US3568265A - Dead end of the spelter socket type for wire cables - Google Patents

Dead end of the spelter socket type for wire cables Download PDF

Info

Publication number
US3568265A
US3568265A US781570A US3568265DA US3568265A US 3568265 A US3568265 A US 3568265A US 781570 A US781570 A US 781570A US 3568265D A US3568265D A US 3568265DA US 3568265 A US3568265 A US 3568265A
Authority
US
United States
Prior art keywords
wire
socket
cable
spelter
collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US781570A
Inventor
Randolph C H Michaelsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Marine Inc
Original Assignee
Global Marine Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Marine Inc filed Critical Global Marine Inc
Application granted granted Critical
Publication of US3568265A publication Critical patent/US3568265A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G11/00Means for fastening cables or ropes to one another or to other objects; Caps or sleeves for fixing on cables or ropes
    • F16G11/04Means for fastening cables or ropes to one another or to other objects; Caps or sleeves for fixing on cables or ropes with wedging action, e.g. friction clamps
    • F16G11/042Means for fastening cables or ropes to one another or to other objects; Caps or sleeves for fixing on cables or ropes with wedging action, e.g. friction clamps using solidifying liquid material forming a wedge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T24/00Buckles, buttons, clasps, etc.
    • Y10T24/39Cord and rope holders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/4989Assembling or joining with spreading of cable strands

Abstract

A COLLAR HAVING A PLURALITY OF WIRE STRANDS IS ATTACHED TO A SPELTER SOCKET AFTER THE LATTER IS POURED AROUND A SPLAYED END OF A WIRE CABLE. THE WIRES ARE BRAIDED AROUND THE WIRE CABLE TO ENHANCE THE CABLE''S FATIGUE LIFE.

Description

.March 9, 19 1 I R. c. H. MICHAELSEN 3,563,265
- DEAD END OF THE SPELTER SOCKET TYPE FOR WIRE CABLES Filed Dec. 5, 1968 Lzui " w" W I wam United States Patent 3,568,265 DEAD END OF THE SPELTE'R SOCKET TYPE FOR WIRE CABLES Randolph C. H. Michaelsen, Malibu, Calif., assignor to Global Marine Inc., Los Angeles, Calif. Filed Dec. 5, 1968, Ser. No. 781,570 Int. Cl. F16g 11/00 US. Cl. 24-123 Claims ABSTRACT OF THE DISCLOSURE A collar having a plurality of wire strands is attached to a spelter socket after the latter is poured around a splayed end of a wire cable. The wires are braided around the wire cable to enhance the cables fatigue life.
BACKGROUND OF THE INVENTION The present invention relates to the art of wire cables and, in particular, to an improvement in dead ends of the spelter socket type and a process for fabricating the improvement.
It has long been recognized that there is a problem of wire rope or cable failure at terminal fittings or points of rigid support. Failure is due to high stress concentrations at these points. Stress concentrations are in turn due to radical changes in mass and section moduli between the wire rope and its fitting or point of rigid attachment. Failure is normally manifested by a combination of bending and torsional fatigue stresses and often accelerated by the effects of corrosion.
It has been recognized previously that failure at terminal fittings or points of rigid support of wire cable may be alleviated by a reinforcement provided by wire strands wound tightly about a length of the cable from the terminal fitting or point of rigid support.
In general, the prior art has applied reinforcement with wires integrally connected to a terminal fitting or, independently of a terminal fitting, by hand-wound wire alone applied to the cable.
However, there is one type of dead end for which these techniques of cable reinforcement have not been employed to any significant extent. This type of dead end is defined by what is commonly known as a spelter socket. A spelter socket is formed by pouring metal into a mold about a broomed or splayed end of a wire cable or rope. Typically, the cast spelter socket has a transverse hole for receiving a shackle or the like to provide means for securing the socket and cable to an object.
It has been found impractical to cast a spelter socket with the wire strands to be used as reinforcing cladding about the wire rope. One of the reasons that it is impractical to cast the wire strands with the socket is in orienting the strands properly with respect to the wire rope and mold before casting. If the strands are wrapped around the broomed or splayed end of the rope before casting, there is a tendency to collapse the splayed end, thus affecting the strength of the resultant terminal fitting in tension. On the other hand, if the wires are cast with the spelter metal such that the resulting socket has the wires anchored in it, there is difliculty in aligning the wire properly with respect to the wire rope it is to engage while not interfering with the bond of the spelter metal with the broomed section of the rope.
These problems are especially acute in the fabrication of spelter sockets because the sockets are often poured where they will be used, for example, at drilling sites.
Accordingly, there is'a present need for dead ends of the spelter socket type which may be readily supplied 3,568,265 ?atented Mar. 9, 1971 SUMMARY OF THE INVENTION The present invention provides a means whereby a spelter socket may be equipped with wire reinforcing cladding to enhance the strength of the wire cable or rope where it meets the socket.
In one form, the present invention contemplates a wire cable splayed at one end. The splayed end of the wire cable is secured in a standard spelter socket when the socket is cast. A collar is provided which is disposed about the wire cable. This collar anchors a plurality of wire strands which are used to clad and reinforce the wire cable along a length thereof proximate the formed spelter socket. The collar and spelter socket are adapted for rigid attachment one to the other around the juncture point of the wire cable with the socket after the socket has been cast.
In more specific form, the present invention contemplates that the spelter socket have a thread form about the end of the socket from which the wire cable egresses. A complementary thread is provided in the collar for engagement with threads of the spelter socket. The wire strands which are anchored to the collar may then be braided along a length of the wire cable to form a cladding after the collar has been secured to the spelter socket through the complementary threads.
It is also preferred that the strands of wire be of a length at least equal to the length of the socket. It has been found that with this minimum length of cladding wire, a very effective resistance to failure from bending and torsion loads on the wire cable adjacent the socket is alforded. The enhanced failure resistance produced by the minimum length is thought to be produced by the gradual change in mass and cross-sectional area of the wire rope and its wire strand cladding as they approach the socket. This gradual change in mass and cross-sectional area greatly reduces the stress risers at the juncture of the wire rope with the socket.
It is also preferred that the cladding wire, at least that portion of the wire directly adjacent the spelter socket, be galvanized. Galvanization of the cladding wire strands offers greater resistance to corrosion of the wire cable adjacent the socket. It has been found that the wire cable may be depleted of its anodic protection in the process of its cleaning in the preparation for the pouring or casting of' the spelter socket. The galvanization, then, provides an additional source of anodic material which would otherwise be sacrificed in its absence.
In terms of process, the present invention contemplates the pouring of a spelter socket about the splayed end of a wire cable or rope and then afiixing a collar to the poured and cooled socket at the juncture of the Wire rope with the socket. Wire cladding strands anchored to the collar are then applied about the Wire cable to provide increased resistance to cable failure from bending and torsional agencies. It is preferred, as is the case in the apparatus form of the present invention, to form a thread at the end of the spelter socket which meets the unsplayed portion of the wire. A complementary thread form on the collar then provides for the ready attachment .of the collar securely to the spelter socket.
The process and apparatus of the present invention provide a convenient, expeditious and effective way of strengthening wire cable at its juncture with a spelter socket. The inherent strength of the spelter socket form of wire dead ending is retained while a gradual transition of mass and cross-sectional area between the wire rope and the socket is provided. The galvanization of the wire strands enhance corrosion resistance which would otherwise be depleted by the preparation of the wire cable for the pouring of the socket. Attachment of the collar to the socket is readily accomplished through the complementary threads of each. By the independance of the collar and its anchored wire strands from the spelter socket, there is no problem in field fabrication of the spelter socket through alignment of the strands or adverse effect to the broomed or splayed end of the wire cable.
These and other features, aspects and advantages of the present invention will become more apparent from the following description, appended claims and drawmgs.
BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a view, partly in half section, showing a preferred form of the spelter socket, collar and wire strand cladding of the present invention;
FIG. 2 illustrates the embodiment of the invention shown in FIG. 1 with the collar secured to the spelter socket; and
FIG. 3 illustrates the embodiment of the invention shown in the previous two figures, but with the wire strands wrapped about the Wire cable.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The figures illustrate in general a spelter socket which has been poured about a splayed end 14 of a wire cable 16. An internally threaded collar 18 is disposed about the wire cable. A plurality of wire strands 20 are anchored in the collar.
A wrapping 22 of wire is applied about cable 16 between the splayed or broomed portion thereof and the remainder of the cable. This wrapping prevents unnecessary splaying of cable. The spelter socket has a transverse, open passage 24 for its anchoring by a shackle or the like to an object. The socket has a generally frusto-conical lower section 26 which converges towards external socket threads 28. Threads 28 complement threads 30 of collar 18. A rounded top, generally cylindrical portion 32 of spelter socket 10, meets frusto-conical portion 26 and defines transverse passage 24. Spelter socket 10 may be of zinc alloy and is fabricated in a manner to be described.
Wire strands 20 are galvanized in order to provide anodic protection for the resultant dead end formed by the spelter socket, wire cable, collar and wire strands. It is to be noted that the anchorage of the wire strands to collar 18 is along a diameter greater than the diameter of the wire cable. This in the formed dead end, provides for a gradual increase in mass and cross-sectional area of the wire cable and strands as they progress towards the socket. Additional gradation is effected by increasing the pitch of the wire away from the socket.
It is preferred that the wire strands be of sufficient length such that when wound on the wire cable they extend for a length at least equal to the length of the socket. This is preferred because it has been found that for such a minimum length the resistance of the wire cable to failure from torsion or bending in the vicinity of the socket is considerably enhanced. Enhanced failure resistance is believed to result from an effective transition of wire cable mass and cross-sectional area provided by the wire strands to the more massive and larger socket.
The dead end defined by the socket, wire cable, wire strands and collar is fabricated in the following manner.
After applying wire wrapping 22, wire cable 16 is splayed to define splayed section 14. Collar 18 and its depending wire strands 20 have been previously placed around the cable. With the collar and its anchored strands displaced from splayed end 14, spelter socket 10 is poured. The pouring of the socket is well known in the art but will be described briefly here. A mold of suitable configuration is provided. Molten zinc or other suitable ma- 4 terial including zinc alloys, is poured into the mold to achieve the configuration illustrated in FIG. 1. After the socket has cooled and been removed from its mold, threads 28 may be cut.
After the threads 28 have been cut, collar 18 is secured to the spelter socket. This is illustrated in FIG. 2.
Wire strands 20 are then applied to the unsplayed portion of wire cable 16 to obtain the configurations shown in FIG. 3. The application of the wire strands to the socket may be done in a number of ways, including hand wrapping. Of course, the helix formed by the wire strands in defining the resultant wire cladding follows the helix of the wire cable. When progressive pitch is desired, however, the direction but not the pitch of the wire cable helix is followed.
. The resultant dead end shown in FIG. 3, then, includes cable 16, spelter socket 10, collar 18 and the armor cladding defined by the wound or braided wire strands 20 about wire cable 16. There is an effective fatigue resisting transition of cross-sectional area and mass provided by the wire cladding from the wire cable to the socket. This desirable transition is augmented by the anchor diameter of the wire strands in collar 18 being greater than the diameter of wire cable 16. Moreover, by in creasing the pitch of the wire cable away from the socket, an even greater transition is provided.
The present invention has been described with reference to certain preferred embodiments. The spirit and scope of the appended claims should not, however, be limited to the foregoing description.
What is claimed is:
1. An improved dead end for wire cables comprising:
(a) a wire cable having a splayed end;
. (b) a spelter socket rigidly secured to the wire cable at the splayed end thereof, the spelter socket having a means of attachment to an object;
(c) a collar disposed about the wire cable, the collar and spelter socket having means for rigidly securing the collar and the spelter socket together proximate the juncture of the cable of the spelter socket; and
(d) a plurality of wire strands depending from the collar for wrapping engagement around a length of the cable to develop a protective cladding to reduce stress concentrations in the cable in the vicinity of the spelter socket.
2. The improvement claimed in claim 1 wherein the wire strands are anchored in the collar along a diameter thereof greater than the diameter of the wire cable.
3. The improvement claimed in claim 2 wherein the wire strands are galvanized to provide anodic protection.
4. The improvement claimed in claim 4 wherein the means for rigidly securing the collar and the spelter socket together include complementary threads on the spelter socket and the collar.
5. The improvement claimed in claim 4 wherein the length of the wire strands is at least equal to the overall length of the spelter socket when the wire strands are engaged on the wire cable.
6. The improvement in the art of dead ends in wire cables comprising:
(a) a spelter socket;
(b) a wire cable secured in the spelter socket and extending from the socket;
(c) a collar secured to the spelter socket at the point of egress of the wire rope; and
(d) a plurality of wire strands anchored to the collar and wrapped around the wire cable for a length thereof.
7. The improvement claimed in claim 6 wherein the wire strands are anchored in the collar along a diameter thereof spaced from the diameter of the wire cable.
8. The improvement claimed in claim 7 wherein the wire strands are galvanized to provide a source of anodic material.
9. The improvement claimed in claim 8 wherein the collar is secured to the spelter socket through mating threads on the spelter socket and collar.
'10. The improvement claimed in claim 9 wherein the end of the wire rope secured in the spelter sockets is splayed and a wire wrapping is provided at the juncture of the splayed end of the wire cable with the unsplayed portion of the cable.
References Cited UNITED STATES PATENTS 6 9/ 1927 Kocourek 24123 4/1940 Smythe 24123UX 10/ 1952 Bronovicki 24123X 9/1969 Ballard et a1 24123X FOREIGN PATENTS 4/ 1960 France 24-123 STANLEY N. GILREATH, Primary Examiner 10 W. H. SCHROEDER, Assistant Examiner US. Cl. X.R.
mg umrmn sT/mcs IA'II'IN'I owuw:
C E R 'I 1 Fl C AT 1) O F C O R R 25 CT 1 0 N 3,568,265 7 Dated March 9. 1971 Patent No.
R. C. H. Michaelsen Invcntor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the claims Claim 4, column 4, line 51 "4" should Signed and sealed this 2nd day of November I 97'] (SEAL) Attest:
EDWARD M.FLETGF.ER,JR. ROBERT GOT'ISCHALK Acting Commissioner of Patents Attesting Officer
US781570A 1968-12-05 1968-12-05 Dead end of the spelter socket type for wire cables Expired - Lifetime US3568265A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78157068A 1968-12-05 1968-12-05

Publications (1)

Publication Number Publication Date
US3568265A true US3568265A (en) 1971-03-09

Family

ID=25123182

Family Applications (1)

Application Number Title Priority Date Filing Date
US781570A Expired - Lifetime US3568265A (en) 1968-12-05 1968-12-05 Dead end of the spelter socket type for wire cables

Country Status (1)

Country Link
US (1) US3568265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001015A1 (en) 1999-06-25 2001-01-04 The Crosby Group, Inc. Wire rope socket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001015A1 (en) 1999-06-25 2001-01-04 The Crosby Group, Inc. Wire rope socket

Similar Documents

Publication Publication Date Title
US3551959A (en) Detachable socketed dead end
US4395798A (en) Method of producing a flemish eye on the end of a rope and a flemish eye device
CA1124493A (en) Wire rope termination
US1643110A (en) Attachment for wire rope and process for producing the same
US3137971A (en) Stressed concrete structures
US20040156672A1 (en) Composite tension rod terminal systems
JP2009210129A (en) Composite tension member, and method for manufacturing the same
US20150345142A1 (en) Post-Tensioned Concrete Reinforcement Anchor Assembly With Radiused Tooth Tips
US1909344A (en) Attachment for wire ropes
US2736398A (en) Guy wire construction
KR20130052616A (en) Self-aligning socket for mooring cable
US3422501A (en) End anchorage for prestressing steel strands for use in prestressed concrete structures
US3665587A (en) Process for fabricating a dead end of the spelter socket type for wire cables
US3786554A (en) Method of fabricating a field-applied gripping device
US2832118A (en) Ferrule
EP1471192B1 (en) Connecting device for concrete components
US3568265A (en) Dead end of the spelter socket type for wire cables
US3551960A (en) Dead ending device
US3514140A (en) Stay member,tension rod and end fitting
US4829871A (en) Wire fastening arrangement
US1368296A (en) Anchoring device
US3490106A (en) Cable attachments
US1797759A (en) Wire-strand unit
US1582095A (en) aatith
JPH0730717Y2 (en) Terminal structure of fiber composite strip