US3561494A - Castable silicate compositions, casting methods and articles produced thereby - Google Patents

Castable silicate compositions, casting methods and articles produced thereby Download PDF

Info

Publication number
US3561494A
US3561494A US710316A US3561494DA US3561494A US 3561494 A US3561494 A US 3561494A US 710316 A US710316 A US 710316A US 3561494D A US3561494D A US 3561494DA US 3561494 A US3561494 A US 3561494A
Authority
US
United States
Prior art keywords
percent
silicate
ceramic body
insoluble
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US710316A
Inventor
Robert J Hackett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3561494A publication Critical patent/US3561494A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/10Rigid pipes of glass or ceramics, e.g. clay, clay tile, porcelain
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups

Definitions

  • compositions including soluble or colloidal silicates as binding agent.
  • the composition is cast as an aqueous slurry in a mold coated with a reagent for precipitating the silicate, to prevent penetration of silicates into the mold surface.
  • a lightweight, expandable, refractory tube having excellent resistance to thermal shock is produced.
  • the present invention relates to castable silicate compositions and methods.
  • a refractory, expendable, lightweight tube is produced.
  • Refractory tubes are used for a number of purposes, such as for withdrawing molding metal for analysis, for determining temperatures of molten substances, for injecting gases into molten metals, etc. Since such tubes are normally used only once or a few times before being discarded, they must be inexpensive. Particularly, in applications where the tube will be plunged into molten metals, it must withstand great thermal shock.
  • Known prior art tubes for these applications include a steel tube covered with layers of paper. The paper, although destroyed in use, protects the steel tube for a limited period of time.
  • Another known prior art construction has the steel tube coated with asbestos fibers admixed with fibers such as cotton. Each of these known prior tubes are somewhat hazardous to use, and have a service life of only a few seconds.
  • the steel tube is protected by a foamed ceramic composition including refractory materials bonded together with silicate.
  • the resulting tube withstands high temperatures much better than known prior art tubes, and has a greater service life under severe conditions.
  • Other major aspects of the invention in clude particular refractory compositions, methods of formulating these refractory compositions and methods of easing silicate-containing compositions generally.
  • a primary object of the invention is to provide methods of easing silicate-containing compositions.
  • a further object is to provide such methods which are particularly suited for use with porous molds which are to be separated from the cast article.
  • a further primary object is to provide inexpensive refractory castable compositions.
  • a further object is to provide compositions of the above character which can be formed to produce lightweight, insulating, refractory ceramic structures.
  • a further primary object of the invention is to provide a metal tube coated with compositions of the above character.
  • the invention accordingly comprises the several steps and the relation of one or more said steps with respect to each of the others, the compositions possessing the characteristics, properties, and the relation of constituents which will be exemplified in the compositions hereinafter described, and the articles which possess the relation of elements, all as exemplified in the detailed disclosure hereinafter set forth, and the scope of the invention will be indicated in the claims.
  • FIG. 1 is a perspective view, partly broken away, of a ceramic coated metal tube produced according to one aspect of the invention
  • FIG. 2 is an action view, partly in section, showing the metal tube being assembled into a noule for applying the castable compositions to the exterior of the tube;
  • FIG. 3 is a side elevation view, partly broken away of a paper mold
  • FIG. 4 is an end view of the mold shown in FIG. 3;
  • FIG. 5 is a sectional view of the assembled tube and mold on the nozzle, just prior to injection of the castable composition.
  • FIG. 6 is an action view similar to FIG. 5, showing an intermediate stage in the injection of the composition into the space bounded by the tube and mold.
  • FIG. 1 The composition and process according to the invention are disclosed in the context of producing the tube illustrated in FIG. 1, which includes tube 20 surrounded by a cylindrical ceramic casting 22 bonded to tube 20. As will be disclosed, casting 22 is refractory, lightweight and inexpensive.
  • FIGS. 2- --6 illustrate suitable apparatus for producing the FIG. 1 product.
  • nozzle 24 includes inner and outer coaxial cylindrical walls 26 and 28 spaced apart by ribs 30 to define an annular passage 32.
  • a plug 34 is inserted in the left end of the tube 20, which is then telescopically inserted into cylinder 26 until the right end of tube 20 is flush with the right end of cylinder 26 (FIG. 5 ).
  • the dimensions of cylinder 26 are selected for easy sliding reception of tube 20. Since in this application it is intended that casting 22 adhere to tube 20, the surface of tube 20 is preferably etched or otherwise thoroughly cleaned prior to insertion in cylinder 26.
  • mold 35 includes cylinder 36, formed for example of kraft paper, and a cup-shaped mold end piece or cap 38 secured as by staples 40 at the right end of cylinder 36.
  • the central bottom portion of cap 38 is slit to provide tabs 42 extending radially inward from a distance approximately equal to the radius of tube 20.
  • the interior surface of cylinder 36 and the cap 38 are coated with a release coat of a character to be described.
  • the dimensions of cylinder 28 are selected so that coated cylinder 36 can telescope thereon, as shown in FIG. 5.
  • tapered pin 44 is inserted. through the center of cap 38. This wedges tabs 42 into contact with the inner surface of tube 20 and seals mold 35 to tube 20.
  • Mold 35 and tube 20 thus define an annular volume for receiving the castable composition in the form of slurry 46 which is injected through passage 32 by conventional pumping means (not shown).
  • Tube 20 and mold 35 are pushed to the right as a unit as their enclosed annular volume is filled by slurry 46.
  • the left or open end is preferably closed with a further release-coated cap 38 and tapered pin 44, so that both ends are identical and tube 20 is centered within cylinder 36.
  • cylinder 36 is preferably slightly longer than tube 20, to accommodate end caps 38.
  • the slurry should substantially completely fill the mold when both end caps 38 are installed.
  • the preferred specific composition for refractory casing 22 is as follows:
  • Weight Ingredient percent Mullite 40-60 Aqueous silicate, solids 820 Perlite 0-10 Clay 0-10 Total water 20-30 Surface active agent 1
  • the mullite is an inexpensive refractory substance, and can be replaced by other refractory substances depending upon the desired end use.
  • the preferred aqueous silicate in the above composition is available from Philadelphia Quartz Company as their product S-35, and contains 6.75 percent by weight Na,0, 25.3 percent Si0 and 67.95 percent water. This results in approximately 440 ounces of silicate solids combined with 936 ounces of water. In terms of weight percent of the total slurry composition, the silicate expressed as Si0 (348 ounces) constitutes some 10.5 percent of the slurry, or about l4.7 percent of the cured casting.
  • the perlite is a lightweight refractory extender, and contributes to ease of foaming of the slurry.
  • the clay in the composition adds to the strength of the casting and reduces the viscosity of the slurry. It is also believed to reduce the size of the foam bubbles.
  • the free water is added to this particular composition for two reasons. When using the particular aqueous silicate as specified above, the resulting slurry is rather difficult to pump. Addition of this small amount of further water makes the slurry conveniently pumpable. If substantially more water were added, the final casting 22 would tend to crack upon curing,
  • the other purpose of the free water is to facilitate blending the Surface active agent into the slurry.
  • the preferred surface active agent' is an anionic surfactant commercially available as Santomerse No. l from Monsanto Company, and is believed to be essentially dodecyl benzene sulfonate. A number of other surface active agents are commercially available and would be suitable. The principal function of the surface active agent is to stabilize the foam produced when the slurry is stirred so as to entrain air.
  • the several ingredients are preferably combined as follows.
  • the aqueous silicate, clay and mullite are thoroughly mixed with approximately 17 ounces of the free water and then let stand for 2 or 3 days.
  • the perlite is then blended in.
  • the surface active agent is then dissolved in the remainder of the free water (which may be warmed) and added to the mixture.
  • the mixture is then stirred so as to entrain air and produce a foamed slurry stabilized by the surface active agent. Stirring is discontinued when the mixture has expanded to about 110 percent to 115 percent of its original volume.
  • the foamed slurry is then ready for extrusion through nozzle 24.
  • aqueous silicate composition indicated above can be replaced by other aqueous silicates containing different amounts of alkaline oxide (either sodium or potassium oxide), and different amounts of total solids in water. In such cases it may be necessary to add differing amounts of free water, or perhaps no free water, or to make other adjustments in the composition.
  • alkaline oxide either sodium or potassium oxide
  • aqueous silicate as used in'the specification and claims is intended to include silicates present either as colloidal dispersions or in true solution.
  • the indicated range of foamed expansion is significant in that a less expanded slurry would be difficult to pump while one expanded to a considerably greater degree would tend to crack upon curing.
  • the foamed structure contributes to the insulating qualities of the casting, improves its thermal shock resistance and makes it lightweight and less expensive.
  • the first is considered to be highly desirable with the above formulation, and the second heating period is also of considerable importance. If the temperature is too low during the first period. the foamed slurry tends to collapse and settle while if the temperature is too high, the
  • the ceramic 22 cured in accordance with the above schedule can be plunged directly into molten steel without cracking.
  • aqueous silicate Assuming that all the water is removed during the curing, the casting using the above specific slurry composition will SEPARATION OF CASTING FROM MOLD According to another major aspect of the invention, means are provided for preventing an aqueous silicate from sticking to a surface, such as to mold 35, particularly when the mold is porous. It has been discovered that such sticking can be prevented by coating the surface with a setting agent, which is defined as a substance which chemically reacts quickly with aqueous silicate to form an insoluble material. The insoluble material is believed to form a film or layer which prevents penetration of the unreacted aqueous silicate to the surface being protected.
  • a setting agent which is defined as a substance which chemically reacts quickly with aqueous silicate to form an insoluble material.
  • the insoluble material is believed to form a film or layer which prevents penetration of the unreacted aqueous silicate to the surface being protected.
  • the insoluble material can be, for example, polysilicic acid (formed when the setting agent is more acidic than silicic acid, e.g., sulfuric or acetic acid), or insoluble silicate salts (formed when the setting agent donates cations forming insoluble silicate salts, e.g., copper, zinc or calcium silicate). Selection of a particular setting agent for a given application is within the scope of one skilled in the art.
  • the presently preferred setting agent is calcium stearate, which is commercially available in the form of a wettable powder.
  • this wettable calcium stearate powder is preferably sprayed as an aqueous slurry and dried so as to leave a film approximately 0.015 to 0.030 inch thick on the interior mold surfaces.
  • a considerably thicker coating might prevent proper escape of water vapor through the mold walls during the curing of the slurry, while considerably thinner coatings would not provide an effective barrier.
  • the calcium stearate apparently reacts substantially instantaneously with the aqueous silicate to form a layer of insoluble calcium silicate. This in turn prevents penetration of the aqueous silicate to the mold, so that the mold can be readily stripped from casting 22.
  • the disclosed metal tube coated with foamed refractory ceramic is rugged and inexpensive, and can withstand sudden immersion into molten steel.
  • silicate salt comprises calcium silicate.
  • An article of manufacture comprising: A. a metal tube; and B. a foamed ceramic body surrounding and bonded to said tube, said ceramic body consisting essentially of about: l. 67.5 percent mullite; 2. 14.7 percent Si0 3. 4.2 percent M 0; 4. 7.1 percent perlite; and 5. 6.5 percent clay; said ceramic body having an outer peripheral layer comprising a blend of said ceramic body and an insoluble silicate salt, said insoluble silicate salt resulting from the reaction of calcium stearate and the aqueous silicate of said body to form a substantially nonporous insoluble layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Castable compositions including soluble or colloidal silicates as binding agent. The composition is cast as an aqueous slurry in a mold coated with a reagent for precipitating the silicate, to prevent penetration of silicates into the mold surface. A lightweight, expandable, refractory tube having excellent resistance to thermal shock is produced.

Description

D United States Patent 1 1 3,561,494
[72) Inventor RobertJ.l-lackett 2.640503 6/1953 Milliganmi 138/141 CrossRoad,Brookiield.Conn.06804 2.745.437 5/1956 Comstockw 138 140 1211 Appl N0 710,316 2.924.245 2/1960 Wilson 1. 1, 138/149 1221 Filed Mar. 4. 1968 2.970.061 1/1961 Burnett L06/(PerliteDigest) [451 Patented Feb.9. 1971 3.010.835 11/1961 Charles l06/(Perlite Digest) 3,044,499 7/1962 Frerich 138/143 3.132956 5/1964 Lewis v .1 .LOG/(Perlite Digest) 1 1 CASTABLESILICATECOMPOSITIONSCASTING 3,203.813 8/1965 Gajardo. .LOfi/(Perlite Digest) METHODS ANDARTICLES PRODUCEDTHEREBY 3,419,495 12 1968 Weldes ..l.06/(Perlite Digest) 8 Claims, 6 Drawing Figs. I
Primary Examiner-Herbert F. Ross 52 U.S.CI .3 H 138/177. A,,amey Manem wareandDavis 138/140. 138/1451264/66, 106/40 51 1m.c1......../.. Fl6l9/l0 [50] Field ofSearch 1.264/66(F0r purposes of restriction only); 138/177 (For purposes of restriction only); 106/40 (For purposes ofrestriction only); 138/140, 141, 143,
145 177, 149 (Cursory); l06/(Perlite digest) ABSTRACT: Castable compositions including soluble or colloidal silicates as binding agent. The composition is cast as an aqueous slurry in a mold coated with a reagent for precipitating the silicate, to prevent penetration of silicates into the mold surface. A lightweight, expandable, refractory tube having excellent resistance to thermal shock is produced.
CASTABLE SILICATE COMPOSITIONS, CASTING METHODS AND ARTICLES PRODUCED TI-IEREBY The present invention relates to castable silicate compositions and methods. As a particular aspect of the invention, a refractory, expendable, lightweight tube is produced.
Refractory tubes are used for a number of purposes, such as for withdrawing molding metal for analysis, for determining temperatures of molten substances, for injecting gases into molten metals, etc. Since such tubes are normally used only once or a few times before being discarded, they must be inexpensive. Particularly, in applications where the tube will be plunged into molten metals, it must withstand great thermal shock.
Known prior art tubes for these applications include a steel tube covered with layers of paper. The paper, although destroyed in use, protects the steel tube for a limited period of time. Another known prior art construction has the steel tube coated with asbestos fibers admixed with fibers such as cotton. Each of these known prior tubes are somewhat hazardous to use, and have a service life of only a few seconds.
According to one major aspect of the present invention, the steel tube is protected by a foamed ceramic composition including refractory materials bonded together with silicate. The resulting tube withstands high temperatures much better than known prior art tubes, and has a greater service life under severe conditions. Other major aspects of the invention in clude particular refractory compositions, methods of formulating these refractory compositions and methods of easing silicate-containing compositions generally.
Accordingly, a primary object of the invention is to provide methods of easing silicate-containing compositions.
A further object is to provide such methods which are particularly suited for use with porous molds which are to be separated from the cast article.
A further primary object is to provide inexpensive refractory castable compositions.
A further object is to provide compositions of the above character which can be formed to produce lightweight, insulating, refractory ceramic structures.
A further primary object of the invention is to provide a metal tube coated with compositions of the above character.
Other objects of the invention will in part be obvious and will in part appear hereinafter.
The invention accordingly comprises the several steps and the relation of one or more said steps with respect to each of the others, the compositions possessing the characteristics, properties, and the relation of constituents which will be exemplified in the compositions hereinafter described, and the articles which possess the relation of elements, all as exemplified in the detailed disclosure hereinafter set forth, and the scope of the invention will be indicated in the claims.
For a more complete understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connecting with the accompanying drawing, in which:
FIG. 1 is a perspective view, partly broken away, of a ceramic coated metal tube produced according to one aspect of the invention;
FIG. 2 is an action view, partly in section, showing the metal tube being assembled into a noule for applying the castable compositions to the exterior of the tube;
FIG. 3 is a side elevation view, partly broken away of a paper mold;
FIG. 4 is an end view of the mold shown in FIG. 3;
FIG. 5 is a sectional view of the assembled tube and mold on the nozzle, just prior to injection of the castable composition; and
FIG. 6 is an action view similar to FIG. 5, showing an intermediate stage in the injection of the composition into the space bounded by the tube and mold.
THE CASTING OPERATION The composition and process according to the invention are disclosed in the context of producing the tube illustrated in FIG. 1, which includes tube 20 surrounded by a cylindrical ceramic casting 22 bonded to tube 20. As will be disclosed, casting 22 is refractory, lightweight and inexpensive. FIGS. 2- --6 illustrate suitable apparatus for producing the FIG. 1 product.
Referring to FIG. 2, nozzle 24 includes inner and outer coaxial cylindrical walls 26 and 28 spaced apart by ribs 30 to define an annular passage 32. A plug 34 is inserted in the left end of the tube 20, which is then telescopically inserted into cylinder 26 until the right end of tube 20 is flush with the right end of cylinder 26 (FIG. 5 The dimensions of cylinder 26 are selected for easy sliding reception of tube 20. Since in this application it is intended that casting 22 adhere to tube 20, the surface of tube 20 is preferably etched or otherwise thoroughly cleaned prior to insertion in cylinder 26.
As illustrated in FIG. 3, mold 35 includes cylinder 36, formed for example of kraft paper, and a cup-shaped mold end piece or cap 38 secured as by staples 40 at the right end of cylinder 36. The central bottom portion of cap 38 is slit to provide tabs 42 extending radially inward from a distance approximately equal to the radius of tube 20. The interior surface of cylinder 36 and the cap 38 are coated with a release coat of a character to be described. The dimensions of cylinder 28 are selected so that coated cylinder 36 can telescope thereon, as shown in FIG. 5. When the mold 35 has been installed on cylinder 28, tapered pin 44 is inserted. through the center of cap 38. This wedges tabs 42 into contact with the inner surface of tube 20 and seals mold 35 to tube 20. Mold 35 and tube 20 thus define an annular volume for receiving the castable composition in the form of slurry 46 which is injected through passage 32 by conventional pumping means (not shown).
Tube 20 and mold 35 are pushed to the right as a unit as their enclosed annular volume is filled by slurry 46. When the enclosed volume is filled with slurry 46 and tube 20 and mold 35 are removed from nozzle 24, the left or open end is preferably closed with a further release-coated cap 38 and tapered pin 44, so that both ends are identical and tube 20 is centered within cylinder 36. For this purpose, cylinder 36 is preferably slightly longer than tube 20, to accommodate end caps 38. The slurry should substantially completely fill the mold when both end caps 38 are installed. After this slurry 46 in the resulting intermediate product has been cured or set, pins 44 and mold 35 are removed, to produce the final product shown in FIG. 1.
THE SLURRY COMPOSITION The preferred specific composition for refractory casing 22 is as follows:
Weight Ingredient: percent Mullite 40-60 Aqueous silicate, solids 820 Perlite 0-10 Clay 0-10 Total water 20-30 Surface active agent 1 The mullite is an inexpensive refractory substance, and can be replaced by other refractory substances depending upon the desired end use.
The preferred aqueous silicate in the above composition is available from Philadelphia Quartz Company as their product S-35, and contains 6.75 percent by weight Na,0, 25.3 percent Si0 and 67.95 percent water. This results in approximately 440 ounces of silicate solids combined with 936 ounces of water. In terms of weight percent of the total slurry composition, the silicate expressed as Si0 (348 ounces) constitutes some 10.5 percent of the slurry, or about l4.7 percent of the cured casting.
The perlite is a lightweight refractory extender, and contributes to ease of foaming of the slurry.
The clay in the composition adds to the strength of the casting and reduces the viscosity of the slurry. It is also believed to reduce the size of the foam bubbles.
The free water is added to this particular composition for two reasons. When using the particular aqueous silicate as specified above, the resulting slurry is rather difficult to pump. Addition of this small amount of further water makes the slurry conveniently pumpable. If substantially more water were added, the final casting 22 would tend to crack upon curing, The other purpose of the free water is to facilitate blending the Surface active agent into the slurry. The preferred surface active agent'is an anionic surfactant commercially available as Santomerse No. l from Monsanto Company, and is believed to be essentially dodecyl benzene sulfonate. A number of other surface active agents are commercially available and would be suitable. The principal function of the surface active agent is to stabilize the foam produced when the slurry is stirred so as to entrain air.
Operative ranges for the above ingredients are generally as follows:
Weight The several ingredients are preferably combined as follows. The aqueous silicate, clay and mullite are thoroughly mixed with approximately 17 ounces of the free water and then let stand for 2 or 3 days. The perlite is then blended in. The surface active agent is then dissolved in the remainder of the free water (which may be warmed) and added to the mixture. The mixture is then stirred so as to entrain air and produce a foamed slurry stabilized by the surface active agent. Stirring is discontinued when the mixture has expanded to about 110 percent to 115 percent of its original volume. The foamed slurry is then ready for extrusion through nozzle 24.
It should be understood that the specific aqueous silicate composition indicated above can be replaced by other aqueous silicates containing different amounts of alkaline oxide (either sodium or potassium oxide), and different amounts of total solids in water. In such cases it may be necessary to add differing amounts of free water, or perhaps no free water, or to make other adjustments in the composition. The term aqueous silicate as used in'the specification and claims is intended to include silicates present either as colloidal dispersions or in true solution.
The indicated range of foamed expansion is significant in that a less expanded slurry would be difficult to pump while one expanded to a considerably greater degree would tend to crack upon curing. The foamed structure contributes to the insulating qualities of the casting, improves its thermal shock resistance and makes it lightweight and less expensive.
SE'ITING THE SLURRY 1s0 210 56%h0urs 2l2225 minutes 300 15 minutes Ann 450 10 minutes 470 10 minutes 500 5 minutes Of these heating periods, the first is considered to be highly desirable with the above formulation, and the second heating period is also of considerable importance. If the temperature is too low during the first period. the foamed slurry tends to collapse and settle while if the temperature is too high, the
ceramic tends to blister and crack. The ceramic 22 cured in accordance with the above schedule can be plunged directly into molten steel without cracking.
Assuming that all the water is removed during the curing, the casting using the above specific slurry composition will SEPARATION OF CASTING FROM MOLD According to another major aspect of the invention, means are provided for preventing an aqueous silicate from sticking to a surface, such as to mold 35, particularly when the mold is porous. It has been discovered that such sticking can be prevented by coating the surface with a setting agent, which is defined as a substance which chemically reacts quickly with aqueous silicate to form an insoluble material. The insoluble material is believed to form a film or layer which prevents penetration of the unreacted aqueous silicate to the surface being protected. The insoluble material can be, for example, polysilicic acid (formed when the setting agent is more acidic than silicic acid, e.g., sulfuric or acetic acid), or insoluble silicate salts (formed when the setting agent donates cations forming insoluble silicate salts, e.g., copper, zinc or calcium silicate). Selection of a particular setting agent for a given application is within the scope of one skilled in the art.
The presently preferred setting agent is calcium stearate, which is commercially available in the form of a wettable powder. When using this wettable calcium stearate powder as the setting agent for coating the interior surfaces of mold 35, it is preferably sprayed as an aqueous slurry and dried so as to leave a film approximately 0.015 to 0.030 inch thick on the interior mold surfaces. A considerably thicker coating might prevent proper escape of water vapor through the mold walls during the curing of the slurry, while considerably thinner coatings would not provide an effective barrier.
The calcium stearate apparently reacts substantially instantaneously with the aqueous silicate to form a layer of insoluble calcium silicate. This in turn prevents penetration of the aqueous silicate to the mold, so that the mold can be readily stripped from casting 22.
It should be understood that the use of a setting agent to prevent adhesion of silicate-containing compositions to surfaces (such as molds) is not restricted to production of the article shown in FIG. 1 or to the specific compositions herein disclosed, but is of general application.
From the above disclosure and the accompanying drawing it may be seen that there is provided a method using setting agents for casting silicate-containing compositions, which method is particularly useful when the mold is to be separated from the cast article. The setting agents may be applied to the mold surface as thin coatings, permitting ready release of the mold. The preferred castable compositions disclosed herein are well suited for exposure to extremely high temperatures,
and an: inn-vnnncinn ll-m van-Mad no to... Jaw-NM; u...
resulting castings are lightweight and provide substantial insulating properties. The disclosed metal tube coated with foamed refractory ceramic is rugged and inexpensive, and can withstand sudden immersion into molten steel.
While the objects of the invention are efficiently achieved by the preferred forms of the invention described in the foregoing specification, the invention also includes changes and variations falling within and between the definitions of the following claims.
I claim: ll. An article of manufacture, comprising: A. a metal tube; and
B. a foamed ceramic body surrounding and bonded to said 3. An article of manufacture as defined in claim I, wherein said nonporous, insoluble layer comprises a copper salt.
4. An article of manufacture as defined in claim 3, wherein said silicate salt comprises calcium silicate.
5. An article of manufacture as defined in sinc I, wherein said nonporous, insoluble layer comprises a zinc salt.
6. The article defined in claim 1, wherein said ceramic body is cellular in structure.
7. The article defined in claim 6, wherein said ceramic body contains about 10 to 15 percent entrained gas, by volume.
8. An article of manufacture, comprising: A. a metal tube; and B. a foamed ceramic body surrounding and bonded to said tube, said ceramic body consisting essentially of about: l. 67.5 percent mullite; 2. 14.7 percent Si0 3. 4.2 percent M 0; 4. 7.1 percent perlite; and 5. 6.5 percent clay; said ceramic body having an outer peripheral layer comprising a blend of said ceramic body and an insoluble silicate salt, said insoluble silicate salt resulting from the reaction of calcium stearate and the aqueous silicate of said body to form a substantially nonporous insoluble layer.
UNITED STATES PATENT OFFICE CERTIFICATE -0F CORRECTION Patent No. 561,494 Dated February 1971 Inventor(s) Robert J- Hackett It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
- and are inexpensive.
should read casting should read casting should read casting are reversed illegible, should read 30 minutes illegible, should read When formed as above disclosed, the
Column 1, line 31, "casing" Line 34, "casing" Column 2, line 54, "casing" Columns 2 and 3, the Tables Column 3, line 76, which is Column 4, line 76, which is Claim 5, line 1,
"sine" should read claim Signed and sealed this 7th day of September 1971 (SEAL) Attest:
EDWARD M.FLETCHER, JR. Attesting Officer ROBI ERT GOTTSCHALK Acting Commissioner of Pa

Claims (16)

1. An article of manufacture, comprising: A. a metal tube; and B. a foamed ceramic body surrounding and bonded to said tube, said ceramic body essentially comprising: 1. 40-67.5 percent mullite; 2. 5-15 percent Si02; 3. 3-5 percent Na20; 4. 0-10 percent perlite; and 5. 0-10 percent clay; said ceramic body having an outer peripheral layer comprising a blend of said ceramic body and an insoluble silicate salt, said insoluble silicate salt resulting from the reaction of calcium stearate and the aqueous silicate of said body to form a substantially nonporous insoluble layer.
2. 5-15 percent Si02;
2. An article of manufacture as defined in claim 1, wherein said nonporous, insoluble layer comprises polysilicic acid.
2. 14.7 percent Si02;
3. 4.2 percent Na20;
3. An article of manufacture as defined in claim 1, wherein said nonporous, insoluble layer comprises a copper salt.
3. 3-5 percent Na20;
4. 0-10 percent perlite; and
4. An article of manufacture as defined in claim 3, wherein said silicate salt comprises calcium silicate.
4. 7.1 percent perlite; and
5. 6.5 percent clay; said ceramic body having an outer peripheral layer comprising a blend of said ceramic body and an insoluble silicate salt, said insoluble silicate salt resulting from the reaction of calcium stearate and the aqueous silicate of said body to form a substantially nonporous insoluble layer.
5. An article of manufacture as defined in sinc 1, wherein said nonporous, insoluble layer comprises a zinc salt.
5. 0-10 percent clay; said ceramic body having an outer peripheral layer comprising a blend of said ceramic body and an insoluble silicate salt, said insoluble silicate salt resulting from the reaction of calcium stearate and the aqueous silicate of said body to form a substantially nonporous insoluble layer.
6. The article defined in claim 1, wherein said ceramic body is cellular in structure.
7. The article defined in claim 6, wherein said ceramic body contains about 10 to 15 percent entrained gas, by volume.
8. An article of manufacture, comprising: A. a metal tube; and B. a foamed ceramic body surrounding and bonded to said tube, said ceramic body consisting essentially of about:
US710316A 1968-03-04 1968-03-04 Castable silicate compositions, casting methods and articles produced thereby Expired - Lifetime US3561494A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71031668A 1968-03-04 1968-03-04

Publications (1)

Publication Number Publication Date
US3561494A true US3561494A (en) 1971-02-09

Family

ID=24853518

Family Applications (1)

Application Number Title Priority Date Filing Date
US710316A Expired - Lifetime US3561494A (en) 1968-03-04 1968-03-04 Castable silicate compositions, casting methods and articles produced thereby

Country Status (1)

Country Link
US (1) US3561494A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905775A (en) * 1972-12-12 1975-09-16 Du Pont Module
US4019538A (en) * 1974-04-25 1977-04-26 Les Cables De Lyon Centering and fixing means and method for its fabrication
US4228826A (en) * 1978-10-12 1980-10-21 Campbell Frank Jun Interlocking, laminated refractory for covering a pipe
US4393901A (en) * 1980-09-25 1983-07-19 Minnesota Mining And Manufacturing Company Low-permeability hollow spheres and pipe filled with the spheres for temporary weight reduction
US4981589A (en) * 1987-03-05 1991-01-01 Valmet Paper Machinery Inc. Multi-layer ceramic filter
US5227106A (en) * 1990-02-09 1993-07-13 Tonawanda Coke Corporation Process for making large size cast monolithic refractory repair modules suitable for use in a coke oven repair
US5448923A (en) * 1994-09-27 1995-09-12 Haly Inc. Scored metal slag covers for molten sampler intake portals

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1485512A (en) * 1922-02-28 1924-03-04 Said Irwin Le Cocq Liner
US2640503A (en) * 1950-11-21 1953-06-02 Norton Co Refractory tube
US2745437A (en) * 1951-09-12 1956-05-15 Norton Co Reinforced ceramic body of revolution
US2924245A (en) * 1958-10-01 1960-02-09 Harvey A Wilson Pipe line for hot fluids and method of constructing same
US2970061A (en) * 1957-12-11 1961-01-31 William H Burnett Building units and method of producing the same
US3010835A (en) * 1958-09-22 1961-11-28 A P Green Fire Brick Company Lightweight refractory castable and method of manufacture
US3044499A (en) * 1959-12-17 1962-07-17 Stoecker & Kunz G M B H Refractory ceramic pipe for fusible material
US3132956A (en) * 1960-05-31 1964-05-12 Celotex Corp Acoustical tile, methods, and compositions
US3203813A (en) * 1962-06-18 1965-08-31 United Clay Mines Corp Thermal insulating material, composition and process for making the same
US3419495A (en) * 1966-04-05 1968-12-31 Philadelphia Quartz Co Expanded silica insulation material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1485512A (en) * 1922-02-28 1924-03-04 Said Irwin Le Cocq Liner
US2640503A (en) * 1950-11-21 1953-06-02 Norton Co Refractory tube
US2745437A (en) * 1951-09-12 1956-05-15 Norton Co Reinforced ceramic body of revolution
US2970061A (en) * 1957-12-11 1961-01-31 William H Burnett Building units and method of producing the same
US3010835A (en) * 1958-09-22 1961-11-28 A P Green Fire Brick Company Lightweight refractory castable and method of manufacture
US2924245A (en) * 1958-10-01 1960-02-09 Harvey A Wilson Pipe line for hot fluids and method of constructing same
US3044499A (en) * 1959-12-17 1962-07-17 Stoecker & Kunz G M B H Refractory ceramic pipe for fusible material
US3132956A (en) * 1960-05-31 1964-05-12 Celotex Corp Acoustical tile, methods, and compositions
US3203813A (en) * 1962-06-18 1965-08-31 United Clay Mines Corp Thermal insulating material, composition and process for making the same
US3419495A (en) * 1966-04-05 1968-12-31 Philadelphia Quartz Co Expanded silica insulation material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905775A (en) * 1972-12-12 1975-09-16 Du Pont Module
US4019538A (en) * 1974-04-25 1977-04-26 Les Cables De Lyon Centering and fixing means and method for its fabrication
US4228826A (en) * 1978-10-12 1980-10-21 Campbell Frank Jun Interlocking, laminated refractory for covering a pipe
US4393901A (en) * 1980-09-25 1983-07-19 Minnesota Mining And Manufacturing Company Low-permeability hollow spheres and pipe filled with the spheres for temporary weight reduction
US4981589A (en) * 1987-03-05 1991-01-01 Valmet Paper Machinery Inc. Multi-layer ceramic filter
US5227106A (en) * 1990-02-09 1993-07-13 Tonawanda Coke Corporation Process for making large size cast monolithic refractory repair modules suitable for use in a coke oven repair
US5448923A (en) * 1994-09-27 1995-09-12 Haly Inc. Scored metal slag covers for molten sampler intake portals

Similar Documents

Publication Publication Date Title
US5082494A (en) Materials for and manufacture of fire and heat resistant components
US3561494A (en) Castable silicate compositions, casting methods and articles produced thereby
US4030939A (en) Cement composition
EP1069172A2 (en) Endothermic heat shield composition
US3243397A (en) Mold and core coating composition from calcined hydrated aluminum silicate, mica, and bentonite
SI9720046A (en) Process for fabricating couplings and other elements for hot topping and supply for cast iron molds, and formulation for producing such couplings and elements
US3883359A (en) Refractory insulating compositions
JPH02504140A (en) Curable hydrous foam material consisting of inorganic components and method for producing the same
JPH0669906B2 (en) Lightweight fire resistant composition for tundish
US4463106A (en) Non-flammable rigid foam and its use as a building material
US4071480A (en) Hardener for production solid foams or compact structure from aqueous solutions
JPS6092040A (en) Collapsible sand core for high-pressure casting
US4245054A (en) Process for the manufacture of a dry mixture for insulating stucco or plaster
US4541869A (en) Process for forming foundry components
US4483713A (en) Compositions for preparing inorganic foamed bodies
GB2101644A (en) Production of low-flammability heat-insulating layer
US2655490A (en) Catalytic hardening of phenol-formaldehyde resins and compositions comprising same
JPS5763370A (en) Non-combustible and heat-resistant agent for fixing anchor bolt in hole
US3766100A (en) Rigid phenolic foams suitable for use as non flammable insulating material
US3510446A (en) Fire-preventive structural matrix and process of making the same
GB1582098A (en) Foamed clay compositions
US3957519A (en) Acid and heat-resistant mortars for cellular glass compositions and products therefrom
US2662825A (en) Refractory
US4436680A (en) Process for producing granular, fire-resistant material
US5942562A (en) High temperature thermal insulating material