US3559607A - Multiple retrieval system for objects in submarine environment - Google Patents

Multiple retrieval system for objects in submarine environment Download PDF

Info

Publication number
US3559607A
US3559607A US794508*A US3559607DA US3559607A US 3559607 A US3559607 A US 3559607A US 3559607D A US3559607D A US 3559607DA US 3559607 A US3559607 A US 3559607A
Authority
US
United States
Prior art keywords
cable
retrieval
retrieval system
buoy
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US794508*A
Inventor
Aleksander B Macander
Clarence K Chatten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Application granted granted Critical
Publication of US3559607A publication Critical patent/US3559607A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C7/00Salvaging of disabled, stranded, or sunken vessels; Salvaging of vessel parts or furnishings, e.g. of safes; Salvaging of other underwater objects
    • B63C7/02Salvaging of disabled, stranded, or sunken vessels; Salvaging of vessel parts or furnishings, e.g. of safes; Salvaging of other underwater objects in which the lifting is done by hauling

Definitions

  • the first retrieval means is a vertical line system, the line being fabricated of titanium monofilament fastened to a cast-steel ball anchor at the lower end and a syntactic-foam globular buoy at the upper end which is some 50 feet below the ocean surface.
  • the second retrieval system comprises a 5200-f0ot length (approximately) of polypropylene-jacketed, aluflex line extending from said cast-steel ball anchor to a frame for holding the submerged object.
  • the third retrieval system comprises a 5,000-foot length (approximately) of polypropylene, self-buoyant rope extending from the frame to another cast-steel ball anchor.
  • This invention relates to retrieval systems for objects which are submerged in a submarine environment for long periods of time.
  • An object of the invention is, therefore, to permit reliable retrieval of an object which has been left on the ocean floor for an extended period of time.
  • Another object is to provide a corrosion-resistant retrieval system.
  • the objects and advantages of the present invention are accomplished by provision of a three-way retrieval so that the main retrieval system, which is a vertical line with a buoy, is backed up by two bottom lines, one of which is self-buoyant.
  • the materials from which the lines are fabricated are chosen with a view to corrosion and deterioration resistance.
  • FIG. 1 is a schematic illustration of an embodiment of the invention.
  • FIG. 2 is a schematic illustration of one type of fastening means for the titanium cable.
  • the first retrieval system the vertical system, comprises a buoyant sphere or buoy 12, a short length of line 16, a long length of line 20 and an anchor 24.
  • Fastening means 14, 18 and 22 are used to tie the various components together.
  • the buoy 12 was made from syntactic foam and is in the shape of a sphere having a 2 feet 6 inch diameter. This gives sufficient buoyancy to support the weight of the vertical line suspended from the buoy 12.
  • the short length of line, or the leader cable 16 is a steel cable coated with aluminum and is about 100 feet long and three-eighths inch thick.
  • the long line, which can be called the vertical line, 20 is a titanium monofilament about 4200 feet in length and 0.l22 inches thick. Titanium monofilament was chosen in particular because of its excellent anticorrosion properties and its high strength-to-weight ratio.
  • the anchor 24 may comprise a cast-steel ball.
  • the particular one used in this embodiment weighs about 320 pounds in sea water.
  • the titanium monofilament cable 20 is terminated at both ends with the special fastening means 18 shown in FIG. 2.
  • This fastening means 18 utilizes one or more crimped oval sleeves 50 (also known as Nicopress oval sleeves, to clamp the cable end to the cable 20.
  • a plastic (e.g., lucite) mold 52 is placed around the cable and sleeves and the cavity filled with epoxy 54. The encapsulation is necessary to prevent galvanic corrosion (dissimilar metal galvanic action) since the sleeves 50 are made of copper and are in direct contact with the titanium.
  • the titanium cable 20 loops around a plastic (e.g., lucite) shackle bearing 56 which insulates it from the metal of the leader cable 16.
  • the latter is connected to the shackle bearing 58 by being looped through a shackle 58 which may be made of galvanized steel.
  • leader cable 16 The reason for the use of the leader cable 16 is that encapsulation of the titanium cable termination takes some time to accomplish, whereas the coupling of the leader cable 16 can be accomplished quickly.
  • the titanium cable 20 and its fittings are prepared beforehand and the fastening of the leader cable fittings is done at sea.
  • leader cable 16 can be eliminated and only the titanium cable used.
  • the second retrieval system comprises a five-sixteenths inch thick aluminum-coated steel cable 28 about 5200 feet in length and fastening means 26 and 30 to fasten the line to the anchor 26 at one end and the exposure frame, or rack, 32 at the other.
  • the cable 28 is further coated with polypropylene so that its outside diameter is one-half inch.
  • the polypropylene provides extra protection to the cable and some buoyancy to reduce its weight in water, although not enough to float the cable 28.
  • the length of the horizontal cables is primarily a function of the depth of the water, the speed of the surface vessel when it lays the equipment and the rate of underseas currents in the area. At a minimum, the distances between the rack and the anchors should probably be no less than about 1000 feet so that the cables can be found without too much difficulty, taking into consideration the accuracy of present-day navigation systems.
  • the third retrieval system comprises a braided polypropylene line 38 and an anchor 42 with appropriate fastening means 36 and 40 to tie the line 38 to the exposure rack 32 and the anchor 42.
  • the line 38 is about 5000 feet in length and about five-eighths inch thick.
  • the polypropylene is buoyant so that the line floats in a curved attitude above the sea bottom 44. This type of material is highly resistant to corrosion and to attack by marine organisms.
  • the anchors 42 and 24 are the same in this embodiment.
  • the exposure rack 32 is any type of frame suitable for supporting the items 34 whose characteristics are to be tested under submergence conditions.
  • a good material to use for the rack is aluminum since it is light in weight and has good corrosion resistance.
  • the recovery vessel In recovering the rack 32, the recovery vessel first searches for the buoy 12 by sight after coming to its approximate location by navigation techniques. If the buoy is located, divers are sent down to attach a cable to the buoy and the assembly is then pulled up. If the vertical retrieval system has broken at some point, grapples are used to locate one of the two horizontal retrieval lines 28 and 38, after which the rack is pulled abroad.
  • a system for retrieving an object which is placed and left on the ocean floor for a period of time comprising, in combination:
  • first retrieval means comprising:
  • a first cable consisting of a length of seawater-corrorionresistant material
  • second retrieval means comprising:
  • a second cable consisting of length of seawater-corrosionresistant material
  • third retrieval means comprising:
  • a third cable consisting of a length of self-buoyant, seawater-corrosion-resistant material, second anchor means, and means for fastening said third cable to said object at one end and to said second anchor means at the other end.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

A multiple retrieval system for objects placed on the sea floor for extended periods of time comprising holding means and three retrieval means. The first retrieval means is a vertical line system, the line being fabricated of titanium monofilament fastened to a cast-steel ball anchor at the lower end and a syntactic-foam globular buoy at the upper end which is some 50 feet below the ocean surface. The second retrieval system comprises a 5200-foot length (approximately) of polypropylenejacketed, aluflex line extending from said cast-steel ball anchor to a frame for holding the submerged object. The third retrieval system comprises a 5,000-foot length (approximately) of polypropylene, self-buoyant rope extending from the frame to another cast-steel ball anchor.

Description

United States Patent Aleksander B. Macander Jersey City, N.J.; Clarence K; Chatten, Jackson Heights, NJ.
[72 Inventors 3,082,608 3/1963 Daniell 3,293,867 12/1966 Dean Primary Examiner-Andrew H. Farrell Attorneys- Louis A. Miller, Louis B. Applebaum and Philip Schneider ABSTRACT: A multiple retrieval system for objects placed on the sea floor for extended periods of time comprising holding means and three retrieval means. The first retrieval means is a vertical line system, the line being fabricated of titanium monofilament fastened to a cast-steel ball anchor at the lower end and a syntactic-foam globular buoy at the upper end which is some 50 feet below the ocean surface. The second retrieval system comprises a 5200-f0ot length (approximately) of polypropylene-jacketed, aluflex line extending from said cast-steel ball anchor to a frame for holding the submerged object. The third retrieval system comprises a 5,000-foot length (approximately) of polypropylene, self-buoyant rope extending from the frame to another cast-steel ball anchor.
MULTIPLE RETRIEVAL SYSTEM FOR OBJECTS SUBMARINE ENVIRONMENT The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
This invention relates to retrieval systems for objects which are submerged in a submarine environment for long periods of time.
Due to the increased interest in underwater exploration and oceanic potentialities for the future of mankind, a great deal of experimental work has been going on relative to the characteristics of materials when exposed to sea water for lengthy periods of time. The materials to be tested are often placed in an opening holding means such as a rack or framework, lowered to the sea floor and left for periods extending up to five years or more.
When the test period has expired, the framework containing the test materials must be recovered from the ocean floor. However, it is often found that it is difficult to find and retrieve the framework, frequently because the mooring lines cannot be located or because they have deteriorated and break when subjected to tension.
An object of the invention is, therefore, to permit reliable retrieval of an object which has been left on the ocean floor for an extended period of time.
Another object is to provide a corrosion-resistant retrieval system.
The objects and advantages of the present invention are accomplished by provision of a three-way retrieval so that the main retrieval system, which is a vertical line with a buoy, is backed up by two bottom lines, one of which is self-buoyant. The materials from which the lines are fabricated are chosen with a view to corrosion and deterioration resistance.
Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings wherein:
FIG. 1 is a schematic illustration of an embodiment of the invention; and
FIG. 2 is a schematic illustration of one type of fastening means for the titanium cable.
The first retrieval system, the vertical system, comprises a buoyant sphere or buoy 12, a short length of line 16, a long length of line 20 and an anchor 24. Fastening means 14, 18 and 22 are used to tie the various components together.
The approximate dimensions and lengths which are included herein are typical for an ocean depth of about 4200 feet and can be altered for other ocean depths.
The buoy 12 was made from syntactic foam and is in the shape of a sphere having a 2 feet 6 inch diameter. This gives sufficient buoyancy to support the weight of the vertical line suspended from the buoy 12.
The short length of line, or the leader cable 16, is a steel cable coated with aluminum and is about 100 feet long and three-eighths inch thick.
The long line, which can be called the vertical line, 20 is a titanium monofilament about 4200 feet in length and 0.l22 inches thick. Titanium monofilament was chosen in particular because of its excellent anticorrosion properties and its high strength-to-weight ratio.
The anchor 24 may comprise a cast-steel ball. The particular one used in this embodiment weighs about 320 pounds in sea water.
Because of galvanic-action corrosion problems, the titanium monofilament cable 20 is terminated at both ends with the special fastening means 18 shown in FIG. 2. This fastening means 18 utilizes one or more crimped oval sleeves 50 (also known as Nicopress oval sleeves, to clamp the cable end to the cable 20. A plastic (e.g., lucite) mold 52 is placed around the cable and sleeves and the cavity filled with epoxy 54. The encapsulation is necessary to prevent galvanic corrosion (dissimilar metal galvanic action) since the sleeves 50 are made of copper and are in direct contact with the titanium.
The titanium cable 20 loops around a plastic (e.g., lucite) shackle bearing 56 which insulates it from the metal of the leader cable 16. The latter is connected to the shackle bearing 58 by being looped through a shackle 58 which may be made of galvanized steel.
The reason for the use of the leader cable 16 is that encapsulation of the titanium cable termination takes some time to accomplish, whereas the coupling of the leader cable 16 can be accomplished quickly. Thus, the titanium cable 20 and its fittings are prepared beforehand and the fastening of the leader cable fittings is done at sea.
If other types of fittings are used which can be quickly made or if corrosion can be tolerated because the time of submergence is not too long, the leader cable 16 can be eliminated and only the titanium cable used.
The second retrieval system comprises a five-sixteenths inch thick aluminum-coated steel cable 28 about 5200 feet in length and fastening means 26 and 30 to fasten the line to the anchor 26 at one end and the exposure frame, or rack, 32 at the other. The cable 28 is further coated with polypropylene so that its outside diameter is one-half inch. The polypropylene provides extra protection to the cable and some buoyancy to reduce its weight in water, although not enough to float the cable 28.
The length of the horizontal cables is primarily a function of the depth of the water, the speed of the surface vessel when it lays the equipment and the rate of underseas currents in the area. At a minimum, the distances between the rack and the anchors should probably be no less than about 1000 feet so that the cables can be found without too much difficulty, taking into consideration the accuracy of present-day navigation systems.
The third retrieval system comprises a braided polypropylene line 38 and an anchor 42 with appropriate fastening means 36 and 40 to tie the line 38 to the exposure rack 32 and the anchor 42. The line 38 is about 5000 feet in length and about five-eighths inch thick. The polypropylene is buoyant so that the line floats in a curved attitude above the sea bottom 44. This type of material is highly resistant to corrosion and to attack by marine organisms. The anchors 42 and 24 are the same in this embodiment.
The exposure rack 32 is any type of frame suitable for supporting the items 34 whose characteristics are to be tested under submergence conditions.
A good material to use for the rack is aluminum since it is light in weight and has good corrosion resistance.
In recovering the rack 32, the recovery vessel first searches for the buoy 12 by sight after coming to its approximate location by navigation techniques. If the buoy is located, divers are sent down to attach a cable to the buoy and the assembly is then pulled up. If the vertical retrieval system has broken at some point, grapples are used to locate one of the two horizontal retrieval lines 28 and 38, after which the rack is pulled abroad.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
We claim:
1. A system for retrieving an object which is placed and left on the ocean floor for a period of time comprising, in combination:
first retrieval means comprising:
anchor means,
a first cable consisting of a length of seawater-corrorionresistant material,
buoy means, and
means for fastening said cable to said anchor means at one end and to said buoy means at the other end;
second retrieval means comprising:
a second cable consisting of length of seawater-corrosionresistant material, and
means for fastening said second cable to said anchor means at one end and to said object at the other end, said buoy means having sufficient buoyancy to support said first cable in a vertical position; and third retrieval means comprising:
a third cable consisting of a length of self-buoyant, seawater-corrosion-resistant material, second anchor means, and means for fastening said third cable to said object at one end and to said second anchor means at the other end. 2. A system as in claim 1, wherein said first, second and third cables are all fabricated from different materials.
3. A system as in claim 1, wherein said first cable is fabricated from titanium, said second cable from aluminumcoated steel covered with a jacket of polypropylene, and said third cable from braided polypropylene.
4. A system as in claim 1, wherein said first cable is of such length that said buoy means lies approximately 50 feet below the ocean surface.
5. A system as in claim 1, further including sea-water-corrosion-resistant leader cable means fastened between said buoy means and said first cable, the length of said leader cable means being short in comparison to that of said first cable.
6. A system as in claim 1, wherein the lengths of said second and third cables are sufficient to provide at least a IOOO-foot separation between their respective anchor means and said object.

Claims (5)

  1. 2. A system as in claim 1, wherein said first, second and third cables are all fabricated from different materials.
  2. 3. A system as in claim 1, wherein said first cable is fabricated from titanium, said second cable from aluminum-coated steel covered with a jacket of polypropylene, and said third cable from braided polypropylene.
  3. 4. A system as in claim 1, wherein said first cable is of such length that said buoy means lies approximately 50 feet below the ocean surface.
  4. 5. A system as in claim 1, further including sea-water-corrosion-resistant leader cable means fastened between said buoy means and said first cable, the length of said leader cable means being short in comparison to that of said first cable.
  5. 6. A system as in claim 1, wherein the lengths of said second and third cables are sufficient to provide at least a 1000-foot separation between their respective anchor means and said object.
US794508*A 1969-01-28 1969-01-28 Multiple retrieval system for objects in submarine environment Expired - Lifetime US3559607A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79450869A 1969-01-28 1969-01-28

Publications (1)

Publication Number Publication Date
US3559607A true US3559607A (en) 1971-02-02

Family

ID=25162832

Family Applications (1)

Application Number Title Priority Date Filing Date
US794508*A Expired - Lifetime US3559607A (en) 1969-01-28 1969-01-28 Multiple retrieval system for objects in submarine environment

Country Status (1)

Country Link
US (1) US3559607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161996A (en) * 1974-11-27 1976-05-28 Nippon Oils & Fats Co Ltd Chinsetsubutsutaino hikiagehoho
US6490988B2 (en) * 2000-02-18 2002-12-10 Silvana Carla Restelli Anchor assembly for boats and watercrafts in general

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US307393A (en) * 1884-10-28 Floating breakwater for harbors of refuge and to protect
US3082608A (en) * 1960-05-30 1963-03-26 Intercontinental Marine Dev Lt Marine platform
US3293867A (en) * 1963-09-26 1966-12-27 Mobil Oil Corp Method and apparatus for marking, relocating, and re-establishing contact with a submarine wellhead

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US307393A (en) * 1884-10-28 Floating breakwater for harbors of refuge and to protect
US3082608A (en) * 1960-05-30 1963-03-26 Intercontinental Marine Dev Lt Marine platform
US3293867A (en) * 1963-09-26 1966-12-27 Mobil Oil Corp Method and apparatus for marking, relocating, and re-establishing contact with a submarine wellhead

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161996A (en) * 1974-11-27 1976-05-28 Nippon Oils & Fats Co Ltd Chinsetsubutsutaino hikiagehoho
JPS558393B2 (en) * 1974-11-27 1980-03-04
US6490988B2 (en) * 2000-02-18 2002-12-10 Silvana Carla Restelli Anchor assembly for boats and watercrafts in general

Similar Documents

Publication Publication Date Title
US4055138A (en) Underwater vehicle towing and recovery apparatus
SE8302074D0 (en) LIQUID CONSTRUCTION FOR SEA TECHNOLOGY
Volkmann et al. The use of parachute drogues in the measurement of subsurface ocean currents
US3613629A (en) Buoyant cable towing system
US3559607A (en) Multiple retrieval system for objects in submarine environment
US3401413A (en) Buoy mooring anchor marker
US3878576A (en) Water ski slalom course and method therefor
US3118408A (en) Float for use in water
US3935829A (en) Anchoring system for a floating offshore drilling vessel
US3408669A (en) Dual buoy marker system
US9776690B1 (en) Vertical marker buoy
US3378863A (en) Marine marker
KR840008724A (en) How to tow the submarine cable end to the beach
US4397584A (en) Trawl resistant sensor mount
US3517399A (en) Mooring apparatus having a free floating buoyant element
US11485454B1 (en) Apparatus and method to confirm anchor holding status
JPH0840366A (en) Sinking lighted buoy search support device
JP2545220B2 (en) Underwater position indicator
Schink et al. A sea-bottom sampler that collects both water and sediment simultaneously
Kawatate A tentative design of mooring lines for measuring the Tsushima warm current
RU2189331C2 (en) Device for hoisting object placed on water basin bottom from ship and method of its application
Balasubramanian et al. Deep Water Moorings for Oceanographic Instruments
MACANDER Deep Sea Arrays for Materials Exposure
Gilbert et al. Data from THEMIS moored instrumented ocean array I
Gerard Taut-line navigation buoys used in the Thresher search