US3561503A - Liquid filling head - Google Patents

Liquid filling head Download PDF

Info

Publication number
US3561503A
US3561503A US734031A US3561503DA US3561503A US 3561503 A US3561503 A US 3561503A US 734031 A US734031 A US 734031A US 3561503D A US3561503D A US 3561503DA US 3561503 A US3561503 A US 3561503A
Authority
US
United States
Prior art keywords
chamber
liquid
chamber means
filling
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US734031A
Inventor
Bernhard Rogge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Application granted granted Critical
Publication of US3561503A publication Critical patent/US3561503A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/28Flow-control devices, e.g. using valves
    • B67C3/282Flow-control devices, e.g. using valves related to filling level control
    • B67C3/285Flow-control devices, e.g. using valves related to filling level control using liquid contact sensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/26Filling-heads; Means for engaging filling-heads with bottle necks
    • B67C2003/266Means for centering the container with the filling head
    • B67C2003/2662Means for centering the container with the filling head with means for detecting the presence of a container

Definitions

  • My invention relates to an apparatus, system, and method for rapidly filling containers with liquid material which is highly toxic.
  • a principal object of my invention is to provide a reliable apparatus system, and method for rapidly andcompletely filling containers with toxic liquid material and eliminating partially or unfilled containers from leaving the filling station.
  • Another object of my invention is to provide a reliable apparatus, system, and method for rapidly and completely filling containers with toxic liquid material without fonning foam within the container or filling apparatus.
  • This object is impor tant, because it is desired to fill the container with liquid and not foam.
  • a further object of my invention is to provide a reliable apparatus, system, and method for rapidly and completely filling containers with toxic liquid material to a constant filling height irrespective of the container size without utilizing complicated weighing, volumetric measurement, and/or timing techniques.
  • Still another object of my invention is to provide a reliable apparatus, system, and method for rapidly and completely filling containers with toxic liquid material which prevents overflow of the container; avoids container, work surface, and
  • a still further object of my invention is to provide a reliable apparatus, system, and method for rapidly and completely filling containers with toxic liquid material which eliminates any type of pretreatment of the container to be filled.
  • FIG. 1 is a sectional view of my filling head apparatus within the container to be filled.
  • FIG. 2 is a schematic diagram of my filling system.
  • FIG. 3 is a .view showing a rotatable table for placing containers in a position to be filled by my apparatus.
  • FIGS. 1 and 2 will now be described in detail as follows.
  • Container 2 is moved into the filling position by any conventional means 56 shown in FIG. 3, such as the conventional conveyor belt or rotating tabletop feed such as table 2 in FIG. 1 of US. Pat. No. 2,377,796.
  • the movement of containers into filling position as well as all sequencing steps in the filling procedure is controlled by a conventional electronic sequencing unit 22 as shown in FIG.,2.
  • the sequencing unit circuitry comprises a power supply, timing circuits, and control relays such as disclosed in FIGS. 7-9 of US. Pat. No. 2,377,796.
  • microswitch 23 which is conventionally electrically connected in series with conventional solenoid 24.
  • solenoid 24 is activated which in turn activates the conventional four-way valve 25, which may be either an electropneumatic valve or a hydraulic valve.
  • valve 25 permits air (TH SOURCE NOT SHOWN IN THE DRAWlNG) to flow in ill 30 and causes my filling apparatus to be lowered by means cylinder 54 connected to filling head rod 1 into the filling por tion until needle 12 is located within container 2 and in scalin engagement with the container by means of O-ring 3, as show in FIG. 1.
  • lCflChCt microswitch 26 electrically connected in series with valve 2. opens the electrical circuit and stops the filling apparatus ii the proper position.
  • microswitch 27 Simultaneously with the activation v switch 26, microswitch 27, electrically connected in seric with conventional solenoid 28, closes the circuit to solcnoi 28 and causes the solenoid to be activated.
  • Valve 29 can t an electropneumatic or hydraulic valve.
  • air is evacuated from container by means of a vacuum line (not shown in the drawing) co nected to port 4 in the conventional manner.
  • Activation valve 29 causes air to flow in line 31 (the source of air n shown in the drawing) and to energize spring-loaded cylind 6 through line 7.
  • valve 5 move upward and permit ball closure 8 housed in chamb means 55, to be moved into sealing engagement with O-ring by means of spring activator 18.
  • the timing sequence in pan 22 then activates pump 32 which raises liquid to be filled container 2 from reservoir 33 through line 34 to inlet 35. Tl liquid then flows through chambers 36, 37, and 38 into co tainer 2. Foaming within container 2 is avoided by means the centrifugal force induced to the liquid in chamber 38 l means of helix 11 located wiihin the chamber, which enablthe liquid to drain down chamber 38 walls rather than dl't straight into the chamber.
  • a further aid in eliminating foamii is the parabolic curvature of the upper surface of point 39 needle 12, which imparts an umbrclla-shaped curtain of liqu with a clear center.
  • the liquid level continues to rise in c0 tainer 2 until the bottom of point 39 is reached. After reachi point 39, a stream of liquid is pulled up tube 15 of needle by means of vacuum applied to ports 13 and 14 in the conve tional manner.
  • Valves 51 are provided for periodic maintenance, adding make-up liquid, draining liquid from the system, and relieving pressure buildup within the system as required in the conventional manner. All liquid feed lines as required in the conventional manner. All liquid feed lines are conventional flexible tubing such as Tygon. The return of the filling apparatus to its starting position is accomplished by activating spring return mechanism 52 through solenoid 24 which interrupts the airflow through line 30 and exhausts the air through line 53, The conventional timing circuits utilized with my apparatus are correlated to insure proper sequencing of events so that each step is carried out as described above.
  • An improved system for filling containers with liquids comprising a reservoir, conduit means connecting said reser voir with a filling means, electronic sequencing control panel, a plurality of valves integral with said conduit means, a plurality of monitoring gauges integral with said conduit means, means to place a container to be filled in a filling position, means to lower said filling means in a filling opening within said container, a plurality of switch means to insure proper positioning of said container and said filling means, to provide sealing engagement between said container and said filling means, vacuum exhaust means to exhaust said container, and means for activating said filling means; the improvement in combination with said system being a filling head comprising a first chamber means integral with and located between an inlet means and a second chamber means, said first chamber means being provided to receive liquid from the reservoir for transfer to the second chamber means during a filling cycle; a third chamber means integral with and located between said first chamber means and an outlet means communicating with said reservoir, said third chamber means being provided to house a sealing means located within said third chamber means and to
  • sealing means is a spring-loaded ball seal.
  • valve means has a T configuration and fits snugly within said first chamber means to provide a positive seal.
  • a vacuum port is located above said groove which is adapted to drain ofi' vapor condensation and overflow liquid.
  • An apparatus for filling container with liquids comprising a first chamber means integral with and located between an inlet means and a second chamber means, said first chamber means being provided to receive liquid from a reservoir for transfer to the second chamber means during a filling cycle; a third chamber means integral with and located between said first chamber means and an outlet means communicating with said reservoir, said third chamber means being provided to house a sealing means located within said third chamber means and to transfer liquid to the outlet means for transfer to the reservoir during a nonfilling cycle; said sealing means being provided to permit transfer of liquid from the first to the second chamber means and prevent liquid from entering the third chamber means and prevent liquid from entering the third chamber means during the filling cycle while allowing communication between the second and third chamber means during the nonfilling cycle to allow for drainage of the second chamber means; valve means located within said first chamber means and connected to a cylinder means, said valve and cylinder means being provided to permit flow of liquid from the inlet means to the first chamber means during the filling cycle; said second chamber means being integral with a fourth chamber means at the extremity of said second
  • sealing means is a spring-loaded ball seal.
  • valve has a T configuration and fits snugly within said first chamber means to provide a positive seal.
  • a process for introducing an electrically conductive liquid into a container comprising the steps of sequentially moving a container having a filling opening into a filling position, lowering a filling head into seating engagement within said filling opening by means of an air-actuated cylinder preparatory to filling the container, exhausting the air from said container by vacuum means to reduce the pressure on the liquid, closing a switch means to activate an air supply means which causes activation of a spring-loaded cylinder means, activating the spring-loaded cylinder means by said air supply means to open a valve means, opening the valve means by said spring-loaded cylinder means to permit liquid to flow from an inlet means through a plurality of chamber means to fill the container, closing an outlet means communicating with the reservoir simultaneously with the valve means opening to avoid return of the liquid to a reservoir means and permit flow of the liquid through the plurality of chamber means to the container, pumping liquid from the reservoir means through said inlet and plurality of chamber means into said container simultaneously with the valve means opening and the outlet means closing, withdrawing a column of liquid

Landscapes

  • Basic Packing Technique (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)

Abstract

An improved system, apparatus, and method of filling containers with liquid comprising a reservoir means, electronic sequencing means, conduit means, and a plurality of valve means wherein the improvement is a filling head means having a plurality of chamber members, a novel valve means adjacent to an inlet means, means to avoid overflow, means to avoid drip, and an electric means to interrupt liquid flow.

Description

United States Patent Inventor Bernhard Rogge Baldwin, Md. App]. No 734,031 Filed June 3, 1968 Patented Feb. 9, 1971 Assignee the United States of America as represented by the Secretary of the Army LIQUID FILLING HEAD 23 Claims, 3 Drawing Figs.
US. Cl 141/7, 141/40,141/45,141/59,141/93,141/198, 141/279, 141/286 Int. Cl B65b 3/26 Field of Search 141/7, 8,
[56] References Cited UNITED STATES PATENTS 1,641,550 9/1927 Ross 141/286 2,874,733 2/1959 Sesler et a1.. l4l/93X 3,251,386 5/1966 Bellato 141/279 3,443,608 5/1969 Copping et a1 141/198X Primary Examiner-William F. ODea Assistant ExaminerEdward .1. Earls Att0rneys-Harry M. Saragovitz, Edward J. Kelly, Herbert Berl and Bernard Ohlendorf ABSTRACT: An improved system, ap aratus, and method of filling containers with liquid comprising a reservoir means, electronic sequencing means, conduit means, and a plurality of valve means wherein the improvement is a filling head means having a plurality of chamber members, a novel valve means adjacent to an inlet means, means to avoid overflow, means to avoid drip, and an electric means to interrupt liquid flow.
PATENTEUFEB 9 ISH INVENTOR. Bernhard Ragga LIQUID FILLING HEAD ,DEDICATORY CLAUSE The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to me of any royalty thereon.
My invention relates to an apparatus, system, and method for rapidly filling containers with liquid material which is highly toxic.
While filling devices have been disclosed in the prior art, these all presented certain disadvantages and problems. For example, the prior art devices required the container to have a strippable plastic coating to utilize the device; or the container required a decontamination washdown following filling due to overflow; or dripping or work surfaces became contaminated due to container overflow; or complicated weighing, volumetric measurement, and timing techniques were required to be employed in conjunction with the prior art filling device; or the container to be filled left the filling station in a partially or unfilled condition or containing a quantity of foam. My invention was conceived and reduced to practice to overcome and solve these disadvantages and problems.
A principal object of my invention is to provide a reliable apparatus system, and method for rapidly andcompletely filling containers with toxic liquid material and eliminating partially or unfilled containers from leaving the filling station.
Another object of my invention is to provide a reliable apparatus, system, and method for rapidly and completely filling containers with toxic liquid material without fonning foam within the container or filling apparatus. This object is impor tant, because it is desired to fill the container with liquid and not foam.
A further object of my invention is to provide a reliable apparatus, system, and method for rapidly and completely filling containers with toxic liquid material to a constant filling height irrespective of the container size without utilizing complicated weighing, volumetric measurement, and/or timing techniques.
Still another object of my invention is to provide a reliable apparatus, system, and method for rapidly and completely filling containers with toxic liquid material which prevents overflow of the container; avoids container, work surface, and
filling apparatus contamination, and eliminates decontamina- I tion washdown procedure.
A still further object of my invention is to provide a reliable apparatus, system, and method for rapidly and completely filling containers with toxic liquid material which eliminates any type of pretreatment of the container to be filled.
Other objects of my invention will be obvious or will appear from the specification hereinafter set forth.
FIG. 1 is a sectional view of my filling head apparatus within the container to be filled.
FIG. 2 is a schematic diagram of my filling system.
FIG. 3 is a .view showing a rotatable table for placing containers in a position to be filled by my apparatus.
'My invention as shown in FIGS. 1 and 2 will now be described in detail as follows.
Container 2 is moved into the filling position by any conventional means 56 shown in FIG. 3, such as the conventional conveyor belt or rotating tabletop feed such as table 2 in FIG. 1 of US. Pat. No. 2,377,796. The movement of containers into filling position as well as all sequencing steps in the filling procedure is controlled by a conventional electronic sequencing unit 22 as shown in FIG.,2. The sequencing unit circuitry comprises a power supply, timing circuits, and control relays such as disclosed in FIGS. 7-9 of US. Pat. No. 2,377,796. When container 2 is brought into the filling position as described above, the container closes microswitch 23, which is conventionally electrically connected in series with conventional solenoid 24. Upon closing switch 23, solenoid 24 is activated which in turn activates the conventional four-way valve 25, which may be either an electropneumatic valve or a hydraulic valve. Activation of valve 25 permits air (TH SOURCE NOT SHOWN IN THE DRAWlNG) to flow in ill 30 and causes my filling apparatus to be lowered by means cylinder 54 connected to filling head rod 1 into the filling por tion until needle 12 is located within container 2 and in scalin engagement with the container by means of O-ring 3, as show in FIG. 1. When the proper filling position is lCflChCt microswitch 26 electrically connected in series with valve 2. opens the electrical circuit and stops the filling apparatus ii the proper position. Simultaneously with the activation v switch 26, microswitch 27, electrically connected in seric with conventional solenoid 28, closes the circuit to solcnoi 28 and causes the solenoid to be activated. Solenoid 28, i turn, activates the conventional three-way valve 29 in tr manner described above regarding valve 25. Valve 29 can t an electropneumatic or hydraulic valve. Simultaneously wii the activation of switch 27, air is evacuated from container by means of a vacuum line (not shown in the drawing) co nected to port 4 in the conventional manner. Activation valve 29 causes air to flow in line 31 (the source of air n shown in the drawing) and to energize spring-loaded cylind 6 through line 7. Energizing the cylinder causes valve 5 move upward and permit ball closure 8 housed in chamb means 55, to be moved into sealing engagement with O-ring by means of spring activator 18. The timing sequence in pan 22 then activates pump 32 which raises liquid to be filled container 2 from reservoir 33 through line 34 to inlet 35. Tl liquid then flows through chambers 36, 37, and 38 into co tainer 2. Foaming within container 2 is avoided by means the centrifugal force induced to the liquid in chamber 38 l means of helix 11 located wiihin the chamber, which enablthe liquid to drain down chamber 38 walls rather than dl't straight into the chamber. A further aid in eliminating foamii is the parabolic curvature of the upper surface of point 39 needle 12, which imparts an umbrclla-shaped curtain of liqu with a clear center. The liquid level continues to rise in c0 tainer 2 until the bottom of point 39 is reached. After reachi point 39, a stream of liquid is pulled up tube 15 of needle by means of vacuum applied to ports 13 and 14 in the conve tional manner. Liquid flows from tube 15 into chamber which is provided with baffle 19, the baffle being incorporat' to avoid giving false signals to electrodes 17 due to splashin When the liquid level rises to electrodes 17 in chamber 16, tl liquid acting as an electrolyte, an electrical circuit completed to microswitch 41 which activates solenoid 28 close valve 29 by means of conventional spring retu mechanism 42; the circuit to microswitch 41 being completi through conductors 57 which are connected to electrodes in the conventional manner. Closing of valve 29 interrupts a flow to cylinder 6 which causes valve 5 to close in sealing c gagement with chamber 36 by means of O-ring 43 and to i terrupt liquid flow to the container. Excess liquid in chambt 36 and 37 is drained back to reservoir 33 by means of out 10. Positive drain back from chamber 37 is insured chamber 37 being installed at an angle of approximately from the horizontal measured in a counterclockwise directio Valve 5 is designed in a T configuration and fits snugly chamber 36 as a safety feature to avoid liquid leakage shou O-ring seals 43 fail. The filling apparatus is then partia' raised, by means of control panel 22, so that point 39 is abo the liquid level within the container but still within the cc tainer. In such a raised position, excess liquid is drained frt tube 15 and chamber 16 by means of vacuum to reservoir through lines 45 and 46. The vacuum system is then st down, the filling apparatus returned to its starting position, t filled container moved from thefilling position to a ClOSl position, and the procedure as described above cyclically 1 peated. Since filling is accomplished by subjecting the cr tainer to vacuum, toxic Iiquids having a low vapor pressu would partially vaporize and condense at fill opening 44. order to avoid such condensation, an annular groove 20 is pr vided in needle housing 47 with sleeve 21 extending from t groove to vacuum port 4. Such means prevents any liquid vapor extending above groove 20 during the vacuum cycle. Pump 48 is provided to add make-up liquid to the system from a source not shown in the drawing. Pressure within the system is monitored by gauges 49, and liquid amount within the system is monitored by gauge 50. Valves 51 are provided for periodic maintenance, adding make-up liquid, draining liquid from the system, and relieving pressure buildup within the system as required in the conventional manner. All liquid feed lines as required in the conventional manner. All liquid feed lines are conventional flexible tubing such as Tygon. The return of the filling apparatus to its starting position is accomplished by activating spring return mechanism 52 through solenoid 24 which interrupts the airflow through line 30 and exhausts the air through line 53, The conventional timing circuits utilized with my apparatus are correlated to insure proper sequencing of events so that each step is carried out as described above.
lt is obvious that other modifications can be made of my invention, and l desire my invention to be limited only by the scope of the appended claims.
lclaim:
1. An improved system for filling containers with liquids comprising a reservoir, conduit means connecting said reser voir with a filling means, electronic sequencing control panel, a plurality of valves integral with said conduit means, a plurality of monitoring gauges integral with said conduit means, means to place a container to be filled in a filling position, means to lower said filling means in a filling opening within said container, a plurality of switch means to insure proper positioning of said container and said filling means, to provide sealing engagement between said container and said filling means, vacuum exhaust means to exhaust said container, and means for activating said filling means; the improvement in combination with said system being a filling head comprising a first chamber means integral with and located between an inlet means and a second chamber means, said first chamber means being provided to receive liquid from the reservoir for transfer to the second chamber means during a filling cycle; a third chamber means integral with and located between said first chamber means and an outlet means communicating with said reservoir, said third chamber means being provided to house a sealing means located within said third chamber means and to transfer liquid to the outlet means for transfer to the reservoir during a nonfilling cycle; said sealing means being provided to permit transfer of liquid from the first to the second chamber means and prevent liquid from entering the third chamber means during the filling cycle while allowing communication between the second and third chamber means during the nonfilling cycle to allow for drainage of the second chamber means; valve means located within said first chamber means and connected to a cylinder means, said valve and cylinder means being provided to permit flow of liquid from the inlet means to the first chamber means during the filling cycle; said second chamber means being integral with a fourth chamber means at the extremity of said second chamber means opposite to that which is integral to said first chamber means, said second chamber means being provided to receive liquid from the first chamber means for transfer to the fourth chamber means during the filling cycle and said fourth chamber means being provided to receive liquid from the second chamber means for transfer to the container during the filling cycle; a tubular means located within said fourth chamber means, said tubular means having one extremity ter minated in a pointed structure and the second extremity within a fifth chamber means, said tubular means being provided to assist in eliminating foaming action of the liquid on entering the container and to convey a column of liquid to the fifth chamber means; a first baffle means within said fourth chamber means and surrounding said tubular means, said first baffle means being provided to induce centrifugal force action on the liquid to assist in eliminating foaming action of the liquid on entering the container; an electrode means located within said fifth chamber means, said electrode means being provided to close an electrical circuit which closes the valve means to interrupt the filling cycle and start the nonfilling cycle to return the liquid to the reservoir; and a second baffle means located within said fifth chamber means and interposed between said electrode means and said second tubular extremity, said second baffle means being provided to avoid liquid splash against the electrode and prevent premature closing of the electrical circuit.
2. The system of claim 1 wherein said second chamber means is inclined at an angle of approximately 2 to result in the horizontal surface of the second chamber means joining the vertical surfaces of the first and fourth chamber means at angles of approximately 88 and 92 respectively. the angles being measured in a counterclockwise direction whereby drainage of the second chamber means to the third chamber means during the nonfilling cycle is facilitated.
3. The system of claim 1 wherein said sealing means is a spring-loaded ball seal.
4. The system of claim 1 wherein said valve means has a T configuration and fits snugly within said first chamber means to provide a positive seal.
5. The system of claim 1 wherein said cylinder means is an air-actuated spring-loaded cylinder.
6. The system of claim 1 wherein said pointed structure has an upper surface which is a parabolic curve in configuration.
7. The system of claim 1 wherein said first baffle means is a helix.
8. The system of claim 1 wherein said fifth chamber means is provided with a plurality of vacuum ports located below said second baffle means.
9, The system of claim 1 wherein an annular groove is provided in the outer wall of said fourth chamber means which is adapted to avoid liquid condensation collecting in said filling opening.
10. The system of claim 9 wherein a vacuum port is located above said groove which is adapted to drain ofi' vapor condensation and overflow liquid.
11. The system of claim 10 wherein a sleeve means is provided between said groove and said vacuum port which is adapted to provide a channel for flow of vapor condensation and overflow liquid.
12. An apparatus for filling container with liquids comprising a first chamber means integral with and located between an inlet means and a second chamber means, said first chamber means being provided to receive liquid from a reservoir for transfer to the second chamber means during a filling cycle; a third chamber means integral with and located between said first chamber means and an outlet means communicating with said reservoir, said third chamber means being provided to house a sealing means located within said third chamber means and to transfer liquid to the outlet means for transfer to the reservoir during a nonfilling cycle; said sealing means being provided to permit transfer of liquid from the first to the second chamber means and prevent liquid from entering the third chamber means and prevent liquid from entering the third chamber means during the filling cycle while allowing communication between the second and third chamber means during the nonfilling cycle to allow for drainage of the second chamber means; valve means located within said first chamber means and connected to a cylinder means, said valve and cylinder means being provided to permit flow of liquid from the inlet means to the first chamber means during the filling cycle; said second chamber means being integral with a fourth chamber means at the extremity of said second chamber means opposite to that which is integral to said first chamber means, said second chamber means being provided to receive liquid from the first chamber means for transfer to the fourth chamber means during the filling cycle and said fourth chamber means being provided to receive liquid from the second chamber means for transfer to a container during the filling cycle; a tubular means located within said fourth chamber means, said tubular means having one extremity terminated in a pointed structure and the second extremity within a fifth chamber means, said tubular means being provided to assist in eliminating foaming action of theliquid on entering the container and to convey a column of liquid to the fifth chamber means; a first baffie'means within said fourth chamber means and surrounding said tubular means, said first baffie means being provided to induce centrifugal force action on the liquid to assist in eliminating foaming action of the liquid on entering the container; an electrode means located within said fifth chamber means, said electrode means being provided to close an electrical circuit which closes the valve means to interrupt the filling cycle and start the nonfilling cycle to return the liquid to the reservoir; and a second baffie means located within said fifth chamber means and interposed between said electrode means and said second tubular extremity, said second bafile means being provided to avoid liquid splash against the electrode and prevent premature closing of the electrical circuit.
13. The apparatus of claim 12 wherein said second chamber means is inclined at an angle of approximately 2 to result in the horizontal surface of the second chamber means joining the vertical surfaces of the first and fourth chamber means at angles of approximately 88 and 92 respectively, the angles being measured in a counterclockwise direction whereby drainage of the second chamber means to the third chamber means during the nonfilling cycle is facilitated.
14. The apparatus of claim 12 wherein said sealing means is a spring-loaded ball seal.
15. The apparatus of claim 12 wherein said valve has a T configuration and fits snugly within said first chamber means to provide a positive seal.
16. The apparatus of claim 12 wherein said cylinder means is an air-actuated spring-loaded cylinder.
17. The apparatus of claim 12 wherein said pointed structure has an upper surface which is a parabolic curve in configuration.
18. The apparatus of claim 12 wherein said first baffle is a helix.
19. The apparatus of claim 12 wherein the fifth chamber means provided with a plurality of vacuum ports located below said second baffle means.
20. The apparatus of claim 12 wherein an annular groove is provided in the outer wall of said fourth chamber means which is adapted to avoid liquid condensation collecting in said filling opening.
21. The apparatus of claim 20. wherein a vacuum port is located above said groove which is adapted to drain off vapor condensation and overflow liquid.
22. The apparatus of claim 21 wherein a sleeve means is provided between said groove and said vacuum port which is adapted to provide a channel for flow of vapor condensation and overflow liquid.
23. A process for introducing an electrically conductive liquid into a container comprising the steps of sequentially moving a container having a filling opening into a filling position, lowering a filling head into seating engagement within said filling opening by means of an air-actuated cylinder preparatory to filling the container, exhausting the air from said container by vacuum means to reduce the pressure on the liquid, closing a switch means to activate an air supply means which causes activation of a spring-loaded cylinder means, activating the spring-loaded cylinder means by said air supply means to open a valve means, opening the valve means by said spring-loaded cylinder means to permit liquid to flow from an inlet means through a plurality of chamber means to fill the container, closing an outlet means communicating with the reservoir simultaneously with the valve means opening to avoid return of the liquid to a reservoir means and permit flow of the liquid through the plurality of chamber means to the container, pumping liquid from the reservoir means through said inlet and plurality of chamber means into said container simultaneously with the valve means opening and the outlet means closing, withdrawing a column of liquid from said container into a tubular means after the container has been filled to predetermined level, introducing liquid from said column into a chamber containing an electrode means after the tubular means has been filled, activatingsaid electrode means by said liquid contacting the electrode means, closing an electrical circuit means by said contact of the electrode with the liquid which interrupts the flow of liquid to the container by the electrical circuit causing the air supply to be interrupted which closes the valve means and opens the outlet means, removing said container from the filling position after the liquid retained within said filling head has drained to the reservoir means, and cyclically repeating the process.

Claims (23)

1. An improved system for filling containers with liquids comprising a reservoir, conduit means connecting said reservoir with a filling means, electronic sequencing control panel, a plurality of valves integral with said conduit means, a plurality of monitoring gauges integral with said conduit means, means to place a container to be filled in a filling position, means to lower said filling means in a filling opening within said container, a plurality of switch means to insure proper positioning of said container and said filling means, to provide sealing engagement between said container and said filling means, vacuum exhaust means to exhaust said container, and means for activating said filling means; the improvement in combination with said system being a filling head comprising a first chamber means integral with and located between an inlet means and a second chamber means, said first chamber means being provided to receive liquid from the reservoir for transfer to the second chamber means during a filling cycle; a third chamber means integral with and located between said first chamber means and an outlet means communicating with said reservoir, said third chamber means being provided to house a sealing means located within said third chamber means and to transfer liqUid to the outlet means for transfer to the reservoir during a nonfilling cycle; said sealing means being provided to permit transfer of liquid from the first to the second chamber means and prevent liquid from entering the third chamber means during the filling cycle while allowing communication between the second and third chamber means during the nonfilling cycle to allow for drainage of the second chamber means; valve means located within said first chamber means and connected to a cylinder means, said valve and cylinder means being provided to permit flow of liquid from the inlet means to the first chamber means during the filling cycle; said second chamber means being integral with a fourth chamber means at the extremity of said second chamber means opposite to that which is integral to said first chamber means, said second chamber means being provided to receive liquid from the first chamber means for transfer to the fourth chamber means during the filling cycle and said fourth chamber means being provided to receive liquid from the second chamber means for transfer to the container during the filling cycle; a tubular means located within said fourth chamber means, said tubular means having one extremity terminated in a pointed structure and the second extremity within a fifth chamber means, said tubular means being provided to assist in eliminating foaming action of the liquid on entering the container and to convey a column of liquid to the fifth chamber means; a first baffle means within said fourth chamber means and surrounding said tubular means, said first baffle means being provided to induce centrifugal force action on the liquid to assist in eliminating foaming action of the liquid on entering the container; an electrode means located within said fifth chamber means, said electrode means being provided to close an electrical circuit which closes the valve means to interrupt the filling cycle and start the nonfilling cycle to return the liquid to the reservoir; and a second baffle means located within said fifth chamber means and interposed between said electrode means and said second tubular extremity, said second baffle means being provided to avoid liquid splash against the electrode and prevent premature closing of the electrical circuit.
2. The system of claim 1 wherein said second chamber means is inclined at an angle of approximately 2* to result in the horizontal surface of the second chamber means joining the vertical surfaces of the first and fourth chamber means at angles of approximately 88* and 92* respectively, the angles being measured in a counterclockwise direction whereby drainage of the second chamber means to the third chamber means during the nonfilling cycle is facilitated.
3. The system of claim 1 wherein said sealing means is a spring-loaded ball seal.
4. The system of claim 1 wherein said valve means has a T configuration and fits snugly within said first chamber means to provide a positive seal.
5. The system of claim 1 wherein said cylinder means is an air-actuated spring-loaded cylinder.
6. The system of claim 1 wherein said pointed structure has an upper surface which is a parabolic curve in configuration.
7. The system of claim 1 wherein said first baffle means is a helix.
8. The system of claim 1 wherein said fifth chamber means is provided with a plurality of vacuum ports located below said second baffle means.
9. The system of claim 1 wherein an annular groove is provided in the outer wall of said fourth chamber means which is adapted to avoid liquid condensation collecting in said filling opening.
10. The system of claim 9 wherein a vacuum port is located above said groove which is adapted to drain off vapor condensation and overflow liquid.
11. The system of claim 10 wherein a sleeve means is provided between said groove and said vacuum port which is adapted to provide a channel for flow of vapor condensation and overflow liquid.
12. An apparatus for fiLling container with liquids comprising a first chamber means integral with and located between an inlet means and a second chamber means, said first chamber means being provided to receive liquid from a reservoir for transfer to the second chamber means during a filling cycle; a third chamber means integral with and located between said first chamber means and an outlet means communicating with said reservoir, said third chamber means being provided to house a sealing means located within said third chamber means and to transfer liquid to the outlet means for transfer to the reservoir during a nonfilling cycle; said sealing means being provided to permit transfer of liquid from the first to the second chamber means and prevent liquid from entering the third chamber means and prevent liquid from entering the third chamber means during the filling cycle while allowing communication between the second and third chamber means during the nonfilling cycle to allow for drainage of the second chamber means; valve means located within said first chamber means and connected to a cylinder means, said valve and cylinder means being provided to permit flow of liquid from the inlet means to the first chamber means during the filling cycle; said second chamber means being integral with a fourth chamber means at the extremity of said second chamber means opposite to that which is integral to said first chamber means, said second chamber means being provided to receive liquid from the first chamber means for transfer to the fourth chamber means during the filling cycle and said fourth chamber means being provided to receive liquid from the second chamber means for transfer to a container during the filling cycle; a tubular means located within said fourth chamber means, said tubular means having one extremity terminated in a pointed structure and the second extremity within a fifth chamber means, said tubular means being provided to assist in eliminating foaming action of the liquid on entering the container and to convey a column of liquid to the fifth chamber means; a first baffle means within said fourth chamber means and surrounding said tubular means, said first baffle means being provided to induce centrifugal force action on the liquid to assist in eliminating foaming action of the liquid on entering the container; an electrode means located within said fifth chamber means, said electrode means being provided to close an electrical circuit which closes the valve means to interrupt the filling cycle and start the nonfilling cycle to return the liquid to the reservoir; and a second baffle means located within said fifth chamber means and interposed between said electrode means and said second tubular extremity, said second baffle means being provided to avoid liquid splash against the electrode and prevent premature closing of the electrical circuit.
13. The apparatus of claim 12 wherein said second chamber means is inclined at an angle of approximately 2* to result in the horizontal surface of the second chamber means joining the vertical surfaces of the first and fourth chamber means at angles of approximately 88* and 92* respectively, the angles being measured in a counterclockwise direction whereby drainage of the second chamber means to the third chamber means during the nonfilling cycle is facilitated.
14. The apparatus of claim 12 wherein said sealing means is a spring-loaded ball seal.
15. The apparatus of claim 12 wherein said valve has a T configuration and fits snugly within said first chamber means to provide a positive seal.
16. The apparatus of claim 12 wherein said cylinder means is an air-actuated spring-loaded cylinder.
17. The apparatus of claim 12 wherein said pointed structure has an upper surface which is a parabolic curve in configuration.
18. The apparatus of claim 12 wherein said first baffle is a helix.
19. The apparatus of claim 12 wherein the fifth chamber means provided with a plurality of vacuum ports Located below said second baffle means.
20. The apparatus of claim 12 wherein an annular groove is provided in the outer wall of said fourth chamber means which is adapted to avoid liquid condensation collecting in said filling opening.
21. The apparatus of claim 20 wherein a vacuum port is located above said groove which is adapted to drain off vapor condensation and overflow liquid.
22. The apparatus of claim 21 wherein a sleeve means is provided between said groove and said vacuum port which is adapted to provide a channel for flow of vapor condensation and overflow liquid.
23. A process for introducing an electrically conductive liquid into a container comprising the steps of sequentially moving a container having a filling opening into a filling position, lowering a filling head into seating engagement within said filling opening by means of an air-actuated cylinder preparatory to filling the container, exhausting the air from said container by vacuum means to reduce the pressure on the liquid, closing a switch means to activate an air supply means which causes activation of a spring-loaded cylinder means, activating the spring-loaded cylinder means by said air supply means to open a valve means, opening the valve means by said spring-loaded cylinder means to permit liquid to flow from an inlet means through a plurality of chamber means to fill the container, closing an outlet means communicating with the reservoir simultaneously with the valve means opening to avoid return of the liquid to a reservoir means and permit flow of the liquid through the plurality of chamber means to the container, pumping liquid from the reservoir means through said inlet and plurality of chamber means into said container simultaneously with the valve means opening and the outlet means closing, withdrawing a column of liquid from said container into a tubular means after the container has been filled to predetermined level, introducing liquid from said column into a chamber containing an electrode means after the tubular means has been filled, activating said electrode means by said liquid contacting the electrode means, closing an electrical circuit means by said contact of the electrode with the liquid which interrupts the flow of liquid to the container by the electrical circuit causing the air supply to be interrupted which closes the valve means and opens the outlet means, removing said container from the filling position after the liquid retained within said filling head has drained to the reservoir means, and cyclically repeating the process.
US734031A 1968-06-03 1968-06-03 Liquid filling head Expired - Lifetime US3561503A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US73403168A 1968-06-03 1968-06-03

Publications (1)

Publication Number Publication Date
US3561503A true US3561503A (en) 1971-02-09

Family

ID=24950057

Family Applications (1)

Application Number Title Priority Date Filing Date
US734031A Expired - Lifetime US3561503A (en) 1968-06-03 1968-06-03 Liquid filling head

Country Status (1)

Country Link
US (1) US3561503A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687176A (en) * 1970-03-18 1972-08-29 United Aircraft Prod Phase separator
US4285372A (en) * 1978-09-25 1981-08-25 Deutsche Calypsolgesellschaft Mbh & Co. Method and device for the refilling of double chamber presspack spray containers
US4485856A (en) * 1982-03-29 1984-12-04 Fmc Corporation Apparatus for accurately filling beverage cans
US5038548A (en) * 1983-07-29 1991-08-13 Sieg William F Defoaming method and apparatus
US5125441A (en) * 1990-04-23 1992-06-30 Alfill Getranketechnik Gmbh Apparatus for filling bottles with a liquid
US20070227227A1 (en) * 2004-08-26 2007-10-04 Musashi Engineering, Inc. Liquid Dispenser
US20090056813A1 (en) * 2004-05-21 2009-03-05 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US20100200106A1 (en) * 2009-01-28 2010-08-12 Mark Bonner Automatic shut-off nozzle for use in a non-overflow liquid delivery system
US9908066B2 (en) 2015-06-05 2018-03-06 Fogg Filler Company Defoamer assembly for use with a filler and method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1641550A (en) * 1923-09-28 1927-09-06 Adriance Machine Works Inc Bottle-filling machine
US2874733A (en) * 1956-06-20 1959-02-24 Union Carbide Corp Container filler
US3251386A (en) * 1963-04-08 1966-05-17 Ready Ind Inc Filler valve assembly
US3443608A (en) * 1965-10-22 1969-05-13 Meyer Geo J Mfg Co Apparatus for filling containers with beverages

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1641550A (en) * 1923-09-28 1927-09-06 Adriance Machine Works Inc Bottle-filling machine
US2874733A (en) * 1956-06-20 1959-02-24 Union Carbide Corp Container filler
US3251386A (en) * 1963-04-08 1966-05-17 Ready Ind Inc Filler valve assembly
US3443608A (en) * 1965-10-22 1969-05-13 Meyer Geo J Mfg Co Apparatus for filling containers with beverages

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687176A (en) * 1970-03-18 1972-08-29 United Aircraft Prod Phase separator
US4285372A (en) * 1978-09-25 1981-08-25 Deutsche Calypsolgesellschaft Mbh & Co. Method and device for the refilling of double chamber presspack spray containers
US4485856A (en) * 1982-03-29 1984-12-04 Fmc Corporation Apparatus for accurately filling beverage cans
US5038548A (en) * 1983-07-29 1991-08-13 Sieg William F Defoaming method and apparatus
US5125441A (en) * 1990-04-23 1992-06-30 Alfill Getranketechnik Gmbh Apparatus for filling bottles with a liquid
US8123080B2 (en) * 2004-05-21 2012-02-28 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US8616412B2 (en) 2004-05-21 2013-12-31 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US20090057343A1 (en) * 2004-05-21 2009-03-05 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US20090057336A1 (en) * 2004-05-21 2009-03-05 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US10040043B2 (en) 2004-05-21 2018-08-07 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US9150401B2 (en) 2004-05-21 2015-10-06 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US20090056813A1 (en) * 2004-05-21 2009-03-05 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US8590746B2 (en) 2004-05-21 2013-11-26 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US20110024455A1 (en) * 2004-05-21 2011-02-03 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US8079495B2 (en) 2004-05-21 2011-12-20 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US8113384B2 (en) 2004-05-21 2012-02-14 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US8356730B2 (en) 2004-05-21 2013-01-22 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US8127966B2 (en) * 2004-05-21 2012-03-06 Pepsico, Inc. Beverage dispensing system with a head capable of dispensing plural different beverages
US20070227227A1 (en) * 2004-08-26 2007-10-04 Musashi Engineering, Inc. Liquid Dispenser
US7527768B2 (en) * 2004-08-26 2009-05-05 Musashi Engineering Inc. Liquid dispenser with vacuum control
US20100200105A1 (en) * 2009-01-28 2010-08-12 Mark Bonner Nozzle for use in a non-overflow liquid delivery system
US8474492B2 (en) * 2009-01-28 2013-07-02 Fuel Transfer Technologies Inc. Automatic shut-off nozzle for use in a non-overflow liquid delivery system
US20130284308A1 (en) * 2009-01-28 2013-10-31 Fuel Transfer Technologies Inc. Automatic shut-off nozzle for use in a non-overflow liquid delivery system
US20100200111A1 (en) * 2009-01-28 2010-08-12 Mark Bonner Non-overflow liquid delivery system
US8408252B2 (en) * 2009-01-28 2013-04-02 Fuel Transfer Technologies Nozzle for use in a non-overflow liquid delivery system
CN102574675B (en) * 2009-01-28 2014-09-03 燃料传送技术有限公司 A non-overflow liquid delivery system
US8925595B2 (en) 2009-01-28 2015-01-06 Fuel Transfer Technologies Inc. Nozzle for use in a non-overflow liquid delivery system
US8936051B2 (en) 2009-01-28 2015-01-20 Fuel Transfer Technologies Inc. Non-overflow liquid delivery system
US20100200106A1 (en) * 2009-01-28 2010-08-12 Mark Bonner Automatic shut-off nozzle for use in a non-overflow liquid delivery system
US9242750B2 (en) * 2009-01-28 2016-01-26 Fuel Transfer Technologies Inc. Automatic shut-off nozzle for use in a non-overflow liquid delivery system
US8397770B2 (en) * 2009-01-28 2013-03-19 Fuel Transfer Technologies Non-overflow liquid delivery system
US9908066B2 (en) 2015-06-05 2018-03-06 Fogg Filler Company Defoamer assembly for use with a filler and method therefor

Similar Documents

Publication Publication Date Title
US3561503A (en) Liquid filling head
US4840292A (en) Method and apparatus for dispensing oil well proppant additive
US2660357A (en) Pressure-and-vacuum filling machine
GB1332870A (en) Filling elements for counter pressure filling machines
US2138355A (en) Apparatus for filling containers under gas
US2661885A (en) Apparatus for charging liquid products and volatile propellants into pressure containers
US3119399A (en) Apparatus for washing milk conducting lines
US2359785A (en) Liquid filling apparatus
US2721021A (en) Filling head
US3541755A (en) Apparatus for filling receptacles with liquid or paste-like products under aseptic conditions
US3016072A (en) Method and apparatus for dispensing predetermined quantities of liquid
US2055334A (en) Fluid dispensing apparatus
CN105043566A (en) Rapid-response temperature-measuring probe packaging apparatus
US3348588A (en) Mercury dispenser
JPS57182630A (en) Inspecting device for leakage of canned and bottled products
JP3353233B2 (en) Gas leak detector for liquefied high-pressure gas containers
GB1172892A (en) Method of and apparatus for Dispensing Liquid by Gas Pressure
SU389008A1 (en) DEVICE FOR DOSING LIQUIDS IN BOTTLES
SU69980A1 (en) Device for automatically controlling the tightness of sealing cans and bottles
GB1351521A (en) Apparatus for filling vessels such as bottles
SU141097A1 (en) Vacuum filling device for canning filling machines
US1751642A (en) Art of canning
SU425026A1 (en) STAND FOR FILLING HEAT PIPES WITH WORKING BODY
US2726800A (en) Filling apparatus
SU393602A1 (en) PNEUMATIC LIQUID LEVEL SIGNALIZER