US3562013A - Process of deoxidizing titanium and its alloys - Google Patents
Process of deoxidizing titanium and its alloys Download PDFInfo
- Publication number
- US3562013A US3562013A US677086A US3562013DA US3562013A US 3562013 A US3562013 A US 3562013A US 677086 A US677086 A US 677086A US 3562013D A US3562013D A US 3562013DA US 3562013 A US3562013 A US 3562013A
- Authority
- US
- United States
- Prior art keywords
- titanium
- acid
- bath
- nitric acid
- alloys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title abstract description 32
- 239000010936 titanium Substances 0.000 title abstract description 32
- 229910052719 titanium Inorganic materials 0.000 title abstract description 31
- 238000000034 method Methods 0.000 title abstract description 25
- 229910045601 alloy Inorganic materials 0.000 title abstract description 21
- 239000000956 alloy Substances 0.000 title abstract description 21
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract description 32
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 28
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 abstract description 24
- 229910017604 nitric acid Inorganic materials 0.000 abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 21
- 229910000147 aluminium phosphate Inorganic materials 0.000 abstract description 16
- 238000004140 cleaning Methods 0.000 abstract description 9
- 239000002253 acid Substances 0.000 abstract description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 30
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- 239000001257 hydrogen Substances 0.000 description 15
- 229960004838 phosphoric acid Drugs 0.000 description 15
- 235000011007 phosphoric acid Nutrition 0.000 description 15
- MIMUSZHMZBJBPO-UHFFFAOYSA-N 6-methoxy-8-nitroquinoline Chemical compound N1=CC=CC2=CC(OC)=CC([N+]([O-])=O)=C21 MIMUSZHMZBJBPO-UHFFFAOYSA-N 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 229910001069 Ti alloy Inorganic materials 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- -1 alkali metal alkyl sulfates Chemical class 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005282 brightening Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000048 titanium hydride Inorganic materials 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000005270 abrasive blasting Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical class CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 1
- RILZRCJGXSFXNE-UHFFFAOYSA-N 2-[4-(trifluoromethoxy)phenyl]ethanol Chemical compound OCCC1=CC=C(OC(F)(F)F)C=C1 RILZRCJGXSFXNE-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- XWROUVVQGRRRMF-UHFFFAOYSA-N F.O[N+]([O-])=O Chemical compound F.O[N+]([O-])=O XWROUVVQGRRRMF-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Inorganic materials [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 1
- VBKNTGMWIPUCRF-UHFFFAOYSA-M potassium;fluoride;hydrofluoride Chemical compound F.[F-].[K+] VBKNTGMWIPUCRF-UHFFFAOYSA-M 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Inorganic materials [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- FTWCSAMTIKSPAT-UHFFFAOYSA-M sodium;nonyl sulfate Chemical compound [Na+].CCCCCCCCCOS([O-])(=O)=O FTWCSAMTIKSPAT-UHFFFAOYSA-M 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/10—Other heavy metals
- C23G1/106—Other heavy metals refractory metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F3/00—Brightening metals by chemical means
- C23F3/04—Heavy metals
- C23F3/06—Heavy metals with acidic solutions
Definitions
- This invention relates to processes for cleaning, deoxidizing and brightening titanium and its alloys.
- Titanium and titanium alloys develop a resistant oxide scale during manufacturing processes involving heat treatment and fabrication. Proper finishing requires that this adherent oxide be removed with minimum or no adverse eifects to the article.
- Molten salt baths require extremely high temperatures and normally produce a stained surface.
- the stain is usually removed with a post-treatment to complete the process. It is impractical to descale large articles with this process.
- Hydrogen embrittlment represents a major problem in treating titanium and its alloys after heat treating, welding and other scale forming processes. Removing the heavy oxide with the standard aqueous hydrofluoric acid, nitric acid and hydrochloric acid baths produces hydrogen absorption. Hydrogen absorption into the titanium intergranular structure produces hydrogen embrittlement causing structural cracks and failure under stress. This absoption of hydrogen is irreversible. It cannot be baked out, as with high strength steels.
- this invention is a process for cleaning and deoxidizing titanium and its alloys which produces a stain free, smooth bright surface with inhibition of hydrogen absorption and consequent embrittlement.
- the process also gives substantially or essentially smut free surfaces even with titanium alloys which normally produce smutty surfaces with other processes.
- the surfaces of titanium and titanium-based alloys can be deoxidized and cleaned by bringing the surface into contact with a bath of the following composition:
- hydrofluoric acid is considered to encompass hydrofluoric acid as well as the resulting acids formed by the utilization of salts in the solutions to provide the needed bydrofluoric acid and/or the equivalent acid fluoride ion.
- the salts which can be used are the alkali metal silicofluorides such as sodium or potassium silicofluoride, ammonium bifluoride, calcium bifluoride, and alkali metal bifluorides such as sodium or potassium bifluoride, an alkali metal fluoride and particularly sodium, potassium or lithium fluoride, or fluoro boric acid.
- the bath can also be used with a mixture of such hydrofluoric acid or acid fluoride ion supplying materials.
- the described baths dissolve or remove surface oxides from titanium and titanium-based alloys Without etching the surface, leaving it clean and bright, with low hydrogen absorption thus minimizing or eliminating hydrogen embrittlement.
- the process is also characterized by an essential lack of smut adherence on the surface.
- the surfaces also seem to be made passive by the treatment.
- Phosphoric acid also serves to suppress etching. It is accordingly usually beneficial to include at least 5% phosphoric acid in the bath.
- a particularly useful deoxidizing bath for titanium and its alloys can have 025% Water, 1055% sulfuric acid, 3052% nitric acid, 0-25 phosphoric acid and l-l0% ammonium bifluoride with the percentages of the acids and bifluoride being on an anhydrous basis.
- surfactants it is acceptable, but generally unnecessary, to include one or more surfactants in the deoxidizing bath.
- Some surfactants which can be used are metal sulfates such as alkali metal alkyl sulfates such as sodium lauryl sulfate and sodium nonyl sulfate, and sulfated alcohols such as sulfated tridecyl alcohol. From about 0.01% to 5% of a surfactant can be included if advisable.
- Deoxidizing, cleaning and/or brightening of titanium and its alloys is readily effected by contacting the metal surface with the bath. Although this can be done successfully with the bath at ambient temperature, it is usually more satisfactory to employ the bath at about 30-140" F. Contact times of about 30 seconds to 25 minutes are often adequate for effecting the desired treatment.
- the titanium or titanium alloy surface can be rinsed with cold water and air dried.
- EXAMPLE 1 Unalloyed titanium, TiA, was treated in a solution consisting of 23.4% sulfuric acid, 37.9% nitric acid, 20.9% phosphoric acid, 5.9% ammonium bifluoride, 3.9% sodium silicofluoride and the remainder water. This treatment at 75 F., for 5 minutes produced a bright oxide free surface. Analysis revealed hydrogen absorption was in the order of 78 ppm.
- EXAMPLE 2 Unalloyed titanium, heat treated at 1000 F., was treated as described in Example 1 for three minutes at 80 F. The treated titanium surface was bright, clean and oxide free. On analysis, the hydrogen absorption was found to be 69 ppm.
- Example 1 was repeated adding 0.5% sodium lauryl sulfate surfactant to the solution. After 1 minute at 78 F, the surface was clean and bright. Chemical analysis revealed hydrogen absorption was in the order of 66 ppm.
- Example 1 was repeated using 3.9% calcium fluoride in place of 3.9% sodium silicofluoride. This treatment produced a bright, clean oxide free surface.
- Example 1 was repeated using the alloy Ti-8Al-lMo-1V consisting of 8% aluminum, 1% molybdenum, 1% va- 30 nadium and the remainder titanium. Microscopic analysis of the bright clean surface revealed no titanium hydride formation. In contrast, treating the alloy with the standard bath of 1 part hydrofluoric acid and 10 parts nitric acid, used under the same conditions, produced a dark, rough surface showing titanium hydride formation sufficient to produce hydrogen embrittlement.
- Example 1 was repeated using the alpha-beta alloy Ti-6Al-4V consisting of 6% aluminum, 4% vanadium and the remainder titanium. The heavy marking ink on the surface was removed and a bright clean surface was produced.
- Example 9 Example 6 was repeated with an annealed sheet of alpha-beta alloy Ti-8Mn containing 8% manganese as its principal alloying constituent. Black marking ink stencil was removed and a bright clean surface produced. Analysis revealed no titanium hydride formation.
- Example 5 was repeated with a titanium alpha alloy forging RSllC containing aluminum and 2.5% tin as the principal alloying constituents. A clean bright smutfree surface was produced. By contrast, a nitric acid-hydrofluoric acid bath consisting of 5% hydrofluoric acid, nitric acid and the remainder water at room temperature for 3 minutes produced a dark smutty surface.
- Example 1 was repeated using a titanium alpha alloy sheet Ti-5Al-2.5Sn containing 5% aluminum and 2.5% tin as the principal alloying constituents. A bright clean surface having less than 0.0001 inch per side dimensional change was produced. By contrast, a conventional bath consisting of nitric acid, 20% hydrochloric acid, 5% hydrofluoric acid and the remainder water produced a rough smutty surface with a dimensional change of 0.003 inch per side.
- EXAMPLE 12 Unalloyed titanium alloy Ti65, having a nominal composition of 99% titanium was treated in a bath consisting of 55% sulfuric acid, 40% nitric acid and 5% ammonium bifluoride at F for 10 minutes. A green marking ink was removed and a bright, oxide free surface was produced. This deoxidized article retained its bright satin finish for several days. By contrast, the same alloy deoxidized in a bath consisting of 10% nitric acid, 1% hydrofluoric acid and the remainder water produced a rough surface with smut and failed to remove the marking ink. Standing overnight, the treated surface developed a bluish stain or discoloration.
- EXAMPLE l3 Unalloyed titanium Ti65 was treated with the first bath described in Example 12, at 120 F. for 5 minutes, instead of 80 F. for 10 minutes. A bright smut free surface was produced. By contrast, a 10% nitric acid, 1% hydrofluoric acid bath at 120 F. produced deep etching, heavy gasing and a dark smut.
- EXAMPLE 14 Titanium alloy RS-70 was treated in the bath described in Example 14 at 120 F. for 5 minutes, instead of 75 F. for 10 minutes. A bright smut free surface was produced. By contrast, a bath of 10% nitric acid, 1% hydrochloric acid and the remainder water at F. for 3 minutes produced a dark rough finish.
- Titanium alloy Ti65 nominally consisting of 99 %titanium was treated in a bath consisting of 40% sulfuric acid, 20% phosphoric acid, 30% nitric acid, 5% water and 5% ammonium bifluoride at F. for 10 minutes. A bright, smut free surface was produced. By contrast, a bath consisting of 30% nitric acid, 3% hydrofluoric acid and the remainder water at 120 F. for 5 minutes produced a dark rough surface.
- the method of claim 1 in which the minimum phos phoric acid content is 5% 6.
- the method of deoxidizing and cleaning a titanium or titanium-lfised alloy surface which comprises contacting the surface with a bath consisting essentially of 1050% by weight of sulfuric acid, 3052% by weight of nitric acid, -25% by weight of phosphoric acid, 0--25% by weight of water and l30% by weight of ammonium bifluoride, calcium bifluoride, an alkali metal bifiuoride, alkali metal silicofiuoride, an alkali metal fluoride or an alkali metal fiuoro boric acid.
- the bath consists essentially of 25% sulfuric acid, 5% phosphoric acid, 40% nitric acid, 5% ammonium bifluoride and 25% water.
- the bath consists essentially of 40% sulfuric acid, 20% phosphoric acid, nitric acid, 5% water and 5% ammonium bifluoride.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67708667A | 1967-10-23 | 1967-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3562013A true US3562013A (en) | 1971-02-09 |
Family
ID=24717262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US677086A Expired - Lifetime US3562013A (en) | 1967-10-23 | 1967-10-23 | Process of deoxidizing titanium and its alloys |
Country Status (4)
Country | Link |
---|---|
US (1) | US3562013A (xx) |
BE (1) | BE722726A (xx) |
CH (1) | CH505916A (xx) |
FR (1) | FR1589844A (xx) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3753815A (en) * | 1971-09-22 | 1973-08-21 | Armco Steel Corp | Method and bath for treating titanium |
US3994817A (en) * | 1975-07-28 | 1976-11-30 | Rockwell International Corporation | Etchant for etching silicon |
US4002489A (en) * | 1973-06-21 | 1977-01-11 | Nyby Bruk Ab | Method of pickling metallic material |
US4220706A (en) * | 1978-05-10 | 1980-09-02 | Rca Corporation | Etchant solution containing HF-HnO3 -H2 SO4 -H2 O2 |
US4277289A (en) * | 1978-07-19 | 1981-07-07 | Aluminum Pechiney | Process for removing titaniferous and silico-aluminous incrustations from surfaces |
US4322264A (en) * | 1975-12-09 | 1982-03-30 | U.S. Philips Corporation | Method for selective etching of titaniumdioxide relative to aluminum |
US4525250A (en) * | 1980-12-19 | 1985-06-25 | Ludwig Fahrmbacher-Lutz | Method for chemical removal of oxide layers from objects of metal |
US4704126A (en) * | 1985-04-15 | 1987-11-03 | Richards Medical Company | Chemical polishing process for titanium and titanium alloy surgical implants |
US5376236A (en) * | 1993-10-29 | 1994-12-27 | At&T Corp. | Process for etching titanium at a controllable rate |
US20040188261A1 (en) * | 2003-03-27 | 2004-09-30 | Scimed Life Systems, Inc. | Methods of forming medical devices |
WO2007059730A2 (de) * | 2005-11-21 | 2007-05-31 | Mtu Aero Engines Gmbh | Verfahren zur vorbehandlung von titanbauteilen zur nachfolgenden beschichtung derselben |
US20080038625A1 (en) * | 2006-08-10 | 2008-02-14 | Gm Global Technology Operations, Inc. | Fast Recycling Process For Ruthenium, Gold and Titanium Coatings From Hydrophilic PEM Fuel Cell Bipolar Plates |
WO2008056010A1 (es) * | 2006-11-06 | 2008-05-15 | GUTIERREZ RODRIGUEZ, José Ignacio | Producto limpiador ácido de múltiples aplicaciones |
US20080169270A1 (en) * | 2007-01-17 | 2008-07-17 | United Technologies Corporation | Method of removing a case layer from a metal alloy |
US20100213793A1 (en) * | 2007-09-12 | 2010-08-26 | Valeo Schalter Und Sensoren Gmbh | Process for the surface treatment of aluminium and a layerwise construction of an aluminium component having an electric contact |
EP2584069A1 (de) * | 2011-10-21 | 2013-04-24 | Siemens Aktiengesellschaft | Vorbehandlung bei einer Fluoridionen-Reinigung und Verfahren |
WO2014177777A1 (fr) * | 2013-05-03 | 2014-11-06 | Technett | Solution de decapage chimique exempte d'agent oxydant applicable sur les métaux du groupe ivb et leurs alliages |
ITPR20130068A1 (it) * | 2013-09-13 | 2015-03-14 | Borrozzino Carlo | Metodo per la preparazione di superfici di dispositivi di titanio-ceramica-zirconia impiantabili nel corpo umano o animale, avente risultato di rugosita' nanometrica, formazione di biossido di titanio superficiale autoindotto, elevata pulizia anti me |
US20180237919A1 (en) * | 2015-09-15 | 2018-08-23 | Chemetall Gmbh | Pre-treating aluminum surfaces with zirconium-and molybdenum-containing compositions |
GB2575365A (en) * | 2018-07-05 | 2020-01-08 | South West Metal Finishing Ltd | Process |
US20200032412A1 (en) * | 2018-07-25 | 2020-01-30 | The Boeing Company | Compositions and Methods for Activating Titanium Substrates |
US20200032409A1 (en) * | 2018-07-25 | 2020-01-30 | The Boeing Company | Compositions and Methods for Electrodepositing Tin-Bismuth Alloys on Metallic Substrates |
US20200032411A1 (en) * | 2018-07-25 | 2020-01-30 | The Boeing Company | Compositions and Methods for Activating Titanium Substrates |
US20200235374A1 (en) * | 2014-03-31 | 2020-07-23 | Technion Research & Development Foundation Limited | Method for passive metal activation and uses thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1290752A (xx) * | 1970-06-04 | 1972-09-27 | ||
FR3140890A1 (fr) * | 2022-10-14 | 2024-04-19 | Institut De Recherche Technologique Matériaux, Métallurgie, Procédés | Bain de polissage chimique pour titane et alliages de titane, et procédé utilisant un tel bain |
-
1967
- 1967-10-23 US US677086A patent/US3562013A/en not_active Expired - Lifetime
-
1968
- 1968-10-22 CH CH1582268A patent/CH505916A/fr not_active IP Right Cessation
- 1968-10-23 FR FR1589844D patent/FR1589844A/fr not_active Expired
- 1968-10-23 BE BE722726D patent/BE722726A/xx unknown
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3753815A (en) * | 1971-09-22 | 1973-08-21 | Armco Steel Corp | Method and bath for treating titanium |
US4002489A (en) * | 1973-06-21 | 1977-01-11 | Nyby Bruk Ab | Method of pickling metallic material |
US3994817A (en) * | 1975-07-28 | 1976-11-30 | Rockwell International Corporation | Etchant for etching silicon |
US4322264A (en) * | 1975-12-09 | 1982-03-30 | U.S. Philips Corporation | Method for selective etching of titaniumdioxide relative to aluminum |
US4220706A (en) * | 1978-05-10 | 1980-09-02 | Rca Corporation | Etchant solution containing HF-HnO3 -H2 SO4 -H2 O2 |
US4277289A (en) * | 1978-07-19 | 1981-07-07 | Aluminum Pechiney | Process for removing titaniferous and silico-aluminous incrustations from surfaces |
US4525250A (en) * | 1980-12-19 | 1985-06-25 | Ludwig Fahrmbacher-Lutz | Method for chemical removal of oxide layers from objects of metal |
US4704126A (en) * | 1985-04-15 | 1987-11-03 | Richards Medical Company | Chemical polishing process for titanium and titanium alloy surgical implants |
US5376236A (en) * | 1993-10-29 | 1994-12-27 | At&T Corp. | Process for etching titanium at a controllable rate |
US20040188261A1 (en) * | 2003-03-27 | 2004-09-30 | Scimed Life Systems, Inc. | Methods of forming medical devices |
US6960370B2 (en) | 2003-03-27 | 2005-11-01 | Scimed Life Systems, Inc. | Methods of forming medical devices |
US20090218232A1 (en) * | 2005-11-21 | 2009-09-03 | Mtu Aero Engines Gmbh | Method for the Pre-Treatment of Titanium Components for the Subsequent Coating Thereof |
WO2007059730A2 (de) * | 2005-11-21 | 2007-05-31 | Mtu Aero Engines Gmbh | Verfahren zur vorbehandlung von titanbauteilen zur nachfolgenden beschichtung derselben |
WO2007059730A3 (de) * | 2005-11-21 | 2007-10-11 | Mtu Aero Engines Gmbh | Verfahren zur vorbehandlung von titanbauteilen zur nachfolgenden beschichtung derselben |
US8354036B2 (en) | 2005-11-21 | 2013-01-15 | Mtu Aero Engines Gmbh | Method for the pre-treatment of titanium components for the subsequent coating thereof |
DE102007037246B4 (de) | 2006-08-10 | 2018-05-17 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Verfahren zum recyceln einer beschichteten bipolaren platte aus rostfreiem stahl |
US8323415B2 (en) | 2006-08-10 | 2012-12-04 | GM Global Technology Operations LLC | Fast recycling process for ruthenium, gold and titanium coatings from hydrophilic PEM fuel cell bipolar plates |
US20080038625A1 (en) * | 2006-08-10 | 2008-02-14 | Gm Global Technology Operations, Inc. | Fast Recycling Process For Ruthenium, Gold and Titanium Coatings From Hydrophilic PEM Fuel Cell Bipolar Plates |
ES2299381A1 (es) * | 2006-11-06 | 2008-05-16 | Javier Diaz Rodriguez | Producto limpiador acido de multiples aplicaciones. |
WO2008056010A1 (es) * | 2006-11-06 | 2008-05-15 | GUTIERREZ RODRIGUEZ, José Ignacio | Producto limpiador ácido de múltiples aplicaciones |
US20080169270A1 (en) * | 2007-01-17 | 2008-07-17 | United Technologies Corporation | Method of removing a case layer from a metal alloy |
EP1947217A1 (en) * | 2007-01-17 | 2008-07-23 | United Technologies Corporation | Method of removing an alpha-case titanium layer from a beta-phase titanium alloy |
US20100213793A1 (en) * | 2007-09-12 | 2010-08-26 | Valeo Schalter Und Sensoren Gmbh | Process for the surface treatment of aluminium and a layerwise construction of an aluminium component having an electric contact |
US8549746B2 (en) * | 2007-09-12 | 2013-10-08 | Valeo Schalter Und Sensoren Gmbh | Process for the surface treatment of aluminium |
EP2584069A1 (de) * | 2011-10-21 | 2013-04-24 | Siemens Aktiengesellschaft | Vorbehandlung bei einer Fluoridionen-Reinigung und Verfahren |
WO2013056869A1 (de) * | 2011-10-21 | 2013-04-25 | Siemens Aktiengesellschaft | Vorbehandlung bei einer fluoridionen-reinigung und verfahren |
FR3005318A1 (fr) * | 2013-05-03 | 2014-11-07 | Technett | Solution de decapage chimique exempte d'acide fluorhydrique applicable sur le titane et ses alliages |
WO2014177777A1 (fr) * | 2013-05-03 | 2014-11-06 | Technett | Solution de decapage chimique exempte d'agent oxydant applicable sur les métaux du groupe ivb et leurs alliages |
ITPR20130068A1 (it) * | 2013-09-13 | 2015-03-14 | Borrozzino Carlo | Metodo per la preparazione di superfici di dispositivi di titanio-ceramica-zirconia impiantabili nel corpo umano o animale, avente risultato di rugosita' nanometrica, formazione di biossido di titanio superficiale autoindotto, elevata pulizia anti me |
EP2893942A1 (en) * | 2013-09-13 | 2015-07-15 | Cristiano Ugo Ciranni | Method for the preparation of surfaces of devices made of titanium or titanium alloys, zirconium, zirconia, alumina or zirconia/alumina compounds, stainless steels for medical use and cobalt-base superalloys for medical use implantable in the human or animal body, having as a result nanometer roughness, formation of self-induced surface oxide, high anti-metalosis cleaning and possible preparation of parts with surface antimicrobial treatment. |
US9308153B2 (en) | 2013-09-13 | 2016-04-12 | Cristiano Ugo CIRANNI | Method for the preparation of surfaces of dental or orthopedic implants |
US20200235374A1 (en) * | 2014-03-31 | 2020-07-23 | Technion Research & Development Foundation Limited | Method for passive metal activation and uses thereof |
US11688845B2 (en) * | 2014-03-31 | 2023-06-27 | Technion Research & Development Foundation Limited | Method for passive metal activation and uses thereof |
US20180237919A1 (en) * | 2015-09-15 | 2018-08-23 | Chemetall Gmbh | Pre-treating aluminum surfaces with zirconium-and molybdenum-containing compositions |
GB2575365A (en) * | 2018-07-05 | 2020-01-08 | South West Metal Finishing Ltd | Process |
GB2575365B (en) * | 2018-07-05 | 2023-01-18 | South West Metal Finishing Ltd | Process |
US20200032412A1 (en) * | 2018-07-25 | 2020-01-30 | The Boeing Company | Compositions and Methods for Activating Titanium Substrates |
US20200032409A1 (en) * | 2018-07-25 | 2020-01-30 | The Boeing Company | Compositions and Methods for Electrodepositing Tin-Bismuth Alloys on Metallic Substrates |
US20200032411A1 (en) * | 2018-07-25 | 2020-01-30 | The Boeing Company | Compositions and Methods for Activating Titanium Substrates |
Also Published As
Publication number | Publication date |
---|---|
CH505916A (fr) | 1971-04-15 |
FR1589844A (xx) | 1970-04-06 |
BE722726A (xx) | 1969-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3562013A (en) | Process of deoxidizing titanium and its alloys | |
US3728188A (en) | Chrome-free deoxidizing and desmutting composition and method | |
US3106499A (en) | Process and composition for cleaning and polishing aluminum and its alloys | |
US2828193A (en) | Method for rejuvenation of aluminum treating solutions | |
US2705500A (en) | Cleaning aluminum | |
US3725224A (en) | Composition for electrolytic descaling of titanium and its alloys | |
US5417819A (en) | Method for desmutting aluminum alloys having a highly reflective surface | |
US2876144A (en) | Metal pickling solutions and methods | |
US2780594A (en) | Electrolytic descaling | |
US3228816A (en) | Process and composition for cleaning and polishing aluminum and its alloys | |
US3010854A (en) | Pickling solution and method | |
US3121026A (en) | Descaling metals and alloys with aqueous potassium hydroxide at relatively low temperature | |
US2347742A (en) | Pickling process | |
US3666580A (en) | Chemical milling method and bath | |
US3553015A (en) | Alkaline bath removal of scale from titanium workpieces | |
US3510430A (en) | Compositions for treating aluminum surfaces | |
US5215624A (en) | Milling solution and method | |
US2620265A (en) | Composition for treating aluminum and aluminum alloys | |
US3690949A (en) | Alkaline bath for nonetching removal of scale from titanium workpieces | |
US3429792A (en) | Method of electrolytically descaling and pickling steel | |
US3290174A (en) | Two-stage process for derusting and protecting the surfaces of ferrous materials | |
US2288995A (en) | Surface treatment of magnesium and its alloys | |
US2311623A (en) | Surface treatment for aluminum | |
US3030286A (en) | Descaling titanium and titanium base alloy articles | |
US2598889A (en) | Pickling chromium alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DIVERSEY WYANDOTTE CORPORATION, A CORP. OF DE., MI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIVERSEY CORPORATION THE;REEL/FRAME:003954/0125 Effective date: 19820107 Owner name: DIVERSEY WYANDOTTE CORPORATION, 1532 BIDDLE AVE., Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DIVERSEY CORPORATION THE;REEL/FRAME:003954/0125 Effective date: 19820107 |