while the compressor is operating.
  • the mixture of refrigerant with the lubricating oil of a refrigerant compressor makes the stability of the oil supply critical to pressure drops. This invention reduces the chances of such pressure drops, and enables a smaller and less expensive external pump to be used at startup.
  • said pumping plate having centrifugal oil-pumping means facing said thrust plate;
  • said pumping means having an oil inlet at said shaft;
  • said pumping means having an oil outlet around the periphery of said pumping plate
  • a lubrication system as claimed in claim 1 in which: said external pump is within a unit having an oil sump into which said oil drained from said bearings is supplied, and
  • said means for energizing said second motor includes means for deenergizing-said second motor after said first motor is energized;
  • said second inlet of said jet pump is connected to said outlet of said external pumpby a check valve having a first inlet opening connecting with said outlet of said external pump, having a second inlet opening connecting with said sump, having an outlet opening connecting with said second inlet of said jet pump, and having means responsive to oil pressure at said first inlet opening for connecting said first inlet opening with said outlet opening, and closing off said second inlet opening when said second motor is energized, and for disconnecting said first inlet opening and said outlet opening, and connecting said second inlet opening with said outlet opening when said second motor is deenergized.
  • a lubrication system as claimed in claim 2 in which:
  • a standby oil tank is connected to said means for connecting said outlet of said pumping means to said outlet of said external pump, to receive oil from said outlet of said pumping means;
  • said tank has a spring-loaded piston therein which is depressed by entry of oil into said tank.
  • a lubrication system as claimed in claim 1 in which:
  • a standby oil tank is connected to said means for connecting said outlet of said pumping means to said outlet of said external pump, to receive oil from said outlet of said pumping means;
  • said tank has a spring-loaded piston therein which is depressed by entry of oil into said tank.
  • a lubrication system as claimed in claim 1 in which:
  • said means for energizing said first motor comprises a pressurestat responsive to the pressure of the oil from said outlet of said pumping means, and having a normally open switch which closes when said pressure increases to a predetermined pressure;
  • said pumping plate having centrifugal oil-pumping means facing said thrust plate;
  • said pumping means having an oil inlet at said first shaft;
  • said pumping means having an oil outlet around the periphery of said pumping plate
  • a jet pump having its outlet connected to said inlet of said pumping means, having a first inlet connected to said outlet of said pumping means, having an internal nozzle converging towards said outlet of said jet pump, and having a second inlet connecting with the space within said jet pump around the inner end of said nozzle, and connected to the outlet of said external pump.
  • a lubrication system as claimed in claim 6 in which:
  • said external pump is within a unit having an oil sump into which said oil drained from said bearings is supplied, and with which said inlet of said external pump connects;
  • said means for energizing said second motor includes means for deenergizing said second motor after said first motor is energized;
  • said second inlet of said jet pump is connected to said outlet of said external pump by a check valve having a first oil inlet opening connecting with said outlet of said external pump, having a second inlet opening connecting with said sump, having an outlet opening connecting with said second inlet of said jet pump, and having means responsive to oil pressure at said first inlet opening for connecting said first inlet opening with said outlet opening and closing said second inlet opening when said second motor is energized, and'for disconnecting said first inlet opening from said outlet opening and connecting said second inlet opening with said outlet opening when said second motor is deenergized.
  • a lubrication system as claimed in claim 6 in which: a standby Oll tank is connected to said means for connecting open switch which closes when said pressure increases to a predetermined pressure;
  • said means for energizing said second motor comprises a pressurestat responsive to said pressure, and having a normally closed switch which opens when said pressure increases to a predetermined pressure above said firstmentioned predetermined pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A centrifugal refrigerant compressor has an internal oil pump consisting of an oil pumping plate on the shaft of its impeller, and a thrust plate. At startup of the compressor, an external oil pump circulates oil through the internal pump and the bearings of the compressor. When the compressor speed approaches normal, an oil pressurestat opens a switch which turns off the external pump, and the internal pump circulates the oil.

Description

United States Patent 230/207X 230/207X 230/207X 230/207 230/207 230/207 184/6 lnventors John G. Johnson [56] References Cited Waynesboro; George N. Miller, Jr., Staunton, Va. UNITED STATES PATENTS AppL 807 01 2,102,344 12/1937 Wishart piled Mal. 17,1969 2,602,680 7/1952 Church Patented Apr. 20, 1971 g f et Assignee Westinghouse Electric Corporation f pinsburghpm 3,221,984 12/1965 D tzler 3,240,424 3/1966 Richardson 3,375,903 4/1968 Swearingen Primary Examiner-Manuel A. Antonakas Attorney-F. l-l. Henson OIL ITUMPING F ABSTRACT: A centrifugal refrigerant compressor has an 9 clalmss D'awmg internal oil pump consisting of an oil pumping plate on the u.s.c|. 184/6, Shaft of its impeller, and a thrust P At Stamp of the 417/13 compressor, an external oil pump circulates oil through the Int. Cl Fl6n 13/22 internal P p and the bearihgs of the compressol" when the Field ofSearch 184/6,6 compressor speed approaches normal, an oil p tat (Y), 6 (C), 6 (L), 6 (1)), 6 (A 230/17 207; opens a switch which turns off the external pump, and the 417/13 internal pump circulates the oil.
58 59 I so 1 51s,: czurmrucm. I2 compnrsson c 9o\ as l ,2 B "1 I r" i 1 s2 1 I 1 .4 I l 1 15 T 55 IO l LJEE'? II 1 I I I e- I55? I :22! 1 l 235 I #.=,====1 i AE .41 r gflgz'oflw /L l,... 1' 37 1 1 I 4 I 'I' 26 A I p l i 3 58{ Uu-4JFjk- L -J- STAND BY OIL SUPPLY TANK 63] 'JOHN G. JOHNSON, GEORGE N.MILLER,JR. BYW ATTORNEY SHEET 3 W3 PATENTED APR20 15m sow, ERWJR.
ORNEY INVE JOHN G. J
GEORGE NM! BYW Q.
on. rmvirrno SYSTEM BACKGROUND OF THE INVENTION The field of the invention is centrifugal refrigerant compressors of the type disclosed in the US. Pat. No. 3,163,999 of J. L. Ditzler and R. T. Kirchner, in which an impeller is driven by stepup speed gearing by an enclosed electric motor. In the past, such compressors have been lubricated, during operation, by external oil pumps driven by electric motors.
This invention uses such an external pump for startup, and uses an internal oil pump for circulating the oil through the bearings of the compressor after startup.
SUMMARY OF THE INVENTION A centrifugal refrigerant compressor has its gas impeller driven by stepup speed gearing by an internal electric motor. The shaft of the impeller and that of the motor have bearings. The impeller shaft has attached thereto an oil-pumping plate, which with an associated thrust plate, acts as an oil pump when the compressor is operating at normal speed. An external oil pump driven by an electric motor, circulates oil through the internal oil pump and the bearings at startup of the compressor. When the compressor reaches operating speed, a pressurestat responsive to the oil pressure, opens a normally closed switch that turns off the motor of the external oil pump, although both pumps could be continued in operation if that is desired.
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A and 11B together are a diagrammatic view of a centrifugal refrigerant compressor, and a lubrication system of the latter, embodying this invention, with an external oil pump and gas and oil separator unit shown, on FIG. 1B, in section;
FIG. 2 is an enlarged side view, in section, of the oilpumping plate; its associated thrust plate, and the adjacent compressor structure, of FIG. IA;
FIG. 3 is a view along the lines 3-3 of FIG. 2, of the face of the oil-pumping plate that faces the thrust plate;
FIG. 4 is a section along the lines of FIG. 3; and
FIG. 5 is an enlarged side view, in section, of the check valve within the external oil pump and gas and oil separator unit of FIG. IB.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring first to FIGS. IA and 13 of the drawings, centrifugal compressor C is of the type disclosed in the previously mentioned patent. It has an impeller 10, has a gas inlet passage Ill aligned with the inlet of the impeller 10, and has a scroll-shaped wall 12 around the impeller 16. The impeller has a shaft 113 with bearings 14 and I5, and having a pinion gear 16 attached thereto between the bearings 14 and 15. The inner end of the shaft 13 has an oil-pumping plate 18 attached thereto. A thrust plate 19 extends around the shaft I3 closely adjacent to the plate 13. A speed stepup gear 20 is meshed with the gear I6, and is attached to motor shaft 21 having bearings 22 and 23 on opposite sides of the gear 20. The inner end of the shaft 21 has rotor 25 of compressor motor CM attached thereto. The motor CM has a stator 26 with windings 39, and has lead wires 27, 26 and 29 connected to the windings 39.
The bearing 14 has an oil supply passage 33, and an oil drain passage 34. The bearing has an oil supply passage 35, and an oil drain passage 36. The bearing 23 has an oil supply passage 46, and an oil drain passage 41. The oil supply passages 33, 35, 37 and 46 connect with a common oil supply passage 43. The oil drain passages 34, 36, 38 and 41 connect with a common oil drain passage 44.
The thrust plate 19 has an oil inlet passage 52 which connects through tube 55 with the outlet of a conventional jet pump 56, and has an oil outlet passage 57 which connects through tube 53, filter 59, cooler 60, check valve 61 and tube 62 with standby oil supply tank 63. The latter has a piston-type plate 64 therein, and between the bottom of the latter and the bottom of the tank 63 is a coiled spring 65 which urges the plate 64 upwardly. A tube 66 connects the tube 62 to the internal oil supply passage 43. Tube 67 connects with the tube 66, and connects through check valve 68 with the inlet of the jet pump 56. The latter has a nozzle 70 therein which converges from its inlet towards and discharges into cylindrical outlet passage 71 within the pump 56. Tube 72 connected to the oil outlet of a conventional, external, oil pump and oil and gas separator unit 73, connects with the interior of the pump 56 between the nozzle 76 and the passage 71. The internal oil drain passage 44 is connected by tube 74 to the oil inlet of the unit 73. The latter is similar in construction and operation to the unit 47 disclosed in the previously mentioned patent. Refrigerant is separated from the oil within the unit 73, and passes through tube 76 into the gas inlet passage 11 of the compressor C. The unit 73 contains a centrifugal oil pump 77 driven by shaft 78 of electric motor 79. The outlet of the pump 77 is connected by tube 81 and check valve to the tube 72. The details of the check valve 80 are shown by FIG. 5 of the drawings. A pressurestat 83 having a normally open switch 84, and another pressurestat 85 having a normally closed switch 86, are connected by tube 87 to the tubes 67 and 74.
The compressor motor wires 27, 28 and 29 are connected by wires 88, 89 and 90 respectively, to switches 91, 92 and 93 respectively, of compressor motor starter CMS. The switches 91, 92 and 93 are connected to electric supply lines L3, L2 and L1 respectively. The starter CMS has an energizing winding 94 connected through switch 95 of control thermostat 96 and through the pressurestat switch 84 to the line L1, and connected directly to the line L2. The motor 79 of the pump 77 within the unit 73, is connected by wire 97 and the thermostat switch 95 to the line L1, and by wire 98 and the pressurestat switch 86 to the line L2.
Referring now to FIG. 2, the oil inlet passage 52 connects through passages 100 and 101 with passage 102 within the thrust plate 19. The passage 102 connects with passages 103 within the plate 19, which converge towards the shaft 13, and which connect with annular passage 104 around the shaft 13. The passage 104 connects with the space between the plates 18 and I9, and through passages 105 extending through the plate I8, with the space between the plate 13 and a thrust plate 106 attached to inner wall 107, and connects with passage 108 around the plate 18. The passage 108 connects through passage I09 within the plate 19, and through passages I10 and III with the oil outlet passage 57.
Referring now to FIGS. 2, 3 and 4 of the drawings, the oil pumping plate 18 has radial slots 114 closed at their outer ends, and connecting at their inner ends with the passage 164. Between adjacent slots 114 are flat outer face portions 115, each containing a dimple 116.
Referring now to FIG. 5 of the drawings, the check valve 80 (within the unit 73) has an oil inlet opening in its inner end and which connects with the oil tube 81 of FIG. 118; has an oil inlet opening 141 in its outer end and which connects with the oil sump of the unit 73, and has an oil outlet opening 142 in its top which connects with the oil outlet tube 72. The check valve 80 has a cylindrical passage 144 near its inner end; has a cylindrical passage 148 coaxial with and having a smaller diameter than the passage 144, near its longitudinal center, and has a cylindrical passage 145 near its outer end coaxial with and having a smaller diameter than the passage 148. The passage 145 connects with the oil inlet opening 141 and with the oil outlet opening 142. A piston rod 146 is slidable within the passage 145, and has a piston head 147 on its inner end which is slidable within the passage 144. The head 147 and the inner end portion of the piston rod 146 have an axial passage 150 which connects with the inlet opening 140. The rod 146 has an annular slot 149 which connects with the outer ends of radial passages 151, the inner ends of which connect with the passage 156. A coiled spring extends around the piston rod 146; has its inner end within a slot in the head 147, and has its outer end within the passage 146 in contact with wall 157 at the outer end of the passage 146.
OPERATION When the thermostat 96 calls for cooling, it closes its switch 95 which energizes, through the closed switch 86 of the pressurestat 85, the motor 79 of the external oil pump 77. The closed thermostat switch 95 also energizes, after a time delay, the winding 94 of the compressor motor starter CMS, through the switch 84 of the pressurestat 83, which closes when the oil pressure from the pump 77 has increased to normal pressure.
The external oil pump 77 draws drained oil from the bearings of the compressor C through the tubes 74 and 44. When the pump 77 is up to speed, the oil pressure against the piston head 147 within the check valve 80 within the unit 73, causes the piston rod 146 to move to the left (facing FIG. 5), covering with its left end, the oil inlet opening 141 which connects with the oil sump of the unit 73. The spring 155 is compressed by this movement. This movement of the piston rod 146 aligns the annular slot 149 with the oil outlet opening 142 so that oil entering the inlet opening 140 flows through the passages 150 and 151 into the slot 149 and from the latter into the oil outlet opening 142, and from the latter through the tube 72 into the jet pump 56. Oil flows from the jet pump 56 through the tube 55 and the passages 52, 100, 102 and 103 into the passage 104. Oil flows from the passage 104 through the passages 105 into the space between the inner face of the plate 18 and the adjacent face of the thrust plate 106. When the compressor rotor comes up to speed, the plate 18 moves from closely to the plate 106 to closely adjacent to the plate 19.
Oil flows from the passage 104 into the inner ends of the radial slots 114. Since the outer ends of the latter are closed, centrifugal force causes pressure to be built up within them, causing oil to flow from them onto the flat faces 115 of the plate 18, and then into the dimples 116. The pressure built up in the dimples 116 causes oil to flow from them into the space between the oil-pumping plate 18 and the thrust plate 19, and through the passages 108, 109, 110 and 111 into the oil outlet passage 57. Oil flows from the latter through the tube 58, the filter 59, the cooler 60, the check valve 61 and the tube 62 into the tank 63, and through the tube 66, the internal oil supply passage 43, and the internal passages 33, 35, 37 and 40 to the bearings 14, 15, 23 and 22 respectively. Oil also flows from the tube 66 through the tube 67, and the check valve 68 into the inlet of the jet pump 56. The oil flowing from the external pump 77 through the tube 72 into the jet pump 56, also by injector action, aids in producing the above described flow through the check valve 68, the tubes 67, 66, and 62 etc.
When the oil pressure is normal, the oil flowing into the tank 63 forces the piston-type plate 64 downwardly against the resistance of the spring 65, storing oil within the space between the plate 64 and the top of the tank 63. When the oil pressure within the lubrication system decreases below normal as caused by power failure or any other reason, the spring 65 forces the plate 64 upwardly, supplying oil under pressure back into the lubrication system.
When the rotor of the compressor C is up to speed, the oil pressure produced by its oil-pumping plate 18 added to that produced by the external oil pump 77 provides an oil pressure sufficiently above normal for the pressurestat 85 to open its switch 86, deenergizing the motor 79 of the external oil pump 77, stopping the latter. The reduced oil pressure at the oil inlet 140 of the check valve 80 within the unit 73, permits the spring 155 to move the piston rod 146 to the right (facing FIG. 5) to the position shown by FIG. 5, uncovering the oil inlet opening 141 connecting with the oil sump of the unit 73, and moving the slot 149 from alignment with the oil outlet opening 142. The outlet opening 142 and the tube 72 are connected through the passage 145 and the oil inlet opening 141 with the oil within the oil sump. The oil flowing from the oil-pumping plate 18 throughthe tube 67 and the check valve 68 into the jet pump 56 induces through the tube 72, the opening 142 in the check valve 80, and the opening 141 in the latter, the flow of oil from the oil sump within the unit 73 into the jet pump 56, and forces that oil through the tube 55 and the following tubes and passages into the passage 104. Makeup oil flows into the oil sump within the unit 73 from the bearings of the compressor through the passage 44 and the tube 74.
If it is desired to provide higher than normal oil pressures, the pressurestat and its switch 86 can be omitted so that the pump 77 operates continuously while the compressor is operating.
The mixture of refrigerant with the lubricating oil of a refrigerant compressor makes the stability of the oil supply critical to pressure drops. This invention reduces the chances of such pressure drops, and enables a smaller and less expensive external pump to be used at startup.
We claim:
1. A lubrication system for a refrigerant compressor having a first electric motor, having means including a rotary shaft for driving said compressor by said motor, and having bearings around said shaft, comprising:
an oil-pumping plate on said shaft;
a thrust plate around said shaft adjacent to said pumping plate;
said pumping plate having centrifugal oil-pumping means facing said thrust plate;
said pumping means having an oil inlet at said shaft;
said pumping means having an oil outlet around the periphery of said pumping plate;
means connecting said outlet to the oil inlets of said bearings;
an external oil pump;
a second electric motor for driving said pumps;
means for supplying oil drained from said bearings to the inlet of said pump;
means for connecting the outlet of said pump to said oil inlet of said pumping means;
means for energizing said second motor;
means for energizing said first motor after said second motor is energized;
and means for connecting said outlet of said pumping means to said outlet of said pump comprising, a jet pump having its outlet connected to said inlet of said pumping means, having a first inlet connected to said outlet of said pumping means, having an internal nozzle converging towards said outlet of said jet pump, and having a second inlet connecting with space within said jet pump around the inner end of said nozzle, and connected to said outlet of said external pump. 9 2. A lubrication system as claimed in claim 1 in which: said external pump is within a unit having an oil sump into which said oil drained from said bearings is supplied, and
with which said inlet of said external pump connects; said means for energizing said second motor includes means for deenergizing-said second motor after said first motor is energized;
and said second inlet of said jet pump is connected to said outlet of said external pumpby a check valve having a first inlet opening connecting with said outlet of said external pump, having a second inlet opening connecting with said sump, having an outlet opening connecting with said second inlet of said jet pump, and having means responsive to oil pressure at said first inlet opening for connecting said first inlet opening with said outlet opening, and closing off said second inlet opening when said second motor is energized, and for disconnecting said first inlet opening and said outlet opening, and connecting said second inlet opening with said outlet opening when said second motor is deenergized.
3. A lubrication system as claimed in claim 2 in which:
a standby oil tank is connected to said means for connecting said outlet of said pumping means to said outlet of said external pump, to receive oil from said outlet of said pumping means;
and in which said tank has a spring-loaded piston therein which is depressed by entry of oil into said tank.
4. A lubrication system as claimed in claim 1 in which:
a standby oil tank is connected to said means for connecting said outlet of said pumping means to said outlet of said external pump, to receive oil from said outlet of said pumping means;
and in which said tank has a spring-loaded piston therein which is depressed by entry of oil into said tank.
5. A lubrication system as claimed in claim 1 in which:
said means for energizing said first motor comprises a pressurestat responsive to the pressure of the oil from said outlet of said pumping means, and having a normally open switch which closes when said pressure increases to a predetermined pressure;
6. A lubrication system for a centrifugal refrigerant compressor having an impeller, having a first shaft with a pinion gear thereon for driving said impeller, having bearings around said shaft, having a second shaft with a gear thereon having a larger diameter than and meshed with said pinion gear, having bearings around said second shaft, and having a first electric motor having its rotor on said second shaft, comprising:
an oil-pumping plate on said first shaft;
a thrust plate around said first shaft adjacent to said pumping plate;
said pumping plate having centrifugal oil-pumping means facing said thrust plate;
said pumping means having an oil inlet at said first shaft;
said pumping means having an oil outlet around the periphery of said pumping plate;
means connecting said outlet to the oil inlets of said bearings;
an external oil pump;
a second electric motor for driving said pump;
means for supplying oil drained from said bearings into the inlet of said pump;
means for connecting the outlet of said pump to said oil inlet of said pumping means;
means for energizing said second motor;
means for energizing said first motor after said second motor is energized; and
means for connecting said outlet of said pumping means to said outlet of said pump comprising, a jet pump having its outlet connected to said inlet of said pumping means, having a first inlet connected to said outlet of said pumping means, having an internal nozzle converging towards said outlet of said jet pump, and having a second inlet connecting with the space within said jet pump around the inner end of said nozzle, and connected to the outlet of said external pump.
7. A lubrication system as claimed in claim 6 in which:
said external pump is within a unit having an oil sump into which said oil drained from said bearings is supplied, and with which said inlet of said external pump connects;
said means for energizing said second motor includes means for deenergizing said second motor after said first motor is energized;
and said second inlet of said jet pump is connected to said outlet of said external pump by a check valve having a first oil inlet opening connecting with said outlet of said external pump, having a second inlet opening connecting with said sump, having an outlet opening connecting with said second inlet of said jet pump, and having means responsive to oil pressure at said first inlet opening for connecting said first inlet opening with said outlet opening and closing said second inlet opening when said second motor is energized, and'for disconnecting said first inlet opening from said outlet opening and connecting said second inlet opening with said outlet opening when said second motor is deenergized.
8. A lubrication system as claimed in claim 6 in which: a standby Oll tank is connected to said means for connecting open switch which closes when said pressure increases to a predetermined pressure;
and said means for energizing said second motor comprises a pressurestat responsive to said pressure, and having a normally closed switch which opens when said pressure increases to a predetermined pressure above said firstmentioned predetermined pressure.

Claims (9)

1. A lubrication system for a refrigerant compressor having a first electric motor, having means including a rotary shaft for driving said compressor by said motor, and having bearings around said shaft, comprising: an oil-pumping plate on said shaft; a thrust plate around said shaft adjacent to said pumping plate; said pumping plate having centrifugal oil-pumping means facing said thrust plate; said pumping means having an oil inlet at said shaft; said pumping means having an oil outlet around the periphery of said pumping plate; means connecting said outlet to the oil inlets of said bearings; an external oil pump; a second electric motor for driving said pumps; means for supplying oil drained from said bearings to the inlet of said pump; means for connecting the outlet of said pump to said oil inlet of said pumping means; means for energizing said second motor; means for energizing said first motor after said second motor is energized; and means for connecting said outlet of said pumping means to said outlet of said pump comprising, a jet pump having its outlet connected to said inlet of said pumping means, having a first inlet connected to said outlet of said pumping means, having an internal nozzle converging towards said outlet of said jet pump, and having a second inlet connecting with space within said jet pump around the inner end of said nozzle, and connected to said outlet of said external pump.
2. A lubrication system as claimed in claim 1 in which: said external pump is within a unit having an oil sUmp into which said oil drained from said bearings is supplied, and with which said inlet of said external pump connects; said means for energizing said second motor includes means for deenergizing said second motor after said first motor is energized; and said second inlet of said jet pump is connected to said outlet of said external pump by a check valve having a first inlet opening connecting with said outlet of said external pump, having a second inlet opening connecting with said sump, having an outlet opening connecting with said second inlet of said jet pump, and having means responsive to oil pressure at said first inlet opening for connecting said first inlet opening with said outlet opening, and closing off said second inlet opening when said second motor is energized, and for disconnecting said first inlet opening and said outlet opening, and connecting said second inlet opening with said outlet opening when said second motor is deenergized.
3. A lubrication system as claimed in claim 2 in which: a standby oil tank is connected to said means for connecting said outlet of said pumping means to said outlet of said external pump, to receive oil from said outlet of said pumping means; and in which said tank has a spring-loaded piston therein which is depressed by entry of oil into said tank.
4. A lubrication system as claimed in claim 1 in which: a standby oil tank is connected to said means for connecting said outlet of said pumping means to said outlet of said external pump, to receive oil from said outlet of said pumping means; and in which said tank has a spring-loaded piston therein which is depressed by entry of oil into said tank.
5. A lubrication system as claimed in claim 1 in which: said means for energizing said first motor comprises a pressurestat responsive to the pressure of the oil from said outlet of said pumping means, and having a normally open switch which closes when said pressure increases to a predetermined pressure;
6. A lubrication system for a centrifugal refrigerant compressor having an impeller, having a first shaft with a pinion gear thereon for driving said impeller, having bearings around said shaft, having a second shaft with a gear thereon having a larger diameter than and meshed with said pinion gear, having bearings around said second shaft, and having a first electric motor having its rotor on said second shaft, comprising: an oil-pumping plate on said first shaft; a thrust plate around said first shaft adjacent to said pumping plate; said pumping plate having centrifugal oil-pumping means facing said thrust plate; said pumping means having an oil inlet at said first shaft; said pumping means having an oil outlet around the periphery of said pumping plate; means connecting said outlet to the oil inlets of said bearings; an external oil pump; a second electric motor for driving said pump; means for supplying oil drained from said bearings into the inlet of said pump; means for connecting the outlet of said pump to said oil inlet of said pumping means; means for energizing said second motor; means for energizing said first motor after said second motor is energized; and means for connecting said outlet of said pumping means to said outlet of said pump comprising, a jet pump having its outlet connected to said inlet of said pumping means, having a first inlet connected to said outlet of said pumping means, having an internal nozzle converging towards said outlet of said jet pump, and having a second inlet connecting with the space within said jet pump around the inner end of said nozzle, and connected to the outlet of said external pump.
7. A lubrication system as claimed in claim 6 in which: said external pump is within a unit having an oil sump into which said oil drained from said bearings is supplied, and with which said inlet of said external pump connects; said means for energizing said second motor includes means for deenergizing said second motor after said first motor is energized; and said second inlet of said jet pump is connected to said outlet of said external pump by a check valve having a first oil inlet opening connecting with said outlet of said external pump, having a second inlet opening connecting with said sump, having an outlet opening connecting with said second inlet of said jet pump, and having means responsive to oil pressure at said first inlet opening for connecting said first inlet opening with said outlet opening and closing said second inlet opening when said second motor is energized, and for disconnecting said first inlet opening from said outlet opening and connecting said second inlet opening with said outlet opening when said second motor is deenergized.
8. A lubrication system as claimed in claim 6 in which: a standby oil tank is connected to said means for connecting said outlet of said pumping means to said outlet of said external pump, to receive oil from said outlet of said pumping means; and in which said tank has a spring-loaded piston therein which is depressed by entry of oil into said tank.
9. A lubrication system as claimed in claim 6 in which: said means for energizing said first motor comprises a pressurestat responsive to the pressure of the oil from said outlet of said pumping means; and having a normally open switch which closes when said pressure increases to a predetermined pressure; and said means for energizing said second motor comprises a pressurestat responsive to said pressure, and having a normally closed switch which opens when said pressure increases to a predetermined pressure above said first-mentioned predetermined pressure.
US807801A 1969-03-17 1969-03-17 Oil pumping system Expired - Lifetime US3575264A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80780169A 1969-03-17 1969-03-17

Publications (1)

Publication Number Publication Date
US3575264A true US3575264A (en) 1971-04-20

Family

ID=25197198

Family Applications (1)

Application Number Title Priority Date Filing Date
US807801A Expired - Lifetime US3575264A (en) 1969-03-17 1969-03-17 Oil pumping system

Country Status (2)

Country Link
US (1) US3575264A (en)
JP (1) JPS4836362B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3685617A (en) * 1971-01-06 1972-08-22 Borg Warner Bearing and lubrication means
US4213307A (en) * 1978-11-13 1980-07-22 Westinghouse Electric Corp. Oil separation and return system for centrifugal refrigerant compressors
FR2593858A1 (en) * 1986-02-03 1987-08-07 Mitsubishi Heavy Ind Ltd CENTRIFUGAL COMPRESSOR
EP0530133A1 (en) * 1991-08-22 1993-03-03 Carrier Corporation Oil channeling in a centrifugal compressor transmission
WO1997021055A1 (en) * 1995-12-05 1997-06-12 Westinghouse Electric Corporation A sub-sea pumping system and an associated method
US6537045B2 (en) 2000-07-05 2003-03-25 Tecumseh Products Company Rotating machine having lubricant-containing recesses on a bearing surface
US20090139936A1 (en) * 2007-11-30 2009-06-04 Next Generation Filtration Systems, Lp Fluid purification and manifold systems and methods
US20110000859A1 (en) * 2009-07-03 2011-01-06 Next Generation Filtration Systems, Lp Fluid purification level control apparatuses and methods
US20110000835A1 (en) * 2009-07-03 2011-01-06 Next Generation Filtration Systems, Lp Fluid purification pump control apparatuses and methods
US20110000858A1 (en) * 2009-07-03 2011-01-06 Next Generation Filtration Systems, Lp Fluid purification pressure control apparatuses and methods
US20110226685A1 (en) * 2007-11-30 2011-09-22 Next Generation Filtration Systems, Lp Fluid purification systems and methods
US20120191322A1 (en) * 2011-01-20 2012-07-26 Ecomotors International, Inc. Controlling an Engine Having an Electronically-Controlled Turbocharger
US20160040915A1 (en) * 2013-03-25 2016-02-11 Carrier Corporation Compressor Bearing Cooling
US20180347601A1 (en) * 2017-06-05 2018-12-06 Energy Recovery, Inc. Hydraulic energy transfer system with filtering system
US10711799B2 (en) 2012-05-09 2020-07-14 Nuovo Pignone Srl Pressure equalizer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2102344A (en) * 1935-01-23 1937-12-14 William W Wishart Compressor
US2602680A (en) * 1950-04-25 1952-07-08 Worthington Pump & Mach Corp Shutdown seal control for elastic fluid compressors
US3163999A (en) * 1962-08-01 1965-01-05 Westinghouse Electric Corp Centrifugal compressor lubricating and motor cooling systems
US3184157A (en) * 1962-06-20 1965-05-18 Gen Motors Corp Refrigerating apparatus
US3221984A (en) * 1964-04-16 1965-12-07 Westinghouse Electric Corp Oil supply systems for refrigerant compressors
US3240424A (en) * 1964-07-01 1966-03-15 Westinghouse Electric Corp Oil supply systems for refrigerant compressors
US3375903A (en) * 1965-06-30 1968-04-02 Judson S. Swearingen Anticavitational rotational power absorber and bearing lubrication system therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2102344A (en) * 1935-01-23 1937-12-14 William W Wishart Compressor
US2602680A (en) * 1950-04-25 1952-07-08 Worthington Pump & Mach Corp Shutdown seal control for elastic fluid compressors
US3184157A (en) * 1962-06-20 1965-05-18 Gen Motors Corp Refrigerating apparatus
US3163999A (en) * 1962-08-01 1965-01-05 Westinghouse Electric Corp Centrifugal compressor lubricating and motor cooling systems
US3221984A (en) * 1964-04-16 1965-12-07 Westinghouse Electric Corp Oil supply systems for refrigerant compressors
US3240424A (en) * 1964-07-01 1966-03-15 Westinghouse Electric Corp Oil supply systems for refrigerant compressors
US3375903A (en) * 1965-06-30 1968-04-02 Judson S. Swearingen Anticavitational rotational power absorber and bearing lubrication system therefor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3685617A (en) * 1971-01-06 1972-08-22 Borg Warner Bearing and lubrication means
US4213307A (en) * 1978-11-13 1980-07-22 Westinghouse Electric Corp. Oil separation and return system for centrifugal refrigerant compressors
FR2593858A1 (en) * 1986-02-03 1987-08-07 Mitsubishi Heavy Ind Ltd CENTRIFUGAL COMPRESSOR
EP0530133A1 (en) * 1991-08-22 1993-03-03 Carrier Corporation Oil channeling in a centrifugal compressor transmission
WO1997021055A1 (en) * 1995-12-05 1997-06-12 Westinghouse Electric Corporation A sub-sea pumping system and an associated method
AU702921B2 (en) * 1995-12-05 1999-03-11 Westinghouse Government Services Company Llc A sub-sea pumping system and an associated method
US6537045B2 (en) 2000-07-05 2003-03-25 Tecumseh Products Company Rotating machine having lubricant-containing recesses on a bearing surface
US8216460B2 (en) 2007-11-30 2012-07-10 Next Generation Filtration Systems, Lp Fluid purification and manifold systems and methods
US20110226685A1 (en) * 2007-11-30 2011-09-22 Next Generation Filtration Systems, Lp Fluid purification systems and methods
US8246820B2 (en) 2007-11-30 2012-08-21 Next Generation Filtration Systems, Lp Fluid purification systems and methods
US20090139936A1 (en) * 2007-11-30 2009-06-04 Next Generation Filtration Systems, Lp Fluid purification and manifold systems and methods
US20130175225A1 (en) * 2009-07-03 2013-07-11 Next Generation Filtration Systems, Lp Fluid purification pump control apparatuses and methods
US8623219B2 (en) 2009-07-03 2014-01-07 Next Generation Filtration Systems, Lp Fluid purification level control apparatuses and methods
US20110000858A1 (en) * 2009-07-03 2011-01-06 Next Generation Filtration Systems, Lp Fluid purification pressure control apparatuses and methods
US20110000835A1 (en) * 2009-07-03 2011-01-06 Next Generation Filtration Systems, Lp Fluid purification pump control apparatuses and methods
US8409435B2 (en) * 2009-07-03 2013-04-02 Next Generation Filtration Systems, Lp Fluid purification pump control apparatuses and methods
US20110000859A1 (en) * 2009-07-03 2011-01-06 Next Generation Filtration Systems, Lp Fluid purification level control apparatuses and methods
US8623218B2 (en) 2009-07-03 2014-01-07 Next Generation Filtration Systems, Lp Fluid purification pressure control apparatuses and methods
US20120191322A1 (en) * 2011-01-20 2012-07-26 Ecomotors International, Inc. Controlling an Engine Having an Electronically-Controlled Turbocharger
US8935077B2 (en) * 2011-01-20 2015-01-13 Ecomotors, Inc. Controlling an engine having an electronically-controlled turbocharger
US10711799B2 (en) 2012-05-09 2020-07-14 Nuovo Pignone Srl Pressure equalizer
US20160040915A1 (en) * 2013-03-25 2016-02-11 Carrier Corporation Compressor Bearing Cooling
US10228168B2 (en) * 2013-03-25 2019-03-12 Carrier Corporation Compressor bearing cooling
US20180347601A1 (en) * 2017-06-05 2018-12-06 Energy Recovery, Inc. Hydraulic energy transfer system with filtering system
US10550857B2 (en) * 2017-06-05 2020-02-04 Energy Recovery, Inc. Hydraulic energy transfer system with filtering system
US11092169B2 (en) 2017-06-05 2021-08-17 Energy Recovery, Inc. Hydraulic energy transfer system with filtering system

Also Published As

Publication number Publication date
JPS4836362B1 (en) 1973-11-05

Similar Documents

Publication Publication Date Title
US3575264A (en) Oil pumping system
CN101915239B (en) Scroll machine
US4781542A (en) Hermetically-sealed compressor with motor
US4889471A (en) Mechanism for prevention of burning of bearing portions in a hermetic type scroll compressor
KR100751282B1 (en) Horizontal scroll compressor
TW533273B (en) Plural compressors
KR100696607B1 (en) Scroll compressor for natural gas
JP2006230145A (en) Submerged turbine generator
KR20000023223A (en) Oil free screw compressor
JPH05346268A (en) Back pressure valve
US2225228A (en) Compressor lubrication
US3334808A (en) Compressor lubrication arrangement
US3082937A (en) Refrigerating apparatus
US2825286A (en) Motor driven pumps
US3311292A (en) Comprbssoe lubrication during reverse rotation
US4543046A (en) Rotary compressor
JPS6352237B2 (en)
US4756664A (en) Scavenge oil system
US3229901A (en) Refrigerant compressor
US2152056A (en) Sealed unit
US2246275A (en) Rotary pump
US2845030A (en) Scavenge pump
GB1090079A (en) Oil lubrication system for refrigeration apparatus
JPH03149391A (en) Scroll compressor
US4683984A (en) Scavenge oil system

Legal Events

Date Code Title Description
AS Assignment

Owner name: MCQUAY-PERFEX, INC., A CORP. OF MN, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WESTINGHOUSE ELECTRIC CORPORATION, A CORP. OF PA;REEL/FRAME:003954/0610

Effective date: 19820204

Owner name: MCQUAY-PERFEX, INC., MINNEAPOLIS, MN A CORP. OF MN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WESTINGHOUSE ELECTRIC CORPORATION, A CORP. OF PA;REEL/FRAME:003954/0610

Effective date: 19820204

AS Assignment

Owner name: MCQUAY INC.

Free format text: CHANGE OF NAME;ASSIGNOR:MCQUAY-PREFEX INC.;REEL/FRAME:004190/0553

Effective date: 19830528

AS Assignment

Owner name: SNYDER GENERAL CORPORATION, STATELESS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCQUAY INC.;REEL/FRAME:004607/0047

Effective date: 19860327

Owner name: SNYDER GENERAL CORPORATION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MCQUAY INC.;REEL/FRAME:004607/0047

Effective date: 19860327

AS Assignment

Owner name: CITICORP INDUSTRIAL CREDIT, INC., 2700 DIAMOND SHA

Free format text: SECURITY INTEREST;ASSIGNOR:MCQUAY INC., A MN CORP.;REEL/FRAME:004690/0296

Effective date: 19841102

AS Assignment

Owner name: CITICORP INDUSTRIAL CREDIT INC.,TEXAS

Free format text: SECURITY INTEREST;ASSIGNOR:SNYDERGENERAL CORPORATION;REEL/FRAME:004765/0735

Effective date: 19870630

Owner name: CITICORP INDUSTRIAL CREDIT INC., 2700 DIAMOND SHAM

Free format text: SECURITY INTEREST;ASSIGNOR:SNYDERGENERAL CORPORATION;REEL/FRAME:004765/0735

Effective date: 19870630

AS Assignment

Owner name: CITICORP NORTH AMERICA, INC., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:SNYDERGENERAL CORPORATION, A MN CORP.;REEL/FRAME:005013/0592

Effective date: 19881117

AS Assignment

Owner name: MCQUAY INC., A CORP. OF MINNESOTA, MINNESOTA

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP NORTH AMERICA, INC.;REEL/FRAME:005278/0013

Effective date: 19881117

Owner name: SNYDERGENERAL CORPORATION, A CORP. OF MINNESOTA, T

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP NORTH AMERICA, INC.;REEL/FRAME:005278/0013

Effective date: 19881117

AS Assignment

Owner name: SNYDERGENERAL CORPORATION A CORP. OF DELAWARE

Free format text: RELEASE BY SECOND PARTY OF A SECURITY AGREEMENT RECORDED AT REEL 5013 FRAME 592.;ASSIGNOR:CITICORP NORTH AMERICA, INC. A CORP. OF DELAWARE;REEL/FRAME:006104/0270

Effective date: 19920326