US3567989A - Electron tube with mesh-type cathode having emissive portions between cross strips - Google Patents

Electron tube with mesh-type cathode having emissive portions between cross strips Download PDF

Info

Publication number
US3567989A
US3567989A US770560A US3567989DA US3567989A US 3567989 A US3567989 A US 3567989A US 770560 A US770560 A US 770560A US 3567989D A US3567989D A US 3567989DA US 3567989 A US3567989 A US 3567989A
Authority
US
United States
Prior art keywords
cathode
strips
grid
cross
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US770560A
Inventor
Michio Koshizuka
Hideo Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Application granted granted Critical
Publication of US3567989A publication Critical patent/US3567989A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment

Definitions

  • This invention relates to improvements in electron tubes and more particularly to improvements in pulse transmitting triodes or tetrodes having mesh grids for diminishing the exciting power and increasing the effective cathode area.
  • the mass and the thermal capacity of a thicker cathode plate are greater than those of a thinner cathode plate, if both cathode plates have the same surface area.
  • After applying a voltage to the cathode of an electron tube it takes a certain time until it reaches the operating temperature. This time is called heating time.
  • An increase of the the thermal capacity of the cathode results in an increase of said heating time.
  • a heater-type tube has the disadvantage that the heating time is long, Thus, the use of a thick cathode base metal plate results in enhancing the disadvantage.
  • the main object of the invention is to provide a novel cathode construction which exhibits reduced heating time and which is relatively simple to manufacture.
  • a electron tube having a mesh grid structure is provided with a cathode which comprises a base metal plate of substantially uniform thickness which includes a mesh portion consisting of a plurality of substantially flat cross-strips and a plurality of depressed portions formed between the cathode cross-strips. Further provided is an electron emissive material (i.e. a thermionic material) coating the depressed portions of the cathode.
  • a cathode which comprises a base metal plate of substantially uniform thickness which includes a mesh portion consisting of a plurality of substantially flat cross-strips and a plurality of depressed portions formed between the cathode cross-strips.
  • an electron emissive material i.e. a thermionic material
  • the grid is mounted spaced from the cathode, the cross-strips of the grid projecting upon the cross-strips of the cathode.
  • the width of the cathode cross-strips is at least as great as the width of the cross-strips of the grid.
  • FIG. 1 is perspective view of a portion of a cathode and grid structure of an electron tube according to this invention
  • FIG. 2 is a sectional view taken along the lines y-y or x-x of FIG. 1;
  • FIG. 3 is a partial side view of the cathode and grid structure of FIG. 1;
  • FIG. 4 is a side view, partly broken away, of one embodiment of an electron tube according to this invention.
  • the grid 2 is a mesh which may be fabricated from a metal sheet by means of a photoengraving process or a discharge process, for example.
  • the cathode 1 comprises hollow portions 4 and cross-strips 3.
  • the mesh grid 2 and the cathode 1 are arranged maintaining the necessary gap therebetween, depending upon the particular application, and the cross-strips of the mesh grid 2 are mounted opposed to the cross-strips 3 of the cathode 1.
  • the projection of the cross-strips of the grid 2 overlap the cross-strips of the cathode I. This is more clearly seen with reference to FIG. 3.
  • 11 represents the width of the strips 3 and d, represents the width of the strips of the grid 2.
  • the parameters d and d must be maintained substantially equal.
  • the cathode and grid structure shown in FIGS. 1 through 3 may be manufactured in the following manner
  • the cathode 1 may be press-formed so that the hollowed-out portions 4 are flat portions and the cross-strips 3 are formed as convex portions.
  • the mesh structure 2 of the grid In order to obtain high linearity in the input-output electrical characteristics in an electron tube, the mesh structure 2 of the grid must be made 'as fine as possible. But, it is very difficult to produce such a fine mating cathode structure by the above described press forming method.
  • This problem can be solved by utilizing a hydroforming process in which a female mold is made by a photoengraving process and an elastic film is used as the male mold.
  • the thin cathode plate 1 is set between the male and female molds and is formed by means of oil pressure which is applied to the molds.
  • the thus formed cathode element 1 may be used as a plate or may be rolled up to form a cylindrical electrode for an electron tube.
  • the surface thereof is coated with an electron emission material.
  • the surface is then wiped off and the electronic emissive material remains only in the hollowed-out portions 4 which are shown in detail in FIGS. 1 and 2.
  • the uncoated cross-strips 3 of the cathode l are overlapped with the grid mesh 2, the proper spacing being maintained therebetween.
  • the electron radiating part 4 is concave and is coated with the electron emissive material.
  • the grid potential is more positive than the cathode potential, little current flows.
  • the apparent cathode area is relatively large and very good linearity is obtained. Since the cathode is formed from a relatively thin material, an electron tube of good linearity and having a small thermal capacity (and therefore short heating time) is obtained.
  • a cylindrical cathode 0 comprises substantially square hollowed-out portions 4 and cross-strips 3.
  • the cathode a may be a fabricated as a plate and then formed In a cylinder as shown in FIG. 4.
  • the cylindrical cathode a is mounted on a flange 6 by means of a member 5.
  • the flange 6 is mounted to the stem 11 which is partially shown for purposes of illustration only.
  • the heater which is not shown in FIG. 4, is arranged in the cathode cylinder a.
  • a cylindrical grid b is provided which comprises a mesh grid 2 and a cap 7.
  • the grid b surrounds the cylindrical cathode a.
  • the cylindrical grid b comprises a mesh grid 2 which may be manufactures from a metal sheet by photoetching or the like, both ends of the thus formed mesh grid being connected to one another by solder 8, or the like, to form a cylinder.
  • a cap 7 is then mounted on the mesh cylinder by means of solder 8 of the like.
  • the grid b is mounted to the stem 11 by means of element 9.
  • a tube is provided which comprises a cylindrical cathode a mounted to the stem, the cross-strips 3 of the cylindrical cathode being completely opposed to the crossstrips of the mesh grid 2.
  • the cathode a is shown on the right-hand side of the line 12 and the grid structure b is shown on the left-hand side of the line 12.
  • the surface of the grid 2 may be surface treated in a manner well known in the art to provide improved operation of the tube and improved emission of primary and secondary electrons.
  • a second grid structure may be arranged surrounding the first grid to provide a tetrode electron tube.
  • the voids of the mesh grid 2 may be formed in a rhombic configuration in the expanded state of the grid if the hollow portions 43 of the cathode K are regular squares. This is due to the fact that the cathode and the grid are cylindrically shaped.
  • a cathode comprising:
  • a base metal plate (1) of substantially uniform thickness including a mesh type portion consisting of a plurality of cross-strips (3) and a plurality of depressed-portions (4) formed between said cathode cross-strips (3);

Abstract

A cathode structure of substantially uniform thickness exhibiting reduced heating time in an electron tube having a mesh grid, the cathode comprising a mesh portion consisting of substantially flat cross-strips and a number of depressed portions formed between the cross-strips, the depressed portions being coated with an electronic emissive material.

Description

O United States Patent 1111 3,567,
[72] Inventors Michio Koshizuka; [56] References Cited UM, Tokyo, Japan UNITED STATES PATENTS g mig 2,047,959 7/1936 Gebhard 313/348X 1 2,445,814 7/1948 Wing, Jr. eta]... 313/348x [45] Patented Mar. 2, 1971 73] A J R di C d 3,121,048 2/1964 Haas 313/54X a e 3,130,487 4/1964 Mears 313/346X Tokyo, Japan FOREIGN PATENTS 144,556 2/1961 U.S.S.R. 313/337 54 ELECTRON TUBE WITH MESH-TYPE CATHODE Examiner-R01)? Sega HAVING EMIssIvE PORTIONS BETWEEN CROSS P Fnshauf STRIPS 6chlms4nrawmg ABSTRACT: A cathode structure of substantially uniform [52] US. Cl 313/310, thickness exhibiting reduced heating time in an electron tube 313/356, 313/353, 313/346 having a mesh grid, the cathode comprising a mesh portion [51] Int.Cl H0lj 1/16, consisting of substantially flat cross-strips and a number of H01 j 19/10 depressed portions formed between the cross-strips, the [50] Field of Search 313/54, depressed portions being coated with an electronic emissive material.
ELECTRON TUBE WITH MESH-TYPE CATHODE HAVING EMISSIVE PORTIONS BETWEEN CROSS STRIPS This invention relates to improvements in electron tubes and more particularly to improvements in pulse transmitting triodes or tetrodes having mesh grids for diminishing the exciting power and increasing the effective cathode area.
In general, the mass and the thermal capacity of a thicker cathode plate are greater than those of a thinner cathode plate, if both cathode plates have the same surface area. After applying a voltage to the cathode of an electron tube it takes a certain time until it reaches the operating temperature. This time is called heating time. An increase of the the thermal capacity of the cathode results in an increase of said heating time. However, it is desirable that the heating time be kept as short as possible. Compared with a directly heated tube, a heater-type tube has the disadvantage that the heating time is long, Thus, the use of a thick cathode base metal plate results in enhancing the disadvantage.
Therefore, the main object of the invention is to provide a novel cathode construction which exhibits reduced heating time and which is relatively simple to manufacture.
SUMMARY OF THE INVENTION According to this invention, a electron tube having a mesh grid structure is provided with a cathode which comprises a base metal plate of substantially uniform thickness which includes a mesh portion consisting of a plurality of substantially flat cross-strips and a plurality of depressed portions formed between the cathode cross-strips. Further provided is an electron emissive material (i.e. a thermionic material) coating the depressed portions of the cathode.
In a preferred embodiment the grid is mounted spaced from the cathode, the cross-strips of the grid projecting upon the cross-strips of the cathode. In this preferred embodiment, the width of the cathode cross-strips is at least as great as the width of the cross-strips of the grid.
The above and other objects of this invention will become more apparent by reference to the following description of a preferred embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is perspective view of a portion of a cathode and grid structure of an electron tube according to this invention;
FIG. 2 is a sectional view taken along the lines y-y or x-x of FIG. 1;
FIG. 3 is a partial side view of the cathode and grid structure of FIG. 1; and
FIG. 4 is a side view, partly broken away, of one embodiment of an electron tube according to this invention.
Referring to FIGS. 1 and 2, there is shown a typical cathode and grid structure according to this invention. The grid 2 is a mesh which may be fabricated from a metal sheet by means of a photoengraving process or a discharge process, for example. The cathode 1 comprises hollow portions 4 and cross-strips 3. The mesh grid 2 and the cathode 1 are arranged maintaining the necessary gap therebetween, depending upon the particular application, and the cross-strips of the mesh grid 2 are mounted opposed to the cross-strips 3 of the cathode 1. Thus, when the grid 2 is projected onto the cathode I, the projection of the cross-strips of the grid 2 overlap the cross-strips of the cathode I. This is more clearly seen with reference to FIG. 3.
With reference to FIG. 3, 11 represents the width of the strips 3 and d, represents the width of the strips of the grid 2. For the best operation of an electron tube according to this invention, the parameters d and d must be maintained substantially equal.
When the above type of grid and cathode structure is utilized in a pulse transmitting tube, a tube of high linearity and large effective cathode area having reduced heating time results. The cathode and grid structure shown in FIGS. 1 through 3 may be manufactured in the following manner The cathode base metal plate 1, comprised of material such as 3 being equal to or wider than the projection of the crossstrips of the mesh grid 2 onto the cathode 1. Alternatively, the cathode 1 may be press-formed so that the hollowed-out portions 4 are flat portions and the cross-strips 3 are formed as convex portions.
In order to obtain high linearity in the input-output electrical characteristics in an electron tube, the mesh structure 2 of the grid must be made 'as fine as possible. But, it is very difficult to produce such a fine mating cathode structure by the above described press forming method. However this problem can be solved by utilizing a hydroforming process in which a female mold is made by a photoengraving process and an elastic film is used as the male mold. The thin cathode plate 1 is set between the male and female molds and is formed by means of oil pressure which is applied to the molds. The thus formed cathode element 1 may be used as a plate or may be rolled up to form a cylindrical electrode for an electron tube. The above described hydroforming process is well known in the art, and a more detailed description thereof is deemed unnecessary for a proper understanding of this invention. Also, it should be clear that any other well-known type of manufacturing process may be used to form a fine cathode structure ac cording to this invention.
After the cathode structure is formed, the surface thereof is coated with an electron emission material. The surface is then wiped off and the electronic emissive material remains only in the hollowed-out portions 4 which are shown in detail in FIGS. 1 and 2. When the cathode l and the grid 2 are placed in a tube structure, the uncoated cross-strips 3 of the cathode l are overlapped with the grid mesh 2, the proper spacing being maintained therebetween. The electron radiating part 4 is concave and is coated with the electron emissive material. When the grid potential is more positive than the cathode potential, little current flows. The apparent cathode area is relatively large and very good linearity is obtained. Since the cathode is formed from a relatively thin material, an electron tube of good linearity and having a small thermal capacity (and therefore short heating time) is obtained.
Referring to FIG. 4, there are shown the major constituents of an embodiment of an electron tube according to this invention. In this embodiment, the electrodes are cylindrically shaped. A cylindrical cathode 0 comprises substantially square hollowed-out portions 4 and cross-strips 3. The cathode a may be a fabricated as a plate and then formed In a cylinder as shown in FIG. 4. The cylindrical cathode a is mounted on a flange 6 by means of a member 5. The flange 6 is mounted to the stem 11 which is partially shown for purposes of illustration only. The heater, which is not shown in FIG. 4, is arranged in the cathode cylinder a.
A cylindrical grid b is provided which comprises a mesh grid 2 and a cap 7. The grid b surrounds the cylindrical cathode a. The cylindrical grid b comprises a mesh grid 2 which may be manufactures from a metal sheet by photoetching or the like, both ends of the thus formed mesh grid being connected to one another by solder 8, or the like, to form a cylinder. A cap 7 is then mounted on the mesh cylinder by means of solder 8 of the like. The grid b is mounted to the stem 11 by means of element 9. Thus, a tube is provided which comprises a cylindrical cathode a mounted to the stem, the cross-strips 3 of the cylindrical cathode being completely opposed to the crossstrips of the mesh grid 2. In FIG. 4, the cathode a is shown on the right-hand side of the line 12 and the grid structure b is shown on the left-hand side of the line 12.
It is pointed out that in any type of construction of an electron tube according to this invention, the surface of the grid 2 may be surface treated in a manner well known in the art to provide improved operation of the tube and improved emission of primary and secondary electrons. Also, a second grid structure may be arranged surrounding the first grid to provide a tetrode electron tube.
In the embodiment shown in FIG. 4, the voids of the mesh grid 2 may be formed in a rhombic configuration in the expanded state of the grid if the hollow portions 43 of the cathode K are regular squares. This is due to the fact that the cathode and the grid are cylindrically shaped.
It will be obvious to those skilled in the art that many modifications are possible in structure, arrangement, proportion, and materials, used in the practice of this invention which are particularly adapted for specific environments and operating requirements, without departing from the inventive concept herein disclosed.
We claim:
1. In an electron tube having a mesh grid structure (2), a cathode comprising:
a base metal plate (1) of substantially uniform thickness including a mesh type portion consisting of a plurality of cross-strips (3) and a plurality of depressed-portions (4) formed between said cathode cross-strips (3); and
electronic emissive material coating only said depressed portions (4).
2. The tube defined in claim 1 wherein the width of said cathode cross-strips (3) is at least as great as the width of the cross-strips which comprise said mesh grid (2).
3. The tube defined in any one of claims 1 and 2 wherein said grid mesh (2) is spaced from said cathode structure, the cross-strips of said grid projecting over the cross-strips of said grid projecting over the cross-strips (3) of said cathode.
4. The tube defined in any one of claims 1, 2 and 3 wherein said grid and cathode structures are cylindrical.
5. The tube defined in claim 4 wherein said cylindrical cathode structure is mounted within and coaxial with said cylindrical grid structure.
6. The tube defined in claim 1 wherein said cathode crossstrips (3) are substantially flat.

Claims (6)

1. In an electron tube having a mesh grid structure (2), a cathode comprising: a base metal plate (1) of substantially uniform thickness including a mesh type portion consisting of a plurality of cross-strips (3) and a plurality of depressed portions (4) formed between said cathode cross-strips (3); and electronic emissive material coating only said depressed portions (4).
2. The tube defined in claim 1 wherein the width of said cathode cross-strips (3) is at least as great as the width of the cross-strips which comprise said mesh grid (2).
3. The tube defined in any one of claims 1 and 2 wherein said grid mesh (2) is spaced from said cathode structure, the cross-strips of said grid projecting over the cross-strips of said grid projecting over the cross-strips (3) of said cathode.
4. The tube defined in any one of claims 1, 2 and 3 wherein said grid and cathode structures are cylindrical.
5. The tube defined in claim 4 wherein said cylindrical cathode structure is mounted within and coaxial with said cylindrical grid structure.
6. The tube defined in claim 1 wherein said cathode cross-strips (3) are substantially flat.
US770560A 1968-10-25 1968-10-25 Electron tube with mesh-type cathode having emissive portions between cross strips Expired - Lifetime US3567989A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77056068A 1968-10-25 1968-10-25

Publications (1)

Publication Number Publication Date
US3567989A true US3567989A (en) 1971-03-02

Family

ID=25088978

Family Applications (1)

Application Number Title Priority Date Filing Date
US770560A Expired - Lifetime US3567989A (en) 1968-10-25 1968-10-25 Electron tube with mesh-type cathode having emissive portions between cross strips

Country Status (1)

Country Link
US (1) US3567989A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717503A (en) * 1970-12-15 1973-02-20 Gen Electric Method of constructing a vapor deposited bi-potential cathode
US3792513A (en) * 1970-10-30 1974-02-19 Gen Electric Quick-heating impregnated planar cathode and method of construction
US3800378A (en) * 1972-06-07 1974-04-02 Rca Corp Method of making a directly-heated cathode
US3843902A (en) * 1972-08-24 1974-10-22 Varian Associates Gridded convergent flow electron gun
US3986760A (en) * 1974-01-25 1976-10-19 Futuba Denshi Kogyo Kabushiki Kaisha Method for manufacturing a multi-digit fluorescent indicating apparatus
US4781640A (en) * 1985-01-24 1988-11-01 Varian Associates, Inc. Basket electrode shaping

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792513A (en) * 1970-10-30 1974-02-19 Gen Electric Quick-heating impregnated planar cathode and method of construction
US3717503A (en) * 1970-12-15 1973-02-20 Gen Electric Method of constructing a vapor deposited bi-potential cathode
US3800378A (en) * 1972-06-07 1974-04-02 Rca Corp Method of making a directly-heated cathode
US3843902A (en) * 1972-08-24 1974-10-22 Varian Associates Gridded convergent flow electron gun
US3986760A (en) * 1974-01-25 1976-10-19 Futuba Denshi Kogyo Kabushiki Kaisha Method for manufacturing a multi-digit fluorescent indicating apparatus
US4781640A (en) * 1985-01-24 1988-11-01 Varian Associates, Inc. Basket electrode shaping

Similar Documents

Publication Publication Date Title
US3935499A (en) Monolythic staggered mesh deflection systems for use in flat matrix CRT's
US2957106A (en) Plural beam gun
GB1417185A (en) Cathode ray tube construction
US2254095A (en) Electron beam discharge device
US3567989A (en) Electron tube with mesh-type cathode having emissive portions between cross strips
US2883576A (en) Thermionic valves
DE1292226B (en) Thermionic converter
US3008064A (en) Cathode-ray tube
US2798185A (en) Direct-viewing storage tube
US4361781A (en) Multiple electron beam cathode ray tube
US3368098A (en) Shadow mask welded to frame at twelve points
US3185879A (en) Cathode ray tube having deflection enhancement means
US4251746A (en) Direct-heated cathode structure
US2130281A (en) Electron discharge tube
US3358172A (en) Cathode ray tube with means for splitting the electron beam into individually deflected and focused beams
US3532921A (en) Cathode luminescent indicator tube having a concave grid electrode
US4370594A (en) Resistive lens structure for electron gun
US2640949A (en) Electron source
US2795840A (en) Memory tube
US3717503A (en) Method of constructing a vapor deposited bi-potential cathode
US2825832A (en) Thermionic cathode structure
US2568705A (en) Nonsputtering cathode for electron discharge devices
US2233795A (en) Electron discharge device
US2465385A (en) Electrode arrangement for electron discharge devices
US2321149A (en) Coating of thermionic cathodes