US3569918A - Multipiece electrical contact - Google Patents

Multipiece electrical contact Download PDF

Info

Publication number
US3569918A
US3569918A US872568A US3569918DA US3569918A US 3569918 A US3569918 A US 3569918A US 872568 A US872568 A US 872568A US 3569918D A US3569918D A US 3569918DA US 3569918 A US3569918 A US 3569918A
Authority
US
United States
Prior art keywords
contact
insulator
bore
shoulder
multipiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US872568A
Inventor
Bruce K Arnold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
ITT Inc
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Application granted granted Critical
Publication of US3569918A publication Critical patent/US3569918A/en
Assigned to ITT CORPORATION reassignment ITT CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members

Definitions

  • a multipiece electrical contact having a mating portion, the front end of which is adapted to be interconnected with the mating portion of another electrical contact' MULTIPIECE ELECTRICAL CONTACT
  • the invention relates in general to multipiece electrical contacts, and more particularly, to a contact retention system for mounting in a monoblock insulator.
  • the pin or socket contact may be assembled with a separate retaining device attached to the body of the contact.
  • the contact is then inserted into a single piece insulator body by pushing the contact into the insulator.
  • the retaining member permanently locks the contact in the insulator.
  • the use of separate retaining devices on the contact requires stringent process control to ensure minimum contact axial displacement under load and minimum contact splay.
  • the present invention utilizes a monoblock insulator which eliminates the shortcomings of two-piece insulator construction.
  • axial displacement under load can be controlled and completely eliminated if desired.
  • replacement of bad contacts is possible as the contact is removable, thus eliminating the necessity of discarding the entire connector assembly.
  • the cost of the contacts are greatly reduced and the ability to automate both the construction of the contacts and assembly thereof into an insulator is enhanced.
  • FIG. 1 depicts an exploded view of a preferred embodiment of a pin contact prior to mounting in an insulator in accordance with the invention
  • FIG. 2 shows the pin contact of FIG. I mounted in an insulator
  • FIG. 3 illustrates a socket contact utilizing the assembly technique of the type shown in FIGS. 1 and 2 and which may be mated with the pin contact of FIG. 1.
  • FIG. 1 there is shown an exploded view of the two-piece pin contact in accordance with the invention prior to mounting in an insulator member 12.
  • the contact comprises a mating portion 14 and a termination portion 16.
  • the front end of the contact comprises a pin member 18 for mating with a typical socket contact.
  • the rear end of the pin member 18 is connected to an enlarged collar 22 formed of a cylindrical section 24 and a tapered front section 26 whose rear diameter is equal to the cylindrical section 24 and whose front diameter tapers so that it is equal at its front end to the pin member 18, and is made integral therewith.
  • the rear end of the collar 22 has'a rearward facing shoulder 28.
  • Extending rearwardly axially from the portion 24 of the collar 22 is a cylindrical shank member 32 having a slightly tapered rear end 34.
  • the main portion of the shank member 32 contains, around its outer surface, axially extending knurls 36.
  • the termination portion 16 of the contact is formed of a rear cylindrical member 42 which terminates in an enlarged collar 44, and forward cylindrical section 46 extending forwardly from the front end of the collar 44.
  • the forward facing surface of the collar forms a shoulder 48.
  • a front opening bore 52 in the member 16 extends through the entire length of the cylindrical section 46, the collar 44, and into the front end of the rear cylindrical member 42.
  • the bore 52 is tapered as at 54 at the front end of the section 46.
  • a rearwardly opening bore 56 in the member 42 forms a solder pot.
  • a rear portion of the member 42 is removed as at 58 so as to form the solder pot as is conventional.
  • the mating portion and termination portion of the contact are designed to be mounted in an insulator member such as member 12.
  • the insulator member 12 contains a central bore portion 62 and an enlarged forward bore portion 64 having a forward facing shoulder 66, and an enlarged rear bore 68 having a rearward facing shoulder 72 formedat the junction of the bores 62 and 68.
  • contact is assembled in the insulator 14 with the shank member 32 extending first into the bore 64 and the front cylindrical section 46 extending into the bore 68.
  • the shank member 32 enters the bore 52 and forms a tight fit therein.
  • the knurls 36 facilitate insertion of the shank.
  • the forward facing shoulder 48 abuts the rearward facing shoulder 72 and the rearward facing shoulder 28 abuts the forward facing shoulder 66 of the insulator.
  • FIG. 3 there is shown an alternative configuration wherein a socket contact 82 is utilized in place of the mating portion 14.
  • a socket contact 82 contains a hooded front end 84 which is connected to a collar 86 by means of reduced diameter sections 88 and 90.
  • the rear end of the collar contains a knurled shank 92 for insertion into the bore 52 of the termination portion 16 in a manner depicted in FIG. 2.
  • mating portion 18 or 82 and termination portion 16 of two piece construction, that different materials could be used for each portion.
  • mating portion 14 could be made of a high strength conductive alloy such as leaded nickel copper
  • the socket contact 82 could be made of beryllium copper
  • terminal portion 16, which forms a solder pot could be made of an inexpensive brass, each portion advantageously using the metal to the best ability.
  • a multipiece electrical contact for assembly in a onepiece insulator member comprising:
  • said insulator member having a front end and a rear end and having a bore with a forward facing shoulder formed at one end of said bore and rearward facing shoulder formed at the other end of said bore; and multipiece contact being formed of a mating portion and a terminating portion, said mating portion having a rearward facing shoulder and said terminating portion having a forward facing shoulder, said mating portion and said terminating portion being inserted from the front end and the rear end, respectively, of said insulator member and wherein said contact portions are secured to each other and wherein said rearward facing shoulder of said mating portion abuts said forward facing shoulder of said insulator member and said forward shoulder of said terminating portion abuts said rearward facing shoulder of said insulator member, one of said portions having a cylindrical member extending from its shoulder into said bore and the other of said portions having a shank member extending from its shoulder into said bore and mating with said cylindrical member and forming a tight fit therewith.

Abstract

A multipiece electrical contact having a mating portion, the front end of which is adapted to be interconnected with the mating portion of another electrical contact and a termination portion, the rear end of which is adapted to be secured to a conductor. One of the portions has a member extending therefrom for insertion into a bore formed at the other end of the other portion with the insertion of the member into the bore forming a tight fit. Each of the portions may contain shoulders which abut shoulders of an insulating member so that the contact may be captivated in the insulator.

Description

United States Patent l 13,569,918
72] Inventor Bruce -Ar 181,648 8/1876 Disston 145/108X pasadellatcalif- 2,154,012 4/1939 Rhodes 85/39 1 PP 872,568 6 FOREIGN PATENTS ggfg g': f 574,406 3/1924 France 339/214 [73] Assignee lntemafionalTelephoneandTelegraph 649,739 1/1951 GreatBntam 339/215 Corporation Primary ExaminerMarvin A. Champion New York, N.Y. Assistant Examiner-Robert A. Hafer [54] MULTIPIECE ELECTRICAL CONTACT Attorneys-C. Cornell Remsen, Jr., Walter J. Baum, Paul W. Hemminger, Percy P. Lantzy and Thomas E. Kristofferson ABSTRACT: A multipiece electrical contact having a mating portion, the front end of which is adapted to be interconnected with the mating portion of another electrical contact' MULTIPIECE ELECTRICAL CONTACT The invention relates in general to multipiece electrical contacts, and more particularly, to a contact retention system for mounting in a monoblock insulator.
BACKGROUND OF THE INVENTION Conventional pin and socket contacts have been mounted in an insulator by utilizing a retaining shoulder around the body of the contact which is captivated between a front and rear insulator. Such a technique requires the separate molding to two individual insulators which must later be combined. Further, because of this two-piece insulator construction, moisture or contamination between the two insulators can result in a voltage breakdown or otherwise reduce the electrical capabilities of the connector.
Alternatively, the pin or socket contact may be assembled with a separate retaining device attached to the body of the contact. The contact is then inserted into a single piece insulator body by pushing the contact into the insulator. When the contact is in position, the retaining member permanently locks the contact in the insulator. However, the use of separate retaining devices on the contact requires stringent process control to ensure minimum contact axial displacement under load and minimum contact splay.
More frequently, however, the retaining members have been molded in or assembled in the contact insulator cavity. A typical type contact retention system of the type which is formed in the insulator is described in Us. Pat. No. 3,158,424. In such an arrangement axial displacement and contact splay can be more easily controlled than when the contact retaining device is mounted directly on the contact itself. However, stringent process control is still required.
A still further technique would be to mold the pin or socket contact directlyinto the insulator. However, as is readily apparent, not only is molded-in construction usually more costly to produce, but in multicontact arrangements, if one contact is bad, there is no way to replace the contact and the entire assembly must be discarded.
In order to overcome the attendant disadvantages of prior art contacts for mounting in an insulator assembly, the present invention utilizes a monoblock insulator which eliminates the shortcomings of two-piece insulator construction. By adjusting the dimensions and tolerances of the novel contact, axial displacement under load can be controlled and completely eliminated if desired. Further, replacement of bad contacts is possible as the contact is removable, thus eliminating the necessity of discarding the entire connector assembly. Moreover, because of the simplicity of the components of the contact and the interchangeability thereof, the cost of the contacts are greatly reduced and the ability to automate both the construction of the contacts and assembly thereof into an insulator is enhanced.
The advantages of this invention, both as to its construction and mode of operation will be readily appreciated as the same become better understood by reference to the following detailed description when considered in connection with the accompanying drawings in which like referenced numerals designate like parts throughout the FIGS.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 depicts an exploded view of a preferred embodiment of a pin contact prior to mounting in an insulator in accordance with the invention;
FIG. 2 shows the pin contact of FIG. I mounted in an insulator; and
FIG. 3 illustrates a socket contact utilizing the assembly technique of the type shown in FIGS. 1 and 2 and which may be mated with the pin contact of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIG. 1, there is shown an exploded view of the two-piece pin contact in accordance with the invention prior to mounting in an insulator member 12. The contact comprises a mating portion 14 and a termination portion 16. The front end of the contact comprises a pin member 18 for mating with a typical socket contact. The rear end of the pin member 18 is connected to an enlarged collar 22 formed of a cylindrical section 24 and a tapered front section 26 whose rear diameter is equal to the cylindrical section 24 and whose front diameter tapers so that it is equal at its front end to the pin member 18, and is made integral therewith. The rear end of the collar 22 has'a rearward facing shoulder 28. Extending rearwardly axially from the portion 24 of the collar 22 is a cylindrical shank member 32 having a slightly tapered rear end 34. The main portion of the shank member 32 contains, around its outer surface, axially extending knurls 36.
The termination portion 16 of the contact is formed of a rear cylindrical member 42 which terminates in an enlarged collar 44, and forward cylindrical section 46 extending forwardly from the front end of the collar 44. The forward facing surface of the collar forms a shoulder 48. A front opening bore 52 in the member 16 extends through the entire length of the cylindrical section 46, the collar 44, and into the front end of the rear cylindrical member 42. The bore 52 is tapered as at 54 at the front end of the section 46. Further, a rearwardly opening bore 56 in the member 42 forms a solder pot. A rear portion of the member 42 is removed as at 58 so as to form the solder pot as is conventional.
The mating portion and termination portion of the contact are designed to be mounted in an insulator member such as member 12. The insulator member 12 contains a central bore portion 62 and an enlarged forward bore portion 64 having a forward facing shoulder 66, and an enlarged rear bore 68 having a rearward facing shoulder 72 formedat the junction of the bores 62 and 68.
Referring now to FIG. 2, as can be readily seen, contact is assembled in the insulator 14 with the shank member 32 extending first into the bore 64 and the front cylindrical section 46 extending into the bore 68. The shank member 32 enters the bore 52 and forms a tight fit therein. The knurls 36 facilitate insertion of the shank. The forward facing shoulder 48 abuts the rearward facing shoulder 72 and the rearward facing shoulder 28 abuts the forward facing shoulder 66 of the insulator. Thus, a tight fit is formed between the two portions 14 and 16 of the contact with axial movement in the insulator not possible.
Referring not to FIG. 3, there is shown an alternative configuration wherein a socket contact 82 is utilized in place of the mating portion 14. As can be readily seen, an identical termination portion 16 is utilized, although, of course, other configurations are possible. The socket contact 82 contains a hooded front end 84 which is connected to a collar 86 by means of reduced diameter sections 88 and 90. The rear end of the collar contains a knurled shank 92 for insertion into the bore 52 of the termination portion 16 in a manner depicted in FIG. 2.
Further, it should be understood that by making the mating portion 18 or 82 and termination portion 16 of two piece construction, that different materials could be used for each portion. For example, mating portion 14 could be made of a high strength conductive alloy such as leaded nickel copper, the socket contact 82 could be made of beryllium copper, and terminal portion 16, which forms a solder pot could be made of an inexpensive brass, each portion advantageously using the metal to the best ability.
Moreover, it should be understood that the contact could be utilized in environments other than as depicted and need not be mounted between the two flanges of the insulator member 12.
Also, while the bore 52 is depicted as part of the termination portion 16 and the shank member 32 as apart of the mating portion 14 it should be understood, of course, that the contact could as easily be formed with the bore as part of the mating portion and the shank member as part of the termination portion.
I claim: 1. A multipiece electrical contact for assembly in a onepiece insulator member comprising:
said insulator member having a front end and a rear end and having a bore with a forward facing shoulder formed at one end of said bore and rearward facing shoulder formed at the other end of said bore; and multipiece contact being formed of a mating portion and a terminating portion, said mating portion having a rearward facing shoulder and said terminating portion having a forward facing shoulder, said mating portion and said terminating portion being inserted from the front end and the rear end, respectively, of said insulator member and wherein said contact portions are secured to each other and wherein said rearward facing shoulder of said mating portion abuts said forward facing shoulder of said insulator member and said forward shoulder of said terminating portion abuts said rearward facing shoulder of said insulator member, one of said portions having a cylindrical member extending from its shoulder into said bore and the other of said portions having a shank member extending from its shoulder into said bore and mating with said cylindrical member and forming a tight fit therewith.
2. A multipiece electrical contact in accordance with claim 1 wherein the front end of said cylindrical member abuts the shoulder of said shank member.

Claims (2)

1. A multipiece electrical contact for assembly in a one-piece insulator member comprising: said insulator member having a front end and a rear end and having a bore with a forward facing shoulder formed at one end of said bore and rearward facing shoulder formed at the other end of said bore; and multipiece contact being formed of a mating portion and a terminating portion, said mating portion having a rearward facing shoulder and said terminating portion having a forward facing shoulder, said mating portion and said terminating portion being inserted from the front end and the rear end, respectively, of said insulator member and wherein said contact portions are secured to each other and wherein said rearward facing shoulder of said mating portion abuts said forward facing shoulder of said insulator member and said forward shoulder of said terminating portion abuts said rearward facing shoulder of said insulator member, one of said portions having a cylindrical member extending from its shoulder into said bore and the other of said portions having a shank member extending from its shoulder into said bore and mating with said cylindrical member and forming a tight fit therewith.
2. A multipiece electrical contact in accordance with claim 1 wherein the front end of said cylindrical member abuts the shoulder of said shank member.
US872568A 1969-10-30 1969-10-30 Multipiece electrical contact Expired - Lifetime US3569918A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87256869A 1969-10-30 1969-10-30

Publications (1)

Publication Number Publication Date
US3569918A true US3569918A (en) 1971-03-09

Family

ID=25359860

Family Applications (1)

Application Number Title Priority Date Filing Date
US872568A Expired - Lifetime US3569918A (en) 1969-10-30 1969-10-30 Multipiece electrical contact

Country Status (1)

Country Link
US (1) US3569918A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530551A (en) * 1984-01-12 1985-07-23 Burroughs Corp. Circuit change pin for printed wiring board
US4812129A (en) * 1987-08-06 1989-03-14 Itt Corporation Surface mount connector
US5421748A (en) * 1992-08-10 1995-06-06 Filtec Filtertechnologie Fuer Die Elektronikindustrie High-density, high-voltage-proof, multi-contact connector assembly
US6004172A (en) * 1998-04-01 1999-12-21 Tri-Star Electronics International, Inc. Two piece pin/socket contact
US20090061668A1 (en) * 2007-05-21 2009-03-05 Bruce Douglas Powell Pass-through grounding plug
US20140235111A1 (en) * 2013-02-20 2014-08-21 Super Rod Limited Cable rods
US20150263444A1 (en) * 2014-03-14 2015-09-17 Hong Fu Jin Precision Industry (Wuhan) Co., Ltd. Connector and pin of connector
US20170279210A1 (en) * 2016-03-23 2017-09-28 Te Connectivity Germany Gmbh Power-Electric Contact Device; Exchangeable Power-Electric Contact Module As Well As Power-Electric Connector
DE102019125798A1 (en) * 2019-09-25 2021-03-25 HARTING Automotive GmbH Contact element
US11247747B1 (en) * 2021-01-28 2022-02-15 Chun-Rong Chen Pedal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US181648A (en) * 1876-08-29 Improvement in securing saw-handles to blades
FR574406A (en) * 1922-12-23 1924-07-11 Thomson Houston Comp Francaise Improvements to electrical switches
US2154012A (en) * 1936-01-17 1939-04-11 Judson L Thomson Mfg Company I Rivet
GB649739A (en) * 1948-07-02 1951-01-31 Belling & Lee Ltd Improvements in pin and socket type electrical connectors
US3093887A (en) * 1958-07-11 1963-06-18 Belling & Lee Ltd Securing inserts in sheet material
US3101983A (en) * 1962-01-04 1963-08-27 Nu Line Ind Inc Mounted connector component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US181648A (en) * 1876-08-29 Improvement in securing saw-handles to blades
FR574406A (en) * 1922-12-23 1924-07-11 Thomson Houston Comp Francaise Improvements to electrical switches
US2154012A (en) * 1936-01-17 1939-04-11 Judson L Thomson Mfg Company I Rivet
GB649739A (en) * 1948-07-02 1951-01-31 Belling & Lee Ltd Improvements in pin and socket type electrical connectors
US3093887A (en) * 1958-07-11 1963-06-18 Belling & Lee Ltd Securing inserts in sheet material
US3101983A (en) * 1962-01-04 1963-08-27 Nu Line Ind Inc Mounted connector component

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530551A (en) * 1984-01-12 1985-07-23 Burroughs Corp. Circuit change pin for printed wiring board
US4812129A (en) * 1987-08-06 1989-03-14 Itt Corporation Surface mount connector
US5421748A (en) * 1992-08-10 1995-06-06 Filtec Filtertechnologie Fuer Die Elektronikindustrie High-density, high-voltage-proof, multi-contact connector assembly
US6004172A (en) * 1998-04-01 1999-12-21 Tri-Star Electronics International, Inc. Two piece pin/socket contact
US20090061668A1 (en) * 2007-05-21 2009-03-05 Bruce Douglas Powell Pass-through grounding plug
US20140235111A1 (en) * 2013-02-20 2014-08-21 Super Rod Limited Cable rods
US20150263444A1 (en) * 2014-03-14 2015-09-17 Hong Fu Jin Precision Industry (Wuhan) Co., Ltd. Connector and pin of connector
US20170279210A1 (en) * 2016-03-23 2017-09-28 Te Connectivity Germany Gmbh Power-Electric Contact Device; Exchangeable Power-Electric Contact Module As Well As Power-Electric Connector
US10256565B2 (en) * 2016-03-23 2019-04-09 Te Connectivity Germany Gmbh Power-electric contact device; exchangeable power-electric contact module as well as power-electric connector
DE102019125798A1 (en) * 2019-09-25 2021-03-25 HARTING Automotive GmbH Contact element
US11247747B1 (en) * 2021-01-28 2022-02-15 Chun-Rong Chen Pedal

Similar Documents

Publication Publication Date Title
US3564487A (en) Contact member for electrical connector
US7311566B2 (en) Electrical connectors
US4884982A (en) Capacitive coupled connector
US3054981A (en) Coaxial connectors
US3747048A (en) High voltage connector
US3242456A (en) Electrical connector with spring pin contact
US4666231A (en) Switching coaxial connector
US3569918A (en) Multipiece electrical contact
US4993964A (en) Electrical connector environmental sealing plug
US3003135A (en) Electrical contacts
US3402382A (en) Multicontact connector with removable contact members
US4701004A (en) Retention clip for electrical contacts
US5376022A (en) Electrical connector
GB1077332A (en) An electrical contact socket
US5261839A (en) Angled electrical connector
US4734051A (en) Electrical connector butt contact
US3462726A (en) Electrical connectors
EP0562652B1 (en) Electrical terminal
US3697935A (en) Terminal junction
US4044208A (en) Two-part electrical connectors and electrical interlocks including them
US4483579A (en) Electrical connector having improved coupling ring
US3094365A (en) Two-part electrical connectors
US5910031A (en) Wire to board connector
EP1215758A2 (en) A device for joining cables to an appliance connection
US3845459A (en) Dielectric sleeve for electrically and mechanically protecting exposed female contacts of an electrical connector

Legal Events

Date Code Title Description
AS Assignment

Owner name: ITT CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION;REEL/FRAME:004389/0606

Effective date: 19831122