US3558001A - Thermoplastic container - Google Patents

Thermoplastic container Download PDF

Info

Publication number
US3558001A
US3558001A US848317A US3558001DA US3558001A US 3558001 A US3558001 A US 3558001A US 848317 A US848317 A US 848317A US 3558001D A US3558001D A US 3558001DA US 3558001 A US3558001 A US 3558001A
Authority
US
United States
Prior art keywords
container
trapezoids
base
columns
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US848317A
Inventor
Robert R Fritz
George R Ingram
Lawrence D Barr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Application granted granted Critical
Publication of US3558001A publication Critical patent/US3558001A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/40Details of walls
    • B65D1/42Reinforcing or strengthening parts or members
    • B65D1/44Corrugations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D15/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, sections made of different materials
    • B65D15/02Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, sections made of different materials of curved, or partially curved, cross-section, e.g. cans, drums
    • B65D15/16Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, sections made of different materials of curved, or partially curved, cross-section, e.g. cans, drums with curved, or partially curved, walls made of plastics material
    • B65D15/18Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, sections made of different materials of curved, or partially curved, cross-section, e.g. cans, drums with curved, or partially curved, walls made of plastics material with end walls made of metal

Definitions

  • the supporting columns extend laterally, out- 220/72 wardly from the noncolumn containing surface of the con- B656 /4 tainer sidewall.
  • Each of the columns comprises two substan- 220/72, 83, tially identical isosceles trapezoids, each having a base and a side opposite therefrom of from 25 to 75 percent of the length of the base, and an elongated rectangular member of a length [5 6] References Cited UNITED STATES PATENTS 9/1928 Mullen etal.........
  • the rectangular member is positioned between and connected 1,683,841 to the bases of the trapezoids. Successive columns are inter- 3,120,322
  • This invention relates to an improved container for products such as motor oil, and other heavy, dense liquids. More particularly, the invention is directed to an improved container, the main body portion thereof being formed of a thermoplastic resin and having a sidewall configuration particularly adapted for a container made of such material.
  • the top closure part of the container is preferably a metal lid.
  • thermoplastic containers formed from thermoplastic material are gradually assuming greater commercial importance. There are many obvious advantages in fonning containers for heavy, dense fluids such as motor oil from thermoplastic materials as containers are light in weight, can be readily pigmented and can be produced in large quantities are relatively low cost.
  • thermoplastic containers possess several deficiencies which deter their ready acceptance in the market place.
  • lube oil containers when fabricated from a thermoplastic resin, are not readily stackable nor can they be easily opened with conventional bayonet type openers as the wall of walls of the container tends to deform with the application of the compressive pressures encountered'upon stacking and opening. If the container wall deforms upon the exertion of a vertically applied pressure, opening of the container with a conventional bayonet type opener is extremely difficult and sometimes impossible. If a container deformsfrom stacking forces, a warehouse stack will begin to tilt and ultimately collapse, presenting imminent danger to warehouse personnel and an economically intolerable damage rate.
  • thermoplastic containers Numerous solutions have been advanced for improving the vertical strength characteristics of thermoplastic containers. These solutions normally take the form of modification made to the sidewall of the container to render the same less subject to deformation or stress cracking.
  • Typical sidewall designs that have been advanced involve (1) forming the container sidewall with a plurality of vertically disposed members of the type depicted in FIGS. I and 2 of US. 2,063,013 or (2) modifying the container sidewall with a plurality of horizontally disposed reinforcement members of the type shown in US. Design Patents 199,869 and 200,444.
  • thermoplastic containers do not possess sufficient vertical strength to render them readily suitable for applications where the container must withstand high levels of compressive pressure without sidewall deformation or stress cracking.
  • each of the columns is composed of two essentially identical inwardly inclining isosceles trapezoids each having a base and a side opposite therefrom of from 25 to 75 percent of the length of the base and an elongated rectangular member.
  • the bases and opposite sides of the trapezoids are disposed substantially parallel to the longitudinal axis of the container.
  • the elongated rectangular member is of a length substantially equal to the length of the base of the trapezoids and is positioned between and connected to the bases of the trapezoids.
  • the planes of the trapezoids recede inwardly from the planes of the rectangle by an amount between and 25 degrees. Successive columns are interconnected along the aid side opposite the bases of the trapezoids.
  • FIG. I is a side elevational view of a container for motor oil formed according to the principles of the present invention.
  • FIG. 2 is a cross-sectional view of the container taken along lines A-A;
  • FIG. 3 is a cross-sectional view of the container taken along line 8-8;
  • FIG. 4 is a vertical sectional view of a lid showing the configuration thereof when the lid is clinched onto the container of FIG. I, the upper portion of the container being shown in FIG. 4.
  • Container 10 comprises a relatively deep cup-shaped body 11 (preferably of circular horizontal cross section) having a sidewall I2 stacking ring 13 and a lid flange I4.
  • Flange 14 extends completely about the upper outer periphery of the container l0 and extends outwardly from the inner periphery of the container.
  • a metal lid is attached to the flange during closing operations to provide an essentially leakproof enclosure.
  • Stacking ring 13 present on the container to prevent tipping or jiggling of containers when stacked on top of each other.
  • the lower portion of container 10 is made up of stacking ring 13, transitional plane 15 and bottom segment I6.
  • the outer periphery of sidewall I2 of container 10 is composed of a plurality of vertically disposed laterally extending, interconnected supporting columns 20 of substantially the same length.
  • Each of the columns 20 is composed of two substantially identical inwardly inclining isosceles trapezoids 20, each having a base 22 and a geometrically opposite second side 23 opposite therefrom of from 25 to 75 percent of the length of the base 22, and an elongated rectangular member 24 of a length substantially equal to the length of base 22 of the trapezoids.
  • the planes of the trapezoids recede inwardly of the planes of the rectangles by an amount of between 10 to 25 degrees.
  • the rectangular member 24 having a length of the base of the trapezoids is positioned between and connected to the bases 22 of the trapezoidal sections 21.
  • the columns preferably extend completely about the outer periphery of sidewall 12 and are interconnected by joining the opposite second side 23 of the trapezoid of an individual column with the opposite sides 23 of the trapezoid of the next adjacent supporting column 20.
  • Preferably the said opposite sides of all of the trapezoids employed in the supporting columns are of the same length.
  • the total length of the base of the trapezoids varies from 8 cm. to 12 cm. for l-quart containers, or more broadly from 55 to percent of the total height of the container.
  • the base of the trapezoidal sections is preferably 75 to 85 percent of the total height of the container.
  • the number of supporting columns used to lend vertical rigidity to a thermoplastic container can vary from about 10 to 20, preferably 13 to 18.
  • a l-quart container having a single open end and a configuration as shown in FIG. I has 18 columns of a length of about 4.4 inches; an overall height of about 5.5 to 5.6 inches; a maximum diameter as defined by lid flange 14 of about 4.11 to 4.14 inches; a maximum sidewall diameter of about 4.09 inches (as defined by rectangular segments 24); and a minimum diameter of about 3.91 to 3.92 inches (as defined by the points of junction of the opposite sides of 23 of the trapezoidal sections of two individual columns).
  • Flange 14 of the container is of a thickness varying from 0.015 to 0.035 inches, preferably 0.020 to 0.025 inches, and extends from the planar surface 11 of the container about 0.090 to 0.015 inches.
  • flange I4 is inclined upwardly from the horizontal at an angle of about 1 to 3 degrees.
  • the containers of the present invention may be conveniently formed using blow-molding techniques.
  • a thermoplastic tube or parison is formed using extrusion techniques.
  • the severed parison is then transferred to a blow-molding station.
  • the open ends of the parison are clinched between the upper end lower edges of the sectional molds normally employed.
  • a blowing needle or mandrel or other similar device is then injected into the parison and air forced into the parison, thereby forcing the parison into conformity with the walls of the mold.
  • the rough container is cooled, taken from the sectional mold and the upper and lower portions of the rough container trimmed away, leaving as the finished product a container having a single open end.
  • the metal lid 40 typically metal and preferably formed of tin plated steel or aluminum, consists of a central disc portion 41 and an upstanding, continuous, peripheral portion in the form of a circular groove 42.
  • the upstanding, continuous peripheral portion or flange 42 may be in the form of a circular groove (when viewed from below in FIG. 4).
  • the flange may also include an outwardly turned portion 43 which when inwardly rotated (as shown in FIG. 4) is clinched to the flange portion 14 of container 110. Sealing may be facilitated by coating 47 in the groove 42.
  • the lid 40 may also include the inner depressed annular portion 44 and the outer depressed annular portion 45 which define annular ride ridge portion 46.
  • the free circular flange portion 14 and adjacent marginal portions of body 11 are enclosed and concealed by the outwardly turned portions of the flange 45 of the lid 40 at circumferentially closely spaced pints of or circumferentially continuously to the circular flange area 14. This is accomplished with equipment utilizing either a rolling action or segmental jaws.
  • the outer wall of the lid groove is embedded in the outer portion of the flange area of the container and the inner wall of the groove coextensively engaging the inner portion ofthe container flange 14.
  • the inside surface of the metallic can lid may be either coated or uncoated depending upon the materials to be packed within the container.
  • the container lid may be coated with a thin film of various types of resins.
  • Acrylic resins, alkyd resins, epoxy-amine resins, epoxy-ester resins, epoxy-phenolic resins, polybutadiene resins, etc., are suitable as lid-coating materials.
  • Thermoplastic materials that can be used to form the container body of this invention include polyvinylchloride; high molecular weight homopolymers and copolymers of alphaolefins such as polypropylene, polybutene, ethylenepropylene copolymers, ethylene-butene copolymers, propylene-butene copolymers, etc., polypropylene blended with from 2 to 40 wt. percent, preferably from 4 to 18 wt.
  • High density polyethylene and polyvinylchloti polyvinylchloride are particularly preferred container forming materials.
  • Low density polyethylene (density less than 0.94 grams/cc.) and polystyrene are generally not suitable container construction materials if the containers are to be used to carry lubricat ing oils.
  • Low density polyethylene lacks rigidity and tends to become oil-soluble and polystyrene is brittle and is also softened or swollen by oil.
  • the first type of container (Case 1) tested had a plain sidewall of substantially uniform thickness.
  • the second type of container (Case 2) evaluated was of the type depicted in FIG. 2 of US. 3,297,194 and had a sidewall with a series of horizontally disposed reinforcement members.
  • the horizontal members consisted of five concavely or inwardly directed ribs that extended completely about the outer periphery of the container.
  • the depth of the reinforcement ribs was approximately three thirty-seconds inch inward from the outer planar surface of the container.
  • the rib width was seven thirtyseconds inch.
  • the ribs were spaced 0.5 inches apart and the first rib was formed about 1.52 inches from the top of the container.
  • the third container type (Case 3) evaluated had a plurality of vertically disposed reinforcement members positioned in the sidewall of the container. A total of 34 reinforcing members having a length of 4.4 inches and a width of 0.100 inches were used. The reinforcing members extended approximately 0.030 inches from the planar surface of the container and were placed approximately 0.375 inches apart.
  • the last container tested (Case 4) had the design configuration of the present invention. Into the sidewall was formed a series of 18 supporting columns. The base of the trapezoidal sections forming the columns had a length of about 4.40 inches and the opposite side of the trapezoidal sections had a length of about 1.47 inches. The supporting columns were centered on the container wall, with the columns beginning at about 0.5 inches from the top of the container and terminating about 0.58 inches from the bottom of the container.
  • the containers were filled with one quart of lubricating oil and then sealed with a metal lid using conventional techniques.
  • the filled containers were then placed in an lnstron machine and a compressive load applied.
  • the load necessary to achieve a 0.25 inch deflection (reduction in the height of the container) and the deflection secured with the application of a 50 pound load were recorded. All tests were conducted at 75 F. and 50 percent relative humidity, The results of the tests are set forth in Table l.
  • the containers having the structure of the present invention (Case 4) exhibited the highest compressive strengths of all of the polyethylene blow-molded containers having various sidewall configurations. All of the containers were formed from polyethylene resins having a density of about 0.958 and a melt index of 030 as determined by ASTM method D1238.
  • the deflection values secured upon the application of a 50 pound load to the containers are significant.
  • a 50 pound load is approximately the maximum load a container might experience in a 15 case (24 cans to the case packed on two levels) high stack with wooden pallets placed between the fifth and sixth and tenth and eleventh cases.
  • the data presented indicates that the container having the configuration of the present invention has the greatest resistance to deflection upon the application of a 50 pound load.
  • warehousing of containers having the design of the present invention is greatly simplified as the containers resist deformation. Hence, tilting and collapsing of warehouse stacks is avoided.
  • EXAMPLE 2 Exposure to certain chemical environments (particularly detergents) and/or elevated temperatures is known to induce stress cracking in polyolefin resins.
  • Container design and the molecular weight and density of the resin used in the formation of thermoplastic containers can also significantly effect stress crack resistance properties.
  • a series of containers having the configurations described with reference to Example 1 were formed from polyethylene resin having a density of about 0.958 grams/cc. and a melt index of 0.30 as determined by ASTM method D-l238.
  • Each container was filled with high detergent content lubricating oil sealed with a conventional metal lid, a 50 pound vertical load applied and the containers aged at 140 F.
  • the individual containers were inspected periodically and the failure time (leaking of container contents) of each container noted.
  • the mean failure time (F was then determined from a probability/time plot for each design. The average failure times are tabulated in Table ll.
  • the containers of the present invention exhibit the best stress crack resistance of the polyethylene containers. Since all of the containers were formed from equivalent resins, the superior performance of the container of this invention can be primarily attributed to its design. Containers formed having a plurality of vertically spaced ribs demonstrated the poorest stress crack resistance performance at equivalent container weight levels.
  • stacking ring 13 can be removed and the container provided with a simple flat base for applications where stacking stability is not critical.
  • the upper opening of the container can be provided with a threaded or beaded structure rather than a flange 14, thereby permitting the use of other types of container closures such as threaded caps and the like.
  • thermoplastic container comprising a hollow thermoplastic, cup-shaped body of generally circular, horizontal cross section having a bottom portion and a sidewall portion terminating in a single open end provided with an outwardly turned peripheral flange, said sidewall portion having formed therein a series of vertically disposed, interconnected supporting columns, each of said columns comprising two substantially identical isosceles trapezoids each having a base and a geometrically opposite second side parallel to said base of from 25 to 75 percent of the length of the base, and an elongated rectangu ar member having a length substantially equal to the length of the base of said trapezoids located on the ontermost surface of said cup body, said rectangular member being positioned between and connected to the bases of the said trapezoids with the planes of said trapezoids receding inwardly of the planes of said rectangles by an amount of between 10-25 degrees and wherein said columns are interconnected through joinder of the opposite second sides of the trapezoids of one column with said opposite second side of the trapezoids of adjacently located columns.
  • the container of claim 1 having a metal lid comprising a central disc portion and an upstanding, continuous, peripheral flange with an outwardly turned portion thereof, circumferentially clinched to the flange portion of the said container.

Abstract

Thermoplastic containers having a single open end of improved vertical strength properties are secured by employing a series of interconnected, vertically disposed supporting columns as part of the wall of the container. Preferably, the supporting columns extend laterally, outwardly from the noncolumn containing surface of the container sidewall. Each of the columns comprises two substantially identical isosceles trapezoids, each having a base and a side opposite therefrom of from 25 to 75 percent of the length of the base, and an elongated rectangular member of a length substantially equal to the length of the base of the trapezoids. The rectangular member is positioned between and connected to the bases of the trapezoids. Successive columns are interconnected along the side opposite the base of the trapezoids.

Description

United States Patent 3,341,059 9/1967 Schlld et a]. Primary ExaminerJoseph R. Leclair 172] lnventors Robert R. Fritz Santa Ana, Calif.;
5:32: 2 g gi g g zg zl Assistant Examiner-James R. Garrett pp No 848,317 Att0rneyChasan and Smnocl Filed [22] Aug. 7,1969
[45] Patented Jan. 26, 1971 [73] Assignee Esso Research and Engineering Company a corporation of Delaware Continuation-impart of application Ser. No. 623,448, Mar. 15, 1967, now abandoned.
I ABSTRACT: Thermoplastic containers having a single open [54] THERMOPLASTIC CONTAINER end of improved vertical strength properties are secured by 2 Claims 4 Drawing g employing a series of interconnected, vertically disposed su porting columns as part of the wall of the container.
220/67, Preferably, the supporting columns extend laterally, out- 220/72 wardly from the noncolumn containing surface of the con- B656 /4 tainer sidewall. Each of the columns comprises two substan- 220/72, 83, tially identical isosceles trapezoids, each having a base and a side opposite therefrom of from 25 to 75 percent of the length of the base, and an elongated rectangular member of a length [5 6] References Cited UNITED STATES PATENTS 9/1928 Mullen etal.............
substantially equal to the length of the base of the trapezoids.
The rectangular member is positioned between and connected 1,683,841 to the bases of the trapezoids. Successive columns are inter- 3,120,322
connected along the side opposite the base of the trapezoids.
2/1964 l-lenninger....................
PATENTEDJANZBISH 3.558001 R. R. G. R. INGRAM mvemons L D AI YORNEY THERMOPLASTIC CONTAINER This application is a continuation-in-part of application Ser. No. 623,448 filed Mar. 15, 1967, now abandoned, by the same inventors.
BACKGROUND OF THE INVENTION This invention relates to an improved container for products such as motor oil, and other heavy, dense liquids. More particularly, the invention is directed to an improved container, the main body portion thereof being formed of a thermoplastic resin and having a sidewall configuration particularly adapted for a container made of such material. The top closure part of the container is preferably a metal lid.
Containers formed from thermoplastic material are gradually assuming greater commercial importance. There are many obvious advantages in fonning containers for heavy, dense fluids such as motor oil from thermoplastic materials as containers are light in weight, can be readily pigmented and can be produced in large quantities are relatively low cost. However, thermoplastic containers possess several deficiencies which deter their ready acceptance in the market place. For example, lube oil containers, when fabricated from a thermoplastic resin, are not readily stackable nor can they be easily opened with conventional bayonet type openers as the wall of walls of the container tends to deform with the application of the compressive pressures encountered'upon stacking and opening. If the container wall deforms upon the exertion of a vertically applied pressure, opening of the container with a conventional bayonet type opener is extremely difficult and sometimes impossible. If a container deformsfrom stacking forces, a warehouse stack will begin to tilt and ultimately collapse, presenting imminent danger to warehouse personnel and an economically intolerable damage rate.
Numerous solutions have been advanced for improving the vertical strength characteristics of thermoplastic containers. These solutions normally take the form of modification made to the sidewall of the container to render the same less subject to deformation or stress cracking. Typical sidewall designs that have been advanced involve (1) forming the container sidewall with a plurality of vertically disposed members of the type depicted in FIGS. I and 2 of US. 2,063,013 or (2) modifying the container sidewall with a plurality of horizontally disposed reinforcement members of the type shown in US. Design Patents 199,869 and 200,444. However, even with these modifications, thermoplastic containers do not possess sufficient vertical strength to render them readily suitable for applications where the container must withstand high levels of compressive pressure without sidewall deformation or stress cracking.
Accordingly, it is the object of the present invention to provide an improved container structure which substantially eliminates the above discussed shortcomings of containers having a plastic body.
SUMMARY OF THE INVENTION This object is accomplished by employing as part of the sidewall of the container a plurality of vertically disposed interconnected supporting columns that extend outwardly from the noncolumn containing surface of the container sidewall. Each of the columns is composed of two essentially identical inwardly inclining isosceles trapezoids each having a base and a side opposite therefrom of from 25 to 75 percent of the length of the base and an elongated rectangular member. The bases and opposite sides of the trapezoids are disposed substantially parallel to the longitudinal axis of the container. The elongated rectangular member is of a length substantially equal to the length of the base of the trapezoids and is positioned between and connected to the bases of the trapezoids. The planes of the trapezoids recede inwardly from the planes of the rectangle by an amount between and 25 degrees. Successive columns are interconnected along the aid side opposite the bases of the trapezoids.
BRIEF DESCRIPTION OF THE DRAWINGS Additional objects and advantages of the present invention will become more apparent with the following description taken in conjunction with the accompanying drawing in which:
FIG. I is a side elevational view of a container for motor oil formed according to the principles of the present invention;
FIG. 2 is a cross-sectional view of the container taken along lines A-A;
FIG. 3 is a cross-sectional view of the container taken along line 8-8; and
FIG. 4 is a vertical sectional view of a lid showing the configuration thereof when the lid is clinched onto the container of FIG. I, the upper portion of the container being shown in FIG. 4.
DESCRIPTION OF THE PREFERRED EMBODIMENT Container 10 comprises a relatively deep cup-shaped body 11 (preferably of circular horizontal cross section) having a sidewall I2 stacking ring 13 and a lid flange I4. Flange 14 extends completely about the upper outer periphery of the container l0 and extends outwardly from the inner periphery of the container. A metal lid is attached to the flange during closing operations to provide an essentially leakproof enclosure. Stacking ring 13 present on the container to prevent tipping or jiggling of containers when stacked on top of each other. The lower portion of container 10 is made up of stacking ring 13, transitional plane 15 and bottom segment I6.
The outer periphery of sidewall I2 of container 10 is composed of a plurality of vertically disposed laterally extending, interconnected supporting columns 20 of substantially the same length. Each of the columns 20 is composed of two substantially identical inwardly inclining isosceles trapezoids 20, each having a base 22 and a geometrically opposite second side 23 opposite therefrom of from 25 to 75 percent of the length of the base 22, and an elongated rectangular member 24 of a length substantially equal to the length of base 22 of the trapezoids. The planes of the trapezoids recede inwardly of the planes of the rectangles by an amount of between 10 to 25 degrees. The rectangular member 24 having a length of the base of the trapezoids, is positioned between and connected to the bases 22 of the trapezoidal sections 21. The columns preferably extend completely about the outer periphery of sidewall 12 and are interconnected by joining the opposite second side 23 of the trapezoid of an individual column with the opposite sides 23 of the trapezoid of the next adjacent supporting column 20. Preferably the said opposite sides of all of the trapezoids employed in the supporting columns are of the same length.
The total length of the base of the trapezoids varies from 8 cm. to 12 cm. for l-quart containers, or more broadly from 55 to percent of the total height of the container. For l-quart lube oil containers, the base of the trapezoidal sections is preferably 75 to 85 percent of the total height of the container. The number of supporting columns used to lend vertical rigidity to a thermoplastic container can vary from about 10 to 20, preferably 13 to 18.
Typically, a l-quart container having a single open end and a configuration as shown in FIG. I has 18 columns of a length of about 4.4 inches; an overall height of about 5.5 to 5.6 inches; a maximum diameter as defined by lid flange 14 of about 4.11 to 4.14 inches; a maximum sidewall diameter of about 4.09 inches (as defined by rectangular segments 24); and a minimum diameter of about 3.91 to 3.92 inches (as defined by the points of junction of the opposite sides of 23 of the trapezoidal sections of two individual columns). Flange 14 of the container is of a thickness varying from 0.015 to 0.035 inches, preferably 0.020 to 0.025 inches, and extends from the planar surface 11 of the container about 0.090 to 0.015 inches. Preferably flange I4 is inclined upwardly from the horizontal at an angle of about 1 to 3 degrees.
The containers of the present invention may be conveniently formed using blow-molding techniques. With this technique, a thermoplastic tube or parison is formed using extrusion techniques. The severed parison is then transferred to a blow-molding station. At the blow-molding station, the open ends of the parison are clinched between the upper end lower edges of the sectional molds normally employed. A blowing needle or mandrel or other similar device is then injected into the parison and air forced into the parison, thereby forcing the parison into conformity with the walls of the mold. Thereafter, the rough container is cooled, taken from the sectional mold and the upper and lower portions of the rough container trimmed away, leaving as the finished product a container having a single open end.
After the thermoplastic container body has been formed, and the container filled, the can or container is conveniently closed with a top or lid as shown in FIG. 4. The metal lid 40, typically metal and preferably formed of tin plated steel or aluminum, consists of a central disc portion 41 and an upstanding, continuous, peripheral portion in the form of a circular groove 42. The upstanding, continuous peripheral portion or flange 42 may be in the form of a circular groove (when viewed from below in FIG. 4). The flange may also include an outwardly turned portion 43 which when inwardly rotated (as shown in FIG. 4) is clinched to the flange portion 14 of container 110. Sealing may be facilitated by coating 47 in the groove 42. The lid 40 may also include the inner depressed annular portion 44 and the outer depressed annular portion 45 which define annular ride ridge portion 46. When the lid is positioned on the container body, the free circular flange portion 14 and adjacent marginal portions of body 11 are enclosed and concealed by the outwardly turned portions of the flange 45 of the lid 40 at circumferentially closely spaced pints of or circumferentially continuously to the circular flange area 14. This is accomplished with equipment utilizing either a rolling action or segmental jaws. When the container and lid are so circumferentially clinched, the outer wall of the lid groove is embedded in the outer portion of the flange area of the container and the inner wall of the groove coextensively engaging the inner portion ofthe container flange 14.
The inside surface of the metallic can lid may be either coated or uncoated depending upon the materials to be packed within the container. For example, the container lid may be coated with a thin film of various types of resins. Acrylic resins, alkyd resins, epoxy-amine resins, epoxy-ester resins, epoxy-phenolic resins, polybutadiene resins, etc., are suitable as lid-coating materials.
Thermoplastic materials that can be used to form the container body of this invention include polyvinylchloride; high molecular weight homopolymers and copolymers of alphaolefins such as polypropylene, polybutene, ethylenepropylene copolymers, ethylene-butene copolymers, propylene-butene copolymers, etc., polypropylene blended with from 2 to 40 wt. percent, preferably from 4 to 18 wt. percent of low, medium or high density polyethylene, polyisobutylene, isobutylene-isoprene copolymers, and ethylenepropylene rubber; high density polyethylene having a density of at least 0.957 grams/cc, acrylonitrile-butadiene-styrene resins; and a polymethylmethacrylate. High density polyethylene and polyvinylchloti polyvinylchloride are particularly preferred container forming materials.
Low density polyethylene (density less than 0.94 grams/cc.) and polystyrene are generally not suitable container construction materials if the containers are to be used to carry lubricat ing oils. Low density polyethylene lacks rigidity and tends to become oil-soluble and polystyrene is brittle and is also softened or swollen by oil.
The invention will be further illustrate illustrated by the following examples;
EXAMPLEI To demonstrate the superior compressive strength of containers having the sidewall configuration of the present invention, a series of tests were conducted with polyethylene containers of substantially the same height (5.545 inches) and a maximum outside body diameter (4.090 inches) The containers differed only in their sidewall configuration.
The first type of container (Case 1) tested had a plain sidewall of substantially uniform thickness. The second type of container (Case 2) evaluated was of the type depicted in FIG. 2 of US. 3,297,194 and had a sidewall with a series of horizontally disposed reinforcement members. The horizontal members consisted of five concavely or inwardly directed ribs that extended completely about the outer periphery of the container. The depth of the reinforcement ribs was approximately three thirty-seconds inch inward from the outer planar surface of the container. The rib width was seven thirtyseconds inch. The ribs were spaced 0.5 inches apart and the first rib was formed about 1.52 inches from the top of the container. The third container type (Case 3) evaluated had a plurality of vertically disposed reinforcement members positioned in the sidewall of the container. A total of 34 reinforcing members having a length of 4.4 inches and a width of 0.100 inches were used. The reinforcing members extended approximately 0.030 inches from the planar surface of the container and were placed approximately 0.375 inches apart. The last container tested (Case 4) had the design configuration of the present invention. Into the sidewall was formed a series of 18 supporting columns. The base of the trapezoidal sections forming the columns had a length of about 4.40 inches and the opposite side of the trapezoidal sections had a length of about 1.47 inches. The supporting columns were centered on the container wall, with the columns beginning at about 0.5 inches from the top of the container and terminating about 0.58 inches from the bottom of the container.
In each of the tests, the containers were filled with one quart of lubricating oil and then sealed with a metal lid using conventional techniques. The filled containers were then placed in an lnstron machine and a compressive load applied. The load necessary to achieve a 0.25 inch deflection (reduction in the height of the container) and the deflection secured with the application of a 50 pound load were recorded. All tests were conducted at 75 F. and 50 percent relative humidity, The results of the tests are set forth in Table l.
As can be seen by referring to the data of Table l, at equivalent container weights, the containers having the structure of the present invention (Case 4) exhibited the highest compressive strengths of all of the polyethylene blow-molded containers having various sidewall configurations. All of the containers were formed from polyethylene resins having a density of about 0.958 and a melt index of 030 as determined by ASTM method D1238.
The deflection values secured upon the application of a 50 pound load to the containers are significant. A 50 pound load is approximately the maximum load a container might experience in a 15 case (24 cans to the case packed on two levels) high stack with wooden pallets placed between the fifth and sixth and tenth and eleventh cases. The data presented indicates that the container having the configuration of the present invention has the greatest resistance to deflection upon the application of a 50 pound load. As a result, warehousing of containers having the design of the present invention is greatly simplified as the containers resist deformation. Hence, tilting and collapsing of warehouse stacks is avoided.
EXAMPLE 2 Exposure to certain chemical environments (particularly detergents) and/or elevated temperatures is known to induce stress cracking in polyolefin resins. Container design and the molecular weight and density of the resin used in the formation of thermoplastic containers can also significantly effect stress crack resistance properties.
To demonstrate the superior stress crack resistance of containers having the configuration of the present invention, a series of containers having the configurations described with reference to Example 1 were formed from polyethylene resin having a density of about 0.958 grams/cc. and a melt index of 0.30 as determined by ASTM method D-l238. Each container was filled with high detergent content lubricating oil sealed with a conventional metal lid, a 50 pound vertical load applied and the containers aged at 140 F. The individual containers were inspected periodically and the failure time (leaking of container contents) of each container noted. The mean failure time (F was then determined from a probability/time plot for each design. The average failure times are tabulated in Table ll.
As can be seen by referring to the data above, the containers of the present invention (Case 4) exhibit the best stress crack resistance of the polyethylene containers. Since all of the containers were formed from equivalent resins, the superior performance of the container of this invention can be primarily attributed to its design. Containers formed having a plurality of vertically spaced ribs demonstrated the poorest stress crack resistance performance at equivalent container weight levels.
Numerous modifications can be made to the container structures previously described without departing from the spirit of the invention. For example, stacking ring 13 can be removed and the container provided with a simple flat base for applications where stacking stability is not critical. Similarly, the upper opening of the container can be provided with a threaded or beaded structure rather than a flange 14, thereby permitting the use of other types of container closures such as threaded caps and the like.
We claim:
1. A thermoplastic container comprising a hollow thermoplastic, cup-shaped body of generally circular, horizontal cross section having a bottom portion and a sidewall portion terminating in a single open end provided with an outwardly turned peripheral flange, said sidewall portion having formed therein a series of vertically disposed, interconnected supporting columns, each of said columns comprising two substantially identical isosceles trapezoids each having a base and a geometrically opposite second side parallel to said base of from 25 to 75 percent of the length of the base, and an elongated rectangu ar member having a length substantially equal to the length of the base of said trapezoids located on the ontermost surface of said cup body, said rectangular member being positioned between and connected to the bases of the said trapezoids with the planes of said trapezoids receding inwardly of the planes of said rectangles by an amount of between 10-25 degrees and wherein said columns are interconnected through joinder of the opposite second sides of the trapezoids of one column with said opposite second side of the trapezoids of adjacently located columns.
2. The container of claim 1 having a metal lid comprising a central disc portion and an upstanding, continuous, peripheral flange with an outwardly turned portion thereof, circumferentially clinched to the flange portion of the said container.

Claims (2)

1. A thermoplastic container comprising a hollow thermoplastic, cup-shaped body of generally circular, horizontal cross section having a bottom portion and a sidewall portion terminating in a single open end provided with an outwardly turned peripheral flange, said sidewall portion having formed therein a series of vertically disposed, interconnected supporting columns, each of said columns comprising two substantially identical isosceles trapezoids each having a base and a geometrically opposite second side parallel to said base of from 25 to 75 percent of the length of the base, and an elongated rectangular member having a length substantially equal to the length of the base of said trapezoids located on the outermost surface of said cup body, said rectangular member being positioned between and connected to the bases of the said trapezoids with the planes of said trapezoids receding inwardly of the planes of said rectangles by an amount of between 10- 25 degrees and wherein said columns are interconnected through joinder of the opposite second sides of the trapezoids of one column with said opposite second side of the trapezoids of adjacently located columns.
2. The container of claim 1 having a metal lid comprising a central disc portion and an upstanding, continuous, peripheral flange with an outwardly turned portion thereof, circumferentially clinched to the flange portion of the said container.
US848317A 1969-08-07 1969-08-07 Thermoplastic container Expired - Lifetime US3558001A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84831769A 1969-08-07 1969-08-07

Publications (1)

Publication Number Publication Date
US3558001A true US3558001A (en) 1971-01-26

Family

ID=25302959

Family Applications (1)

Application Number Title Priority Date Filing Date
US848317A Expired - Lifetime US3558001A (en) 1969-08-07 1969-08-07 Thermoplastic container

Country Status (1)

Country Link
US (1) US3558001A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125187A (en) * 1974-10-21 1978-11-14 Amerace Corporation Thermoplastic casing and method of manufacturing same
US4446969A (en) * 1979-09-24 1984-05-08 Lever Brothers Company Reinforced nestable containers
US4609106A (en) * 1983-11-22 1986-09-02 Vittorio Gentili Portable jerrican-like container having a suitable-to-be-palletized casing
US4723681A (en) * 1982-06-17 1988-02-09 Thomassen & Drijver-Verblifa Metallic container
US4877141A (en) * 1986-10-03 1989-10-31 Yoshino Kogyosho Co., Ltd. Pressure resistant bottle-shaped container
US4948006A (en) * 1986-12-02 1990-08-14 Dai Nippon Insatsu Kabushiki Kaisha Container with metallic cover and method of manufacturing the same
US5064081A (en) * 1987-02-17 1991-11-12 Yoshino Kogyosho Co., Ltd. Pressure resistant polygonal bottle-shaped container having a polygonal bottom
US5279442A (en) * 1991-12-18 1994-01-18 Ball Corporation Drawn and ironed container and apparatus and method for forming same
USD435454S (en) * 1999-01-14 2000-12-26 Heineken Brouwerijen, B.V. Beverage can
US6311861B1 (en) 1993-03-11 2001-11-06 Nini Policappelli Laminated container
US20050247718A1 (en) * 2001-12-28 2005-11-10 Maxwell Bushby Thermoplastic can
US20100320213A1 (en) * 2007-01-12 2010-12-23 Millercoors, Llc Double walled beverage container and method of making same
US20110101005A1 (en) * 2007-01-12 2011-05-05 Millercoors, Llc Double walled beverage container and method of making same
CN103654154A (en) * 2012-09-25 2014-03-26 洪启瑞 Cup
USD771440S1 (en) * 2015-06-05 2016-11-15 Airlite Plastics Co. Container
USD771441S1 (en) * 2015-06-05 2016-11-15 Airlite Plastics Co. Container
USD779276S1 (en) * 2015-06-05 2017-02-21 Airlite Plastics Co. Container
USD779275S1 (en) * 2015-06-05 2017-02-21 Airlite Plastics Co. Container
USD779269S1 (en) * 2015-06-05 2017-02-21 Airlite Plastics Co. Container rib
USD871849S1 (en) * 2017-03-17 2020-01-07 Huskee Tech Pty Ltd Cup
USD984218S1 (en) * 2021-04-06 2023-04-25 Dart Industries Inc. Tumbler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1683841A (en) * 1927-01-07 1928-09-11 Mullen Ribbed or corrugated sheet-metal member
US3120322A (en) * 1960-02-01 1964-02-04 Box Theodor Case for bottles and the like
US3341059A (en) * 1966-02-18 1967-09-12 American Can Co Thermoplastic container body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1683841A (en) * 1927-01-07 1928-09-11 Mullen Ribbed or corrugated sheet-metal member
US3120322A (en) * 1960-02-01 1964-02-04 Box Theodor Case for bottles and the like
US3341059A (en) * 1966-02-18 1967-09-12 American Can Co Thermoplastic container body

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125187A (en) * 1974-10-21 1978-11-14 Amerace Corporation Thermoplastic casing and method of manufacturing same
US4446969A (en) * 1979-09-24 1984-05-08 Lever Brothers Company Reinforced nestable containers
US4723681A (en) * 1982-06-17 1988-02-09 Thomassen & Drijver-Verblifa Metallic container
US4609106A (en) * 1983-11-22 1986-09-02 Vittorio Gentili Portable jerrican-like container having a suitable-to-be-palletized casing
US4877141A (en) * 1986-10-03 1989-10-31 Yoshino Kogyosho Co., Ltd. Pressure resistant bottle-shaped container
US4948006A (en) * 1986-12-02 1990-08-14 Dai Nippon Insatsu Kabushiki Kaisha Container with metallic cover and method of manufacturing the same
US5064081A (en) * 1987-02-17 1991-11-12 Yoshino Kogyosho Co., Ltd. Pressure resistant polygonal bottle-shaped container having a polygonal bottom
US5279442A (en) * 1991-12-18 1994-01-18 Ball Corporation Drawn and ironed container and apparatus and method for forming same
US6311861B1 (en) 1993-03-11 2001-11-06 Nini Policappelli Laminated container
USD435454S (en) * 1999-01-14 2000-12-26 Heineken Brouwerijen, B.V. Beverage can
US20050247718A1 (en) * 2001-12-28 2005-11-10 Maxwell Bushby Thermoplastic can
US7419068B2 (en) * 2001-12-28 2008-09-02 Maxwell Bushby Thermoplastic can
US20100320213A1 (en) * 2007-01-12 2010-12-23 Millercoors, Llc Double walled beverage container and method of making same
US20110101005A1 (en) * 2007-01-12 2011-05-05 Millercoors, Llc Double walled beverage container and method of making same
US8448810B2 (en) 2007-01-12 2013-05-28 Millercoors, Llc Double walled beverage container and method of making same
US8667662B2 (en) 2007-01-12 2014-03-11 Millercoors Llc Double walled beverage container and method of making same
US9161661B2 (en) 2007-01-12 2015-10-20 Millercoors, Llc Double walled beverage container and method of making same
CN103654154A (en) * 2012-09-25 2014-03-26 洪启瑞 Cup
USD771441S1 (en) * 2015-06-05 2016-11-15 Airlite Plastics Co. Container
USD771440S1 (en) * 2015-06-05 2016-11-15 Airlite Plastics Co. Container
USD779276S1 (en) * 2015-06-05 2017-02-21 Airlite Plastics Co. Container
USD779275S1 (en) * 2015-06-05 2017-02-21 Airlite Plastics Co. Container
USD779269S1 (en) * 2015-06-05 2017-02-21 Airlite Plastics Co. Container rib
USD871849S1 (en) * 2017-03-17 2020-01-07 Huskee Tech Pty Ltd Cup
USD972367S1 (en) * 2017-03-17 2022-12-13 Huskee Tech Pty Ltd Cup
USD984218S1 (en) * 2021-04-06 2023-04-25 Dart Industries Inc. Tumbler

Similar Documents

Publication Publication Date Title
US3558001A (en) Thermoplastic container
US4381061A (en) Non-paneling container
US3434626A (en) Plastic container bottom of increased strength
US4231483A (en) Hollow article made of an oriented thermoplastic
US3297194A (en) Container
US5071015A (en) Blow molded PET container with ribbed base structure
US3677430A (en) Self-centering and venting closure
US3561629A (en) Laminated or coated blow molded containers
US3940001A (en) Recyclable plastic containers
US3405831A (en) Container
US4387816A (en) Collapse resistant container
US9718588B2 (en) Container finish for metal lug closure
US5515995A (en) Double wall beverage container having a wide base
US7169419B2 (en) Packaging system to provide fresh packed coffee
US3381863A (en) Separating medium for use in pressurized dispensing containers
US3357593A (en) Tubular wall structure
CA2531562A1 (en) Base design for pasteurization
US3341059A (en) Thermoplastic container body
US20140061211A1 (en) Hot-fill container
US4526290A (en) Flanged container
AU2011317279A1 (en) Retort-resistant plastic container
US3198375A (en) Blow molded container
WO1998029314A1 (en) Polymer bottle closed by crown cap or such like
US3434644A (en) Container
US20210221560A1 (en) Bi-stable semi-collapsible container for stacking