US3565824A - Catalyst for setting finishes on cellulosic textiles - Google Patents
Catalyst for setting finishes on cellulosic textiles Download PDFInfo
- Publication number
- US3565824A US3565824A US763469A US3565824DA US3565824A US 3565824 A US3565824 A US 3565824A US 763469 A US763469 A US 763469A US 3565824D A US3565824D A US 3565824DA US 3565824 A US3565824 A US 3565824A
- Authority
- US
- United States
- Prior art keywords
- acid
- catalyst
- parts
- formaldehyde
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title abstract description 45
- 239000004753 textile Substances 0.000 title description 8
- 239000000203 mixture Substances 0.000 abstract description 41
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 abstract description 22
- -1 MAGNESIUM HALIDE Chemical class 0.000 abstract description 15
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 abstract description 10
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 abstract description 10
- 229910052749 magnesium Inorganic materials 0.000 abstract description 9
- 239000011777 magnesium Substances 0.000 abstract description 9
- 229940091250 magnesium supplement Drugs 0.000 abstract description 9
- 230000002195 synergetic effect Effects 0.000 abstract description 9
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 abstract description 6
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 abstract description 6
- 239000002657 fibrous material Substances 0.000 abstract description 6
- 235000002906 tartaric acid Nutrition 0.000 abstract description 6
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical class OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 abstract description 5
- 150000001735 carboxylic acids Chemical class 0.000 abstract description 5
- 239000011975 tartaric acid Chemical class 0.000 abstract description 5
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical class OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 abstract description 3
- RMIODHQZRUFFFF-UHFFFAOYSA-N methoxyacetic acid Chemical class COCC(O)=O RMIODHQZRUFFFF-UHFFFAOYSA-N 0.000 abstract description 2
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical class [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 abstract 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 27
- 239000004744 fabric Substances 0.000 description 21
- 239000003795 chemical substances by application Substances 0.000 description 20
- 239000002253 acid Substances 0.000 description 14
- 229920000742 Cotton Polymers 0.000 description 8
- 125000003545 alkoxy group Chemical group 0.000 description 8
- 235000019256 formaldehyde Nutrition 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- DTSBYIWBBRRVIY-BJDJZHNGSA-N Asp-Met-Met-Cys Chemical compound CSCC[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CC(=O)O)N DTSBYIWBBRRVIY-BJDJZHNGSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- FBFVXSBCWUNIQI-UHFFFAOYSA-N desmethoxymajusculamide C Natural products CN1C(=O)C(C(C)C)N(C)C(=O)CNC(=O)C(C(C)CC)N(C)C(=O)CNC(=O)C(C(C)CC)OC(=O)C(C)C(CC)NC(=O)C(C)NC(=O)C(C)(C)C(=O)C(C)NC(=O)C1CC1=CC=CC=C1 FBFVXSBCWUNIQI-UHFFFAOYSA-N 0.000 description 2
- WVJOGYWFVNTSAU-UHFFFAOYSA-N dimethylol ethylene urea Chemical compound OCN1CCN(CO)C1=O WVJOGYWFVNTSAU-UHFFFAOYSA-N 0.000 description 2
- YAMHXTCMCPHKLN-UHFFFAOYSA-N imidazolidin-2-one Chemical compound O=C1NCCN1 YAMHXTCMCPHKLN-UHFFFAOYSA-N 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- SXVDZIOMWSPFCO-UHFFFAOYSA-N methyl n,n-bis(hydroxymethyl)carbamate Chemical compound COC(=O)N(CO)CO SXVDZIOMWSPFCO-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 150000007519 polyprotic acids Polymers 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical class CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- BTDQXGUEVVTAMD-UHFFFAOYSA-N 2-hydroxyethyl carbamate Chemical compound NC(=O)OCCO BTDQXGUEVVTAMD-UHFFFAOYSA-N 0.000 description 1
- QAQJKDRAJZWQCM-UHFFFAOYSA-N 2-methoxyethyl carbamate Chemical compound COCCOC(N)=O QAQJKDRAJZWQCM-UHFFFAOYSA-N 0.000 description 1
- NNTWKXKLHMTGBU-UHFFFAOYSA-N 4,5-dihydroxyimidazolidin-2-one Chemical compound OC1NC(=O)NC1O NNTWKXKLHMTGBU-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical compound NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- VPVSTMAPERLKKM-UHFFFAOYSA-N glycoluril Chemical compound N1C(=O)NC2NC(=O)NC21 VPVSTMAPERLKKM-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 229960002337 magnesium chloride Drugs 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Natural products OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/26—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/04—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/12—Aldehydes; Ketones
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/12—Aldehydes; Ketones
- D06M13/127—Mono-aldehydes, e.g. formaldehyde; Monoketones
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/39—Aldehyde resins; Ketone resins; Polyacetals
- D06M15/423—Amino-aldehyde resins
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3005—Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers
- H03G3/301—Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers the gain being continuously variable
Definitions
- This invention relates to catalyst compositions for setting finishes on cellulosic fibrous materials. More specifically, it deals with catalyst compositions having unexpected synergistic properties for setting crosslinking finishes on cellulosic fibrous materials. Still more specifically, it relates to catalyst compositions consisting of magnesium halides and hydroxy or alkoxy substituted carboxylic acids. Another object of our invention is to provide novel methods for improving the wrinkle resistance and smooth drying properties of cellulosic materials at lower temperatures and shorter heating periods.
- the term setting as used herein relates to the reaction of a finishing agent with cellulose to provide wrinkle resistance and smooth drying properties to the cellulosic material.
- cellulosic fibrous materials includes natural or synthetic fibers, yarns, woven fabrics, or nonwoven fabrics. Since the primary interest in cellulosic mateirals is cotton, it will frequently be used below as illustrative of cellulosic fibrous materials.
- Finishes are often applied to cellulosic fabrics to improve their resistance to wrinkling and their ability to dry smooth after laundering.
- the finishing processes usually consist in the application of a finishing agent and a catalyst to the fabric followed by drying the fabric and then heating the fabric to cure the finishing agent.
- agents commonly used are formaldehyde and condensates of formaldehyde with organic amido compounds, such as urea, melamine, imidoazolidinone, and carbamates from which polymethylol derivatives are formed. Under the influence of the catalyst and heat, these agents react with the cellulose of the fabric, or with themselves, to produce durable improvements in the wrinkle-resistance and smooth-drying properties of the fabric.
- Acidic catalysts are usually required for these reactions.
- the catalyst cannot be too acidic without causing the agents to react prematurely with themselves, or with the solvent before they are applied to the cellulosic fabric. Should this occur, the treatment would be ineffective.
- the acidity of the catalyst cannot be too low without requiring heating temperatures high enough to damage the cellulose, or an excessively long period of heating (curing).
- the catalyst must not be lost by volatilization before the reactions on the fabric are complete.
- Catalysts in use meet these requirements to a greater or lesser extent. Among them are ammonium-, amine-, and metal-salts of inorganic acids, and organic acids.
- a particularly effective catalyst composition is formed from a mixture of a magnesium halide and a hydroxy, or alkoxy, substituted carboxylic acid, for instance magnesium chloride hexahydrate and citric acid in a ratio of from about 25 to parts to about 75 to 25 parts, respectively, with the preferred ratio being about 40 to 60.
- Other magnesium halides and/or other hydroxy or alkoxy substituted acids may be substituted in these mixtures in molar equivalent amounts.
- molar equivalent amounts is meant that the other halides used should be equivalent to the 25-75 parts magnesium chloride hexahydrate; and the other substituted carboxylic acids used should be equivalent to about 75-25 parts citric acid, parts being by weight.
- the hydroxy or alkoxy group is essentially in the organic acid since acids such as citric, glycolic, hydroxybutyric, methoxyacetic and tartaric acids are very effective while acids that do not contain hydroxyl or alkoxyl groups, such as maleic and succinic acids, do not give compositions with exceptional catalytic action, i.e., do not show a synergistic effect.
- finishing agents A broader field of finishing agents is made available. With the novel catalyst compositions of this invention, some finishing agents can now be used that could not be used previously with the less effective catalysts of the prior art. This can be important where it is necessary to avoid unwanted side effects that are produced in the finished textile by many of the presently available agents.
- these catalyst compositions are effective with methylol derivatives of urea, ethyleneurea, dihydroxyethyleneurea, melamine, acetylenediurea, methyl carbarnate, ethyl carbamate, isopropyl carbarnate, hydroxyethyl carbamate, methoxyethyl carbamate, ethyl triazone, hydroxyethyl triazone, urone, and their ethers.
- the fabric used was 80 x 80 cotton printcloth which had been desized, scoured, and bleached.
- Bound nitrogen was determined by the standard Kjeldahl method.
- Dry crease recovery angle was determined by the ASTM method from Standards on Textile Materials, 1955, Philadelphia, Pa.
- Wet crease recovery angles were determined by first soaking the finished fabric for five minutes at 150 F. in a 0.1 percent solution of a nonionic detergent, removing the excess solution by blotting, and then measuring the crease recovery angle by the method described above for dry crease recovery.
- EXAMPLE 1 Aqueous solutions were prepared, containing 8% formaldehyde and various amounts of catalysts.
- the mixed catalyst referred to in the Table I is a mixture of citric acid and magnesium chloride hexahydrate in a ratio of 3 parts to 2 parts by weight. Percent catalyst is based on the weight of the total solution.
- a laboratory padder was employed to apply these solutions to samples of cotton printcloth so that the padded samples had approximately 80l00% wet pickup. The samples were placed, at original dimensions on pin frames, in a forced draft oven and dried for 7 minutes at 60 C. The samples were then placed in a curing oven at 160 C. for various time intervals, then removed, washed, and dried. The physical and chemical properties of the treated fabrics are given in the following table.
- EXAMPLE 2 In order to demonstrate the utility of these catalyst compositions with various finishing agents, the following example is submitted. Aqueous solutions containing various finishing agents and catalysts were prepared.
- the mixed catalyst referred to in the table is a mixture of citric acid and magnesium chloride hexahydrate in a ratio of 3 parts to 2 parts by Weight. These solutions were applied to cotton printcloth in a manner similar to Example 1. The samples were dried for 7 minutes at 60 C. and cured for 3 minutes at 160 C., washed, and dried. Chemical and physical properties of the treated fabrics are given in the following table.
- the mixed catalyst composition when used with dimethylol ethyleneurea or dimethylol methyl carbamate is effective in improving the crease recovery of the treated fabrics, even when used at greatly reduced concentrations.
- Other finishing agents for cellulose showing effective wrinkle resistance and smooth drying properties are methylol melamine, dimethylol ethyltriazone, and dimethylol hydroxyethyl carbamate.
- EXAMPLE 3 The use of these mixed catalyst compositions enables improved physical properties to be imparted to the treated fabric at curing temperatures considerably lower than usual and in curing times significantly shorter than usual. Samples of cotton printcloth were treated. The chemical and physical properties of the finished fabrics are shown in the following table. The mixed catalyst combination is the same as in Example 1.
- EXAMPLE 4 manner slmilar to Example 1.
- the samples were dried for These improved catalyst compositions of this invention may be combinations of magnesium halides other than the chloride and of carboxylic acids other than citric. However, it appears that the carboxylic acid must contain a hydroxyl or alkoxyl substituent.
- the following example is submitted. Samples of cotton printcloth were treated in a manner similar to Example 1. The chemical and physical properties of the treated fabrics are given in the following table.
- a synergistic catalyst composition for setting finishes comprising formaldehyde and water-soluble formaldehyde-amide condensates on cellulosic fibrous materials, said synergistic catalyst composition consisting essentially of about from 25 to 75 parts, by weight, of a magnesium halide and about from 75 to 25 parts, by weight, of an acid selected from the group consisting of citric acid, tartaric acid, methoxyacetic acid, hydroxybutyric acid, and glycolic acid.
- composition of claim 1 wherein the magnesium halide is magnesium chloride hexahydrate.
- composition of claim 1 wherein the acid is citric acid.
- composition of claim 1 wherein the acid is tartaric acid.
- composition of claim 1 wherein the acid is methoxyacctic acid.
- composition of claim 1 wherein the acid is hydroxybutyric acid.
- composition of claim 1 wherein the acid is glycolic acid.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Textile Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Multimedia (AREA)
- Inorganic Chemistry (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
A SYNERGISTIC CATALYST COMPOSITION FOR SETTING FINISHES OF FORMALDEHYDE AND WATER-SOLUBLE FORMALDEHYDE-AMIDE CONDENSATES ON CELLULOSIC FIBROUS MATERIALS IS PROVIDED. THE CATALYST COMPOSITION COMPRISES ABOT FROM 25 TO 75 PARTS, BY WEIGHT, OF AN MAGNESIUM HALIDE, SUCH AS MAGNESIUM CHLORIDE HEXAHYDRATE, AND ABOUT FROM 75 TO 25 PARTS, BY WEIGHT, OR AN ORGANIC ACID COMPOUND SELECTED FROM THE GROUP CONSISTING OF HYDROXYL AND ALKOXYL SUBSTITUTED CARBOXYLIC ACIDS, SUCH AS CITRIC, TARTARIC ACID, METHOXYACETIC ACID, HYDROXYBUTYRIC ACID, AND GLYCOLIC ACID.
Description
United States Patent Office 3,565,824 Patented Feb. 23, 1971 3,565,824 CATALYST FOR SETTING FINISHES N CELLULOSIC TEXTILES Andrew G. Pierce, Jr., and John G. Frick, Jr., New 0rleans, La., assignors to the United States of America as represented by the Secretary of Agriculture No Drawing. Uriginal application Dec. 22, 1965, Ser. No. 515,709, now Patent No. 3,441,367, dated Apr. 29,
1969. Divided and this application Aug. 6, 1968, Ser.-
Int. Cl. D06m 13/13 US. Cl. 252-429 8 Claims ABSTRACT OF THE DISCLOSURE This application is a division of application bearing Serial No. 515,709, filed Dec. 22, 1965, now Patent No. 3,441,367.
A non-exclusive, irrevocable, royalty-free license in the invention herein described, throughout the world for all purposes of the United States Government, with the power to grant sublicenses for such purposes, is hereby granted to the Government of the United States of America.
This invention relates to catalyst compositions for setting finishes on cellulosic fibrous materials. More specifically, it deals with catalyst compositions having unexpected synergistic properties for setting crosslinking finishes on cellulosic fibrous materials. Still more specifically, it relates to catalyst compositions consisting of magnesium halides and hydroxy or alkoxy substituted carboxylic acids. Another object of our invention is to provide novel methods for improving the wrinkle resistance and smooth drying properties of cellulosic materials at lower temperatures and shorter heating periods.
The term setting as used herein relates to the reaction of a finishing agent with cellulose to provide wrinkle resistance and smooth drying properties to the cellulosic material.
The term cellulosic fibrous materials includes natural or synthetic fibers, yarns, woven fabrics, or nonwoven fabrics. Since the primary interest in cellulosic mateirals is cotton, it will frequently be used below as illustrative of cellulosic fibrous materials.
Finishes are often applied to cellulosic fabrics to improve their resistance to wrinkling and their ability to dry smooth after laundering. The finishing processes usually consist in the application of a finishing agent and a catalyst to the fabric followed by drying the fabric and then heating the fabric to cure the finishing agent. The
agents commonly used are formaldehyde and condensates of formaldehyde with organic amido compounds, such as urea, melamine, imidoazolidinone, and carbamates from which polymethylol derivatives are formed. Under the influence of the catalyst and heat, these agents react with the cellulose of the fabric, or with themselves, to produce durable improvements in the wrinkle-resistance and smooth-drying properties of the fabric.
Acidic catalysts are usually required for these reactions. The catalyst, however, cannot be too acidic without causing the agents to react prematurely with themselves, or with the solvent before they are applied to the cellulosic fabric. Should this occur, the treatment would be ineffective. On the other hand, the acidity of the catalyst cannot be too low without requiring heating temperatures high enough to damage the cellulose, or an excessively long period of heating (curing). Also, the catalyst must not be lost by volatilization before the reactions on the fabric are complete. Catalysts in use meet these requirements to a greater or lesser extent. Among them are ammonium-, amine-, and metal-salts of inorganic acids, and organic acids.
We have now found that a particularly effective catalyst composition is formed from a mixture of a magnesium halide and a hydroxy, or alkoxy, substituted carboxylic acid, for instance magnesium chloride hexahydrate and citric acid in a ratio of from about 25 to parts to about 75 to 25 parts, respectively, with the preferred ratio being about 40 to 60. Other magnesium halides and/or other hydroxy or alkoxy substituted acids may be substituted in these mixtures in molar equivalent amounts. By molar equivalent amounts is meant that the other halides used should be equivalent to the 25-75 parts magnesium chloride hexahydrate; and the other substituted carboxylic acids used should be equivalent to about 75-25 parts citric acid, parts being by weight. The hydroxy or alkoxy group is essentially in the organic acid since acids such as citric, glycolic, hydroxybutyric, methoxyacetic and tartaric acids are very effective while acids that do not contain hydroxyl or alkoxyl groups, such as maleic and succinic acids, do not give compositions with exceptional catalytic action, i.e., do not show a synergistic effect.
Several catalyst compositions for setting finishes on cellulosic textile materials have been mentioned in previous patents. For example, Parsons and Mona (US. 3,090,- 655 describes and claims a mixed catayst, but this composition was restricted to use with formaldehyde-hydrazide finishing agents. Hushebeck (US. 3,139,322) describes and claims a catalyst composition in which the metal salt component was not a halide, but rather a nitrate. Ryan and Taylor (US. 3,006,879) describes and claims a composition comprising a polybasic acid and an acid salt; however, most of the polybasic acids which they mentioned were either inorganic or carboxylic acids which were not hydroxy or alkoxy substituted. In addition, the metal salts mentioned were not halides, and the main object of the composed mixture in this last patent is the formatiton of a metal hydrogen salt, or metal acid salt, that serves as the actual catalyst. In none of the above mentioned patents is a synergistic effect noted, in which the mixture of components is more effective than either component used separately under the same conditions of treatment.
The exceptional effectiveness of these synergistic mixtures of magnesium halides and hydroxy acids or alkoxy acids gives the following advantages in the finishing of cellulosic textiles.
Lower temperatures or shorter heating periods can be used. This results in a savings in the cost of fuel. It also allows the use of smaller ovens or a faster production rate in the process.
Improved efficiency is obtained. A greater proportion of the agent or agents applied actively contributes to the changes in properties of the treated textile and a less proportion is inert because of incomplete reaction.
A broader field of finishing agents is made available. With the novel catalyst compositions of this invention, some finishing agents can now be used that could not be used previously with the less effective catalysts of the prior art. This can be important where it is necessary to avoid unwanted side effects that are produced in the finished textile by many of the presently available agents. Specifically, these catalyst compositions are effective with methylol derivatives of urea, ethyleneurea, dihydroxyethyleneurea, melamine, acetylenediurea, methyl carbarnate, ethyl carbamate, isopropyl carbarnate, hydroxyethyl carbamate, methoxyethyl carbamate, ethyl triazone, hydroxyethyl triazone, urone, and their ethers.
Optimum conditions for the use of the catalyst composition of this invention will vary according to the particular agent with which it is to be used and the equipment on which the fabric is to be treated. Ordinarily, it is used in a quantity to make 0.1 to 3.0 weight percent on the Weight of the total solution of finishing agent applied to the fabric. After the fabric is impregnated and dried, a heating period, or cure time, for /2 to 3 minutes, at 100 to about 150 C. is required.
The following examples are submitted to illustrate in greater detail the process and results of this invention and are not to be construed as limitations of the invention. The fabric used was 80 x 80 cotton printcloth which had been desized, scoured, and bleached.
METHODS OF TESTING Bound formaldehyde was determined by the method of W. I. Roff]. Textile Institute 47, T308 (1956).
Bound nitrogen was determined by the standard Kjeldahl method.
Dry crease recovery angle was determined by the ASTM method from Standards on Textile Materials, 1955, Philadelphia, Pa.
Wet crease recovery angles were determined by first soaking the finished fabric for five minutes at 150 F. in a 0.1 percent solution of a nonionic detergent, removing the excess solution by blotting, and then measuring the crease recovery angle by the method described above for dry crease recovery.
EXAMPLE 1 Aqueous solutions were prepared, containing 8% formaldehyde and various amounts of catalysts. The mixed catalyst referred to in the Table I is a mixture of citric acid and magnesium chloride hexahydrate in a ratio of 3 parts to 2 parts by weight. Percent catalyst is based on the weight of the total solution. A laboratory padder was employed to apply these solutions to samples of cotton printcloth so that the padded samples had approximately 80l00% wet pickup. The samples were placed, at original dimensions on pin frames, in a forced draft oven and dried for 7 minutes at 60 C. The samples were then placed in a curing oven at 160 C. for various time intervals, then removed, washed, and dried. The physical and chemical properties of the treated fabrics are given in the following table.
TABLE 1 Percent Wet Dry Cure bound CRA RA time. formalwarp warp Catalyst min. dehyde and fill and fill 2% MgCh-GHQO 3 0.82 251 258 O 1 0. 31 239 231 2% citric acid 3 0. 32 219 204 1 0. 12 206 187 3 1. 84 287 286 1 1. 74 287 288 3 0.73 230 243 D 1 0. 215 182 1% mixed catalyst 3 1. 5'3 285 282 3 parts citric, 2 parts MgClz-SHzO by wt 1 1. 266 286 Untreated control 168 167 ORA is crease recovery angle in degrees.
As can be seen from the data, a synergistic effect is obtained with respect to both the crease recovery produced and the bound formaldehyde introduced, when a mixture of citric acid and magnesium chloride is used as the catalyst. This synergistic effect is not obtained when an equal quantity of either material is used separately as catalyst under the same set of conditions. Further, a cure time of one minute is as effective as three minutes when the mixture is used.
EXAMPLE 2 In order to demonstrate the utility of these catalyst compositions with various finishing agents, the following example is submitted. Aqueous solutions containing various finishing agents and catalysts were prepared. The mixed catalyst referred to in the table is a mixture of citric acid and magnesium chloride hexahydrate in a ratio of 3 parts to 2 parts by Weight. These solutions were applied to cotton printcloth in a manner similar to Example 1. The samples were dried for 7 minutes at 60 C. and cured for 3 minutes at 160 C., washed, and dried. Chemical and physical properties of the treated fabrics are given in the following table.
TABLE II Ooncen- Percent Dry tration of bound Percent 0 RA i catalyst form albound Warp Finishing agent Catalyst percent dehyde nitrogen and fill 1 8% DMEU MgClZ-GH2O 2. 00 1. 42 266 8% DMEU Citric acid 2. 00 1. 47 271 8% DMEU Mixed cat"-.- 2. 00 1. 67 282 l d 1. 1. 79 302 0. 75 1. 60 299 0. 50 1. 56 290 0. 25 1. 51 292 0. 13 l. 60 274 2. 00 U. 67 281 1. 00 0. 67 281 0. 50 0. 60 281 control 167 1 Dimethylol ethyloneurca. 2 Dimethylol methyl carbam ate.
It will be observed that the mixed catalyst composition, when used with dimethylol ethyleneurea or dimethylol methyl carbamate is effective in improving the crease recovery of the treated fabrics, even when used at greatly reduced concentrations. Other finishing agents for cellulose showing effective wrinkle resistance and smooth drying properties are methylol melamine, dimethylol ethyltriazone, and dimethylol hydroxyethyl carbamate.
EXAMPLE 3 The use of these mixed catalyst compositions enables improved physical properties to be imparted to the treated fabric at curing temperatures considerably lower than usual and in curing times significantly shorter than usual. Samples of cotton printcloth were treated. The chemical and physical properties of the finished fabrics are shown in the following table. The mixed catalyst combination is the same as in Example 1.
TABLE III Cure Percent Dry Cure Temperbound Percent CRA time, ature, iormalbound warp Finishing agent Catalyst min. C. dehyde nitrogen and fill* 8% CH2O 2% MgCl2'6H O 1 160 0.31 231 8% C1120. 2% mixed 1 160 1.74 288 8% (EH20. 1% mixed- 1 160 1.15 286 8% CHzO. d 1 140 1.02 267 8% CHgO. 1 120 0.51 239 8% OH O. 1 160 0. 90 283 8% DME 3 160 2. 39 1. 42 266 8% DME U 3 160 2. 47 1.67 282 8% DME U 2 160 2. 33 1. 62 297 8% DMEU. 1 160 2. 35 1. 52 289 8% DME U 160 2. 21 1. 50 283 8% DME U 3 140 2. 45 1. 60 293 8% DME U 3 120 2. 32 1. 63 275 8% DME U 3 100 2. 40 1. 56 275 7 3% DMMC 1 100 0. 71 272 7 3% DMMC. 3 0. (i5 261 Untreated cont 167 *Dimethylol etliyleneurea.
EXAMPLE 4 manner slmilar to Example 1. The samples were dried for These improved catalyst compositions of this invention may be combinations of magnesium halides other than the chloride and of carboxylic acids other than citric. However, it appears that the carboxylic acid must contain a hydroxyl or alkoxyl substituent. In order to demonstrate these features, the following example is submitted. Samples of cotton printcloth were treated in a manner similar to Example 1. The chemical and physical properties of the treated fabrics are given in the following table.
TABLE IV Cure Dry tem- Percent ORA Cure perabound warp time, ture, formaland Finishing agent Catalyst min. C. dehyde fill 8% 01120 1% A 1 140 1.02 267 8% (EH20 1% B- 1 140 0.23 188 8% CHzO. 2% C 3 160 0.24 198 8% Q1120... 1% D 1 160 1.18 301 8% CHzO 2% E 15 60 0. 12 223 *D imethylol ethyleneurea.
l A=3/2 mixture of citric acid/magnesium chloride hexahydrate.
2 B=36.9/40 mixture of succinic acid/magnesium chloride hexahydrate.
3 C= 8/1 mixture of Valerie acid/magnesium chloride hexahydrate.
4 D 3.1/40 mixture of tartaric acid/magnesium chloride hexahydrate.
E=45l55 mixture oi tartaric acid/magnesium iodide-sample dried and cured in one step.
EXAMPLE 5 In order to demonstrate that alkoxy substituted acids may be used in these catalyst compositions, the following example is submitted. Samples of cotton printcloth were treated with aqueous solutions containing 10% DMEU and various catalysts in a manner similar to Example 1. The samples were dried for 7 minutes at 60 C. and cured for 3 minutes at 125 C. Physical and chemical properties of the treated fabrics are given in Table V.
In order to demonstrate that the hydroxyl substituent on the organic acid does not necessarily have to be in the alpha position, the following example is submitted. Samples of cotton printcloth were treated with aqueous solutions containing 10% DMEU and various catalysts in a 7 minutes at 60 C. and cured for 3 minutes at 125 C. Physical and chemical properties of the treated fabrics are given in Table VI.
* Dimethylol ethyleneurea.
We claim:
1. A synergistic catalyst composition for setting finishes comprising formaldehyde and water-soluble formaldehyde-amide condensates on cellulosic fibrous materials, said synergistic catalyst composition consisting essentially of about from 25 to 75 parts, by weight, of a magnesium halide and about from 75 to 25 parts, by weight, of an acid selected from the group consisting of citric acid, tartaric acid, methoxyacetic acid, hydroxybutyric acid, and glycolic acid.
2. The composition of claim 1 wherein the magnesium halide is magnesium chloride hexahydrate.
3. The composition of claim 1 wherein the acid is citric acid.
4. The composition of claim 1 wherein the acid is tartaric acid.
5. The composition of claim 1 wherein the acid is methoxyacctic acid.
6. The composition of claim 1 wherein the acid is hydroxybutyric acid.
7. The composition of claim 1 wherein the acid is glycolic acid.
References Cited UNITED STATES PATENTS 3,183,054 5/1965 Fischer et al. 8116.3X 3,212,928 10/ 1965 Hushebeck 252--429X 3,376,101 4/1968 Vail et al 8-116.3
PATRICK P. GARVIN, Primary Examiner US. Cl. X.R. 8-116.3
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51570965A | 1965-12-22 | 1965-12-22 | |
US76346968A | 1968-08-06 | 1968-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3565824A true US3565824A (en) | 1971-02-23 |
Family
ID=27058579
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US515709A Expired - Lifetime US3441367A (en) | 1965-12-22 | 1965-12-22 | Method for setting finishes on cellulosic textiles with catalyst composition of magnesium halide and organic acid |
US763469A Expired - Lifetime US3565824A (en) | 1965-12-22 | 1968-08-06 | Catalyst for setting finishes on cellulosic textiles |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US515709A Expired - Lifetime US3441367A (en) | 1965-12-22 | 1965-12-22 | Method for setting finishes on cellulosic textiles with catalyst composition of magnesium halide and organic acid |
Country Status (1)
Country | Link |
---|---|
US (2) | US3441367A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3933426A (en) * | 1972-10-07 | 1976-01-20 | Ciba-Geigy Corporation | Process for making textiles containing cellulose crease-resistant |
US4061465A (en) * | 1976-04-02 | 1977-12-06 | The United States Of America As Represented By The Secretary Of Agriculture | Creasable durable press textiles from methylol reagents and half amides or half salts of dicarboxylic acids |
US4107080A (en) * | 1976-05-10 | 1978-08-15 | The Lion Fat And Oil Company Limited | Process for preparing catalyst for olefin polymerization |
WO1998010648A1 (en) * | 1996-09-13 | 1998-03-19 | The Regents Of The University Of California | Durable and regenerable microbiocidal textiles |
US6241783B1 (en) | 1996-09-13 | 2001-06-05 | The Regents Of The University Of California | Formaldehyde scavenging in microbiocidal articles |
US6962608B1 (en) | 2002-10-01 | 2005-11-08 | The Regents Of The University Of California | Regenerable antimicrobial polymers and fibers with oxygen bleaches |
CN115029919A (en) * | 2022-06-09 | 2022-09-09 | 江苏联发纺织股份有限公司 | Method for improving storage stability of delayed baking sensitized fabric |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3778226A (en) * | 1970-04-15 | 1973-12-11 | Du Pont | Durable-press and soil-release compositions |
US3811210A (en) * | 1972-01-26 | 1974-05-21 | Us Agriculture | Mild cure finishing process incorporating improved catalyst systems to produce wrinkle resistant, durably pressed and creased cellulosic textile products |
US3796540A (en) * | 1972-03-28 | 1974-03-12 | Us Agriculture | Process for whitening durable-press cellulosic fabrics with basic optical brighteners |
GB9408742D0 (en) * | 1994-05-03 | 1994-06-22 | Courtaulds Fibres Holdings Ltd | Fabric treatment |
FI126458B (en) * | 2009-03-20 | 2016-12-15 | Stora Enso Oyj | Treatment of fibers for molding resistance |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE593301A (en) * | 1959-07-24 |
-
1965
- 1965-12-22 US US515709A patent/US3441367A/en not_active Expired - Lifetime
-
1968
- 1968-08-06 US US763469A patent/US3565824A/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3933426A (en) * | 1972-10-07 | 1976-01-20 | Ciba-Geigy Corporation | Process for making textiles containing cellulose crease-resistant |
US4061465A (en) * | 1976-04-02 | 1977-12-06 | The United States Of America As Represented By The Secretary Of Agriculture | Creasable durable press textiles from methylol reagents and half amides or half salts of dicarboxylic acids |
US4107080A (en) * | 1976-05-10 | 1978-08-15 | The Lion Fat And Oil Company Limited | Process for preparing catalyst for olefin polymerization |
USRE30510E (en) * | 1976-05-10 | 1981-02-10 | The Lion Fat And Oil Company Limited | Process for preparing catalyst for olefin polymerization |
WO1998010648A1 (en) * | 1996-09-13 | 1998-03-19 | The Regents Of The University Of California | Durable and regenerable microbiocidal textiles |
US5882357A (en) * | 1996-09-13 | 1999-03-16 | The Regents Of The University Of California | Durable and regenerable microbiocidal textiles |
US6077319A (en) * | 1996-09-13 | 2000-06-20 | The Regents Of The University Of California | Processes for preparing microbiocidal textiles |
US6241783B1 (en) | 1996-09-13 | 2001-06-05 | The Regents Of The University Of California | Formaldehyde scavenging in microbiocidal articles |
AU734955B2 (en) * | 1996-09-13 | 2001-06-28 | Regents Of The University Of California, The | Durable and regenerable microbiocidal textiles |
US6962608B1 (en) | 2002-10-01 | 2005-11-08 | The Regents Of The University Of California | Regenerable antimicrobial polymers and fibers with oxygen bleaches |
CN115029919A (en) * | 2022-06-09 | 2022-09-09 | 江苏联发纺织股份有限公司 | Method for improving storage stability of delayed baking sensitized fabric |
CN115029919B (en) * | 2022-06-09 | 2023-08-15 | 江苏联发纺织股份有限公司 | Method for improving storage stability of delay baking sensitized fabric |
Also Published As
Publication number | Publication date |
---|---|
US3441367A (en) | 1969-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3565824A (en) | Catalyst for setting finishes on cellulosic textiles | |
US3236676A (en) | Treatment of cellulose with tetrakis (hydroxymethyl) phosphonium resins | |
US2901463A (en) | Compositions, textiles treated therewith and processes for the treatment thereof | |
US2898238A (en) | Process for treating textiles with ethylene urea-formaldehyde reaction products | |
US3144299A (en) | Wrinkle resistance finish for cellulosic textiles | |
US2661312A (en) | Textile finishing composition and method of treating textile materials therewith | |
US3079279A (en) | Blends of imidazolidinones and aminoplasts and method for finishing cellulose containing textile material | |
US2785145A (en) | Siliconate-aminoplast compositions and textiles coated therewith | |
US4295847A (en) | Finishing process for textiles | |
US3181927A (en) | Process of wet and dry wrinkleproofing cellulose fabric with an aminoplast resin and zinc chloride | |
US3160469A (en) | Biscarbamate-formaldehyde adducts for wrinkle resistance finishes | |
US3043719A (en) | Process for applying crease resistant finishes to cellulosic fabrics and products thereof | |
US3317345A (en) | Rot-resistant finish for textile materials | |
US3979178A (en) | Finishing of cellulose fabrics with N-methylol amide crosslinking agents, magnesium sulfate and sulfuric acid | |
US3226428A (en) | Biscarbamate-formaldehyde adducts | |
US3811210A (en) | Mild cure finishing process incorporating improved catalyst systems to produce wrinkle resistant, durably pressed and creased cellulosic textile products | |
US3369858A (en) | Magnesium fluoborate as cellulosecarbamate reaction catalyst | |
US3909861A (en) | Aluminum chlorhydroxide catalyst systems for treatments to give wrinkle resistant textiles | |
US3909199A (en) | Catalyst assist agents using leaving group effects | |
US3311496A (en) | Process for producing rot and wrinkle resistant cellulose containing textile and textile obtained therewith | |
US3427121A (en) | Wrinkle-resistant cotton fabrics with improved moisture absorption | |
Lee Wayland JR et al. | Low-Formaldehyde Finishing in Production | |
US4039282A (en) | Durable-press finishing of cellulose-containing textiles with aluminum chlorhydroxide-hydrogen peroxide catalyst system | |
US3403044A (en) | Process for flameproofing cellulosic material | |
US3230030A (en) | Process of producing wrinkle resistant cellulose fabrics of relatively high moistureregain |