US3553804A - Method of making a bullet - Google Patents

Method of making a bullet Download PDF

Info

Publication number
US3553804A
US3553804A US839598A US3553804DA US3553804A US 3553804 A US3553804 A US 3553804A US 839598 A US839598 A US 839598A US 3553804D A US3553804D A US 3553804DA US 3553804 A US3553804 A US 3553804A
Authority
US
United States
Prior art keywords
core
jacket
bullet
coating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US839598A
Inventor
Paul J Kopsch
Daniel Turcus Jr
Donald Francis Ward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DANIEL TURCUS JR
Original Assignee
DANIEL TURCUS JR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DANIEL TURCUS JR filed Critical DANIEL TURCUS JR
Application granted granted Critical
Publication of US3553804A publication Critical patent/US3553804A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/76Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the casing
    • F42B12/80Coatings
    • F42B12/82Coatings reducing friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/54Making hollow objects characterised by the use of the objects cartridge cases, e.g. for ammunition, for letter carriers in pneumatic-tube plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S228/00Metal fusion bonding
    • Y10S228/903Metal to nonmetal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating

Definitions

  • Partially jacketed metal-piecing ammunition is generally composed of a hard metal core partially encased by or secured to a soft metal jacket member. The nose and piercing end or extremity of the core is generally left exposed.
  • the core is usually made of steel or other hard metal while the jacket is composed of a softer metal, such as gilding metal, a zinc-copper alloy. Utilization of a soft metal jacket prevents damage to the rifling in the bore of the weapon as the bullet is discharged.
  • This invention concerns a metal-piercing semi-jacketed bullet which has a core coated with a low-friction fluorocarbon resin, such as polytetrafluoroethylene. Polytetrafluoroethylene is also used to secure the jacket member to the core.
  • the low-friction fluorocarbon resin increases the penetration of the bullet by imparting to it self-lubricating and friction reducing properties as it enters and passes through the target.
  • the bullet to which this invention is primarily directed has a core secured to a jacket member. Since a bullet of this type is generally used for piercing metalllic targets, the core is composed of a hard metal such as steel or steel alloy of carbide or tungsten. Without a softer metallic protective jacket surrounding at least a portion of the core, the firing of such a bullet would soon destroy the interior surface of the gun barrel. Since these surfaces carry the rifling which imparts the spin and therefore effects the accuracy of the bullet, such a result is to be avoided.
  • the jacket member is, therefore, commonly composed of a gilding metal, that is, a zinc-copper alloy which is considerably softer than the hard metal core.
  • this invention increases the penetrating ability of the core and increases the strength of the jacket-tocore securement.
  • One method of producing a bullet embodying the principles of this invention contemplates application of a coating of polytetrafluoroethylene to the bullet core with subsequent placement of the core in the jacket.
  • the core and jacket are then dried and sintered until fusion occurs between the coating and core and coating and jacket.
  • a bullet is produced which upon entering a metallic target surface presents a piercing surface which is self-lubricating and friction reducing.
  • the end result is increased penetration.
  • a fluorocarbon resin such as polytetrafluoroethylene, sinters at 500- 600 F. (higher than most solders), the jacket will remain secured to the core after impact for the full or greater part of bullet flight.
  • FIG. 1 is a side elevational view in partial section of a bullet embodying the principles of the invention.
  • FIG. 2 is a table recording data obtained while using various types of conventional and experimental ammunition.
  • bullet is composed of a core 12 having body and nose portions 14 and 16, respectively. Core 12 is received in a jacket 18.
  • Jacket 18 or a similar jacket member may also be secured to the core by means of a fluorocarbon resin. The resin may be used as the sole means of securement of jacket to core or in addition to solder or other conventional bonding agents.
  • a low-friction fluorocarbon resin which has been found particularly effective is an aqueous dispersion of polytetrafluoroethylene.
  • An aqueous dispersion is preferred because of its ease of application as well as strength of its bond to the core and core to jacket.
  • Du Pont Teflon TFE has been found to be an excellent material for use with this invention.
  • Teflon 30 comprises an aqueous dispersion of polytetrafluoroethylene solids (about by weight) and Rohm and Haas Triton X-lOO (about 5% by weight).
  • Triton X-lOO essentially comprises alkyl aryl polyether alcohol.
  • Teflon 30 has a low coeflicient of friction, high heat stability and is inert to attack by almost all chemicals.
  • an aqueous dispersion of polytetrafluoroethylene, Du Pont Teflon 30 TFE in particular, has been found to be extremely effective, it is believed that other fluorocarbon resins may also be suitable.
  • Such resins should be capable of easy application and, therefore, pref erably available as an aqueous dispersion. Methods of application or manufacture which can eliminate the necessity of application by means of aqueous dispersion are also contemplated.
  • the coeflicient of friction of the resin preferably should be within the range of polytetrafluoroethylene, that is about 0.03 to 0.10 cm./sec. (static coefficient of friction against polished steel).
  • Ability to form a strong bond to the core and core-tojacket is also desirable.
  • the core 12 of metal-piercing ammunition is generally made of hard steel. Carbide and tungsten alloys, however, have been used with success. Since the hardness of the core material is an important factor in determining a bullets penetration potential, the core should preferably be composed of a metal having a Brinell Hardness Number in excess of 95. Tungsten-steel alloys for example can have a Brinell Hardness Number of about 97 and are frequently used in making bullet cores because of their favorable metallic cutting qualities. Commercially available steels may have Brinell Hardness Numbers in excess of 700.
  • the core 12 may be of any operable shape, but generally has a nose portion 16 which is pointed or somewhat reduced in size in comparison with the body portion 14 to facilitate initial entry and subsequent penetration of the target. Nose portion 16 in FIG. 1 is typical of an acceptable bullet piercing end or nose for a .38 caliber Special loading.
  • the body portion of the core may be of any diameter or shape conducive to proper securement to a jacket and unrestricted travel in a gun barrel.
  • Body portion 14 of core 12 in FIG. 1 illustrates an acceptable configuration.
  • the shape of the body portion is also dictated by bullet caliber, by intended use, velocity desired and the size and shape of the cartridge (not shown) which carries the explosive charge used to propel the bullet.
  • the jacket member may cover or encase the core may vary, it should preferably leave at least a portion of the nose or piercing end of the bullet exposed. This, of course, ensures that the most rigid portion of the bullet, the core, makes initial contact with the target surface.
  • the principles of the invention can also be utilized with a jacket member of the type frequently used with artillery-type ammunition.
  • a core similar to core 12 has attached to it, opposite the nose portion, a narrow jacket member or band which leaves the base of the core and most of the body portion exposed. Its purpose, like other jacketing members of different sizes and shapes, is to prevent direct engagement of the hard metal core with the rifling in the bore.
  • FIG. 1 shows a particular corejacket configuration
  • the principles of this invention are equally applicable to other metal-piercing ammunition utilizing a jacket and core construction.
  • this invention may be practiced on metal-piercing ammunition suitable for firing in the following, inter alia, weapons: .357 Magnum, .38 Special, .38 automatic, 9 mm. parabellum, .35 and .351 caliber rifle.
  • the fluorocarbon resin or polytetrafluoroethylene may be used to secure the jacket member to the core. It is contemplated that the resin may be continuous or discontinuous. That is, the entire core may be coated with the resin disposed between the core and jacket serving to secure each to the other. On the other hand, manufacturing procedures may dictate coating only the tip or extremity of the nose portion and then applying a separate or discontinuous coating between the core and jacket member. Further, the fluorocarbon resin may be used in addition to other bonding agents, solder, for example, to secure the jacket to the core.
  • a hard metal core is completely coated with a low-friction fluorocarbon resin, such as polytetrafluoroethylene (Teflon). Coating of the core may be accomplished by dipping or spraying. Since spraying generally requires the use of two or more coatings consecutively applied, dipping is preferred.
  • the core After the core has a uniform coat of Teflon on its outer surface, it is placed in the jacket with the nose portion exposed. The jacket and core are then allowed to air dry. After the Teflon has dried, the core-jacket combination is placed in an oven and heated to a temperature of from 600 to 800 F. until the coating sinters and fusion occurs. This heat also anneals, or softens, the jacket so that it more readily conforms to the rifling.
  • a low-friction fluorocarbon resin such as polytetrafluoroethylene (Teflon).
  • test data obtained by firing various kinds of .38 caliber Special loadings under identical conditions i.e. firing each bullet at a 21-foot muzzle-target distance through .019" steel plates, spaced 8 inches apart.
  • Factory Ammunition is listed data recorded when various commercially available bullets of varying weights were fired at different velocities. Similar data is recorded under the heading Experimental Ammunition. All jacketed ammunition used (with the exception of the Teflon coated bullet) secured the core to the jacket with solder.
  • Teflon-coated steel core and gilding-metal jacket combination gave superior results while requiring a smaller bullet weight and equal or less velocity than other ammunition tested. This increase is believed to be directly attributable to the reduced friction caused by the Teflon-coated core as it enters the plates.
  • the 'steel core and gilding-metal jacket combination treated with silicon used Dow Corning Molykote M-8800. As shown, the use of silicon produced the same result as the plain steel core gilding-metal jacket combination under the same weight and velocity conditions.
  • the Tefloncoated bullet was capable of being decreased in weight by one to twelve grains and fired at equal or reduced velocity than other ammunition yet still was capable of piercing from 2 to 9 additional plates than other tested ammunition. Solely in terms of plates pierced, the Teflon-coated and bonded core-jacket combination gave an increase in penetration of better than 18 percent over the closest competing bullet (plain steel core and solder bonded jacket) and over 300 percent in excess of the wadcutter.
  • a method of making a bullet which comprises; providing a core of relatively hard metallic material and with the core having a cylindrical region near one end, applying a thin unsintered coating of fluorocarbon resin to said core and including said cylindrical region thereof, then mounting a metallic jacket member having a cylindri cal region on the core with the cylindrical region of the jacket member closely telescopically fitting the coated cylindrical region of the core, and applying heat to the coated core having the jacket member mounted thereon to sinter the said coating and to bond the coating to the core and to the jacket member thereby fixedly to connect the acteristics to the core to increase its penetration characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

FORMING A CORE OF RELATIVELY HARD METALLIC MATERIAL HAVING A CYLINDRICAL PORTION AND A TAPERING PORTION NEAR ONE END. COATING THE CORE WITH UNSINTERED FLUOROCARBON RESIN AND MOUNTING A CLOSELY TELESCOPING JACKET ON THE CYLINDRICAL PORTION OF THE CORE. APPLYING HEAT TO THE ASSEMBLED ELEMENTS TO SINTER THE COATING TO THE CORE AND BOND THE CORE AND JACKET TOGETHER.

Description

Jan. 12, 19 71 p, opsc ETAL 3,553,804
METHOD OF MAKING A BULLET Original Filed Oct. 31, 1967 TEsT FIRINGS OF BULLETS*THROUGH .0l9"STEEL PLATEs,e"APART, AT 2| Eoo MuzzLE TARGET DISTANCE was; II EEEY fis T P F AM NITI N Y EIO W o IN GRAINS IN FTJSEC. PIERCED FACTORY A MuNITIoN WADCUTTER I48 110 4 LEAD BULLET I58 855 8 HIGH SPEED LEAD BULLET I50 I065 Io sTEEL JACKET- LEAD CORE I58 ass Io EXPERIMENTAL AMMuNITIoN sTE L JACKET sTEEL CORE I50 Iooo Io GlLDlNG-METAL JACKET- sTEEL CORE I47 eoo II GILDING- METAL JACKET- sILIcoN COATED sTEEL CORE I47 800 II cILoINc;METAL JACKET- TEFLON COATED sTEEL CORE I46 800 l3 *ALL BULLETS ARE .ae CALIBER SPECIAL LOADINGS I PAUL J. IJESEHP DANI LDTURC s JR. BY DONA F. wA D ATTORNEYS.
United States Patent 3,553,804 METHOD OF MAKING A BULLET Paul J. Kopsch, 710 Foster Park Road W. 44053; and Daniel Turcus, Jr., 1019 W. 38th St. 44052, both of Lorain, Ohio; and Donald Francis Ward, Telegraph Road, South Amherst, Ohio 44001 Original application Oct. 31, 1967, Ser. No. 679,391. Divided and this application July 7, 1969, Ser. No. 839,598
Int. Cl. B21d 51/54; B21k 21/04; B23d 15/22 US. Cl. 291.3 7 Claims ABSTRACT OF THE DISCLOSURE Forming a core of relatively hard metallic material having a cylindrical portion and a tapering portion near one end. Coating the core with unsintered fluorocarbon resin and mounting a closely telescoping jacket on the cylindrical portion of the core. Applying heat to the assembled elements to sinter the coating to the core and bond the core and jacket together.
BACKGROUND OF THE INVENTION This is a division of application Ser. No. 679,391, filed Oct. 31, 19 6-7.
Partially jacketed metal-piecing ammunition is generally composed of a hard metal core partially encased by or secured to a soft metal jacket member. The nose and piercing end or extremity of the core is generally left exposed. The core is usually made of steel or other hard metal while the jacket is composed of a softer metal, such as gilding metal, a zinc-copper alloy. Utilization of a soft metal jacket prevents damage to the rifling in the bore of the weapon as the bullet is discharged.
Users of half-jacketed or semi-jacketed metal-piercing ammunition, police officers, for example, are primarily concerned with maximum penetration while maintaining safe and reasonable velocity ranges. Their objective is deep and sustained bullet penetration of a metallic object as opposed to the desire of the game hunter to employ a bullet which strikes, penetrates and then mushrooms to resist deeper penetration.
Attempts to increase bullet penetration have generally been directed to three factors: (1) increasing the hardness of the bullet core; (2) decreasing the weight of the bullet; and (3) increasing the velocity of the bullet. One factor, however, which also appears to be extremely pertinent to the performance of metal-piercing ammunition but which has been generally neglected, is the friction and subsequent resistance generated by the surface of the piercing end or nose of the core as it enters and passes through the target. Perhaps inattention to this factor can be attributed to the inoperability or impracticality of known methods of friction reduction when applied to ammunition. These, of course, would include the coating of the hard core with a softer metal jacket or oiling or greasing of the metallic surfaces. Application of oil or grease lubricants to the surfaces of bullets presents problems in transporting, storing and otherwise handling the ammunition because of the attraction of dust, dirt and other debris to the lubricated surface. Some small caliber bullets do have cores lubricated with oil films. These films, however, are used to protect the gun barrel from harsh combustion gases and the like and are burned off before the bullet leaves the gun barrel. The softer metallic coating has been found to be largely ineffective for increasing the penetration of the core.
The US. Government in attempting to solve internal weapon, not ammunition, lubrication problems under field condition used, as reparted in Government Bulletin PB ice 121-161, polytetrafluoroethylene (Teflon) films on interior weapon surfaces such as rifle, pistol and large artillery barrels or bores as well as on bullet cartridges to aid in the passage of the cartridge through the breechlock mechanism. The patent to Zisman et al., No. 2,928,- 348 discloses coating a core with Teflon to lubricate the projectile through a rifle barrel. A bullet having a lubricant bonded to its piercing surface or core in order to reduce friction upon entry and travel through a metallic surface, however, has not been disclosed.
SUMMARY OF THE INVENTION This invention concerns a metal-piercing semi-jacketed bullet which has a core coated with a low-friction fluorocarbon resin, such as polytetrafluoroethylene. Polytetrafluoroethylene is also used to secure the jacket member to the core. The low-friction fluorocarbon resin increases the penetration of the bullet by imparting to it self-lubricating and friction reducing properties as it enters and passes through the target.
The bullet to which this invention is primarily directed has a core secured to a jacket member. Since a bullet of this type is generally used for piercing metalllic targets, the core is composed of a hard metal such as steel or steel alloy of carbide or tungsten. Without a softer metallic protective jacket surrounding at least a portion of the core, the firing of such a bullet would soon destroy the interior surface of the gun barrel. Since these surfaces carry the rifling which imparts the spin and therefore effects the accuracy of the bullet, such a result is to be avoided. The jacket member is, therefore, commonly composed of a gilding metal, that is, a zinc-copper alloy which is considerably softer than the hard metal core.
The accuracy of semior half-jacketed bullets of the type described is to a certain extent dependent upon the length of time the jacket remains secured to the core as the bullet penetrates the target. Conventional metalpiercing ammunition generally secures a gilding metal jacket to a steel core by means of solder. Since solder has a melting point lower than the temperature frequently developed by a bullet passing through metal, the solder often melts and thereby causes the core to disengage from the jacket. Such disengagement will generally adversely effect the subsequent path of the bullet. Since Teflon generally melts above the melting point of solder, this problem is frequently avoided when the core and jacket are secured with Teflon only or a Teflon-solder combination. Thus by using a coating of a low-friction fluorocarbon resin to coat not only the outer surface of the core, but also to secure the core to the jacket, this invention increases the penetrating ability of the core and increases the strength of the jacket-tocore securement.
One method of producing a bullet embodying the principles of this invention contemplates application of a coating of polytetrafluoroethylene to the bullet core with subsequent placement of the core in the jacket. The core and jacket are then dried and sintered until fusion occurs between the coating and core and coating and jacket. Thus, a bullet is produced which upon entering a metallic target surface presents a piercing surface which is self-lubricating and friction reducing. The end result, of course, is increased penetration. In addition, since a fluorocarbon resin, such as polytetrafluoroethylene, sinters at 500- 600 F. (higher than most solders), the jacket will remain secured to the core after impact for the full or greater part of bullet flight.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational view in partial section of a bullet embodying the principles of the invention; and
FIG. 2 is a table recording data obtained while using various types of conventional and experimental ammunition.
DESCRIPTION OF THE PREFERRED EMBODIMENT As seen in FIG. 1, bullet is composed of a core 12 having body and nose portions 14 and 16, respectively. Core 12 is received in a jacket 18. A coating of fluorocarbon resin having a low coefficient of friction, such as polytetrafluoroethylene, is bonded to at least the nose portion or piercing end of core 12. Jacket 18 or a similar jacket member may also be secured to the core by means of a fluorocarbon resin. The resin may be used as the sole means of securement of jacket to core or in addition to solder or other conventional bonding agents.
A low-friction fluorocarbon resin which has been found particularly effective is an aqueous dispersion of polytetrafluoroethylene. An aqueous dispersion is preferred because of its ease of application as well as strength of its bond to the core and core to jacket. Du Pont Teflon TFE has been found to be an excellent material for use with this invention. Teflon 30 comprises an aqueous dispersion of polytetrafluoroethylene solids (about by weight) and Rohm and Haas Triton X-lOO (about 5% by weight). Triton X-lOO essentially comprises alkyl aryl polyether alcohol.
Teflon 30 has a low coeflicient of friction, high heat stability and is inert to attack by almost all chemicals. Although an aqueous dispersion of polytetrafluoroethylene, Du Pont Teflon 30 TFE in particular, has been found to be extremely effective, it is believed that other fluorocarbon resins may also be suitable. Such resins should be capable of easy application and, therefore, pref erably available as an aqueous dispersion. Methods of application or manufacture which can eliminate the necessity of application by means of aqueous dispersion are also contemplated. In addition, the coeflicient of friction of the resin preferably should be within the range of polytetrafluoroethylene, that is about 0.03 to 0.10 cm./sec. (static coefficient of friction against polished steel). Ability to form a strong bond to the core and core-tojacket is also desirable.
The core 12 of metal-piercing ammunition is generally made of hard steel. Carbide and tungsten alloys, however, have been used with success. Since the hardness of the core material is an important factor in determining a bullets penetration potential, the core should preferably be composed of a metal having a Brinell Hardness Number in excess of 95. Tungsten-steel alloys for example can have a Brinell Hardness Number of about 97 and are frequently used in making bullet cores because of their favorable metallic cutting qualities. Commercially available steels may have Brinell Hardness Numbers in excess of 700.
The core 12 may be of any operable shape, but generally has a nose portion 16 which is pointed or somewhat reduced in size in comparison with the body portion 14 to facilitate initial entry and subsequent penetration of the target. Nose portion 16 in FIG. 1 is typical of an acceptable bullet piercing end or nose for a .38 caliber Special loading. The body portion of the core may be of any diameter or shape conducive to proper securement to a jacket and unrestricted travel in a gun barrel. Body portion 14 of core 12 in FIG. 1 illustrates an acceptable configuration. The shape of the body portion is also dictated by bullet caliber, by intended use, velocity desired and the size and shape of the cartridge (not shown) which carries the explosive charge used to propel the bullet.
Although the extent to which the jacket member may cover or encase the core may vary, it should preferably leave at least a portion of the nose or piercing end of the bullet exposed. This, of course, ensures that the most rigid portion of the bullet, the core, makes initial contact with the target surface. The principles of the invention can also be utilized with a jacket member of the type frequently used with artillery-type ammunition. In this case, a core, similar to core 12 has attached to it, opposite the nose portion, a narrow jacket member or band which leaves the base of the core and most of the body portion exposed. Its purpose, like other jacketing members of different sizes and shapes, is to prevent direct engagement of the hard metal core with the rifling in the bore.
Therefore, although FIG. 1 shows a particular corejacket configuration, it should be understood that the principles of this invention are equally applicable to other metal-piercing ammunition utilizing a jacket and core construction. For example, it has been found that this invention may be practiced on metal-piercing ammunition suitable for firing in the following, inter alia, weapons: .357 Magnum, .38 Special, .38 automatic, 9 mm. parabellum, .35 and .351 caliber rifle.
As previously discussed the fluorocarbon resin or polytetrafluoroethylene, in particular, may be used to secure the jacket member to the core. It is contemplated that the resin may be continuous or discontinuous. That is, the entire core may be coated with the resin disposed between the core and jacket serving to secure each to the other. On the other hand, manufacturing procedures may dictate coating only the tip or extremity of the nose portion and then applying a separate or discontinuous coating between the core and jacket member. Further, the fluorocarbon resin may be used in addition to other bonding agents, solder, for example, to secure the jacket to the core.
One of the many methods which may be employed in producing a bullet in accordance with this invention encompasses the following steps. A hard metal core is completely coated with a low-friction fluorocarbon resin, such as polytetrafluoroethylene (Teflon). Coating of the core may be accomplished by dipping or spraying. Since spraying generally requires the use of two or more coatings consecutively applied, dipping is preferred. After the core has a uniform coat of Teflon on its outer surface, it is placed in the jacket with the nose portion exposed. The jacket and core are then allowed to air dry. After the Teflon has dried, the core-jacket combination is placed in an oven and heated to a temperature of from 600 to 800 F. until the coating sinters and fusion occurs. This heat also anneals, or softens, the jacket so that it more readily conforms to the rifling.
To achieve better adhesion of the Teflon to the core, it is advisable to thoroughly clean the core before application of the Teflon. Rinsing with a solvent to re move grease, oil and the like or sandblasting have proven extremely effective. Sandblasting is almost a necessity if a Teflon enamel is used.
Referring to FIG. 2 of the drawings, there is shown test data obtained by firing various kinds of .38 caliber Special loadings under identical conditions, i.e. firing each bullet at a 21-foot muzzle-target distance through .019" steel plates, spaced 8 inches apart. Under the heading Factory Ammunition is listed data recorded when various commercially available bullets of varying weights were fired at different velocities. Similar data is recorded under the heading Experimental Ammunition. All jacketed ammunition used (with the exception of the Teflon coated bullet) secured the core to the jacket with solder.
It is apparent that the Teflon-coated steel core and gilding-metal jacket combination gave superior results while requiring a smaller bullet weight and equal or less velocity than other ammunition tested. This increase is believed to be directly attributable to the reduced friction caused by the Teflon-coated core as it enters the plates.
The 'steel core and gilding-metal jacket combination treated with silicon used Dow Corning Molykote M-8800. As shown, the use of silicon produced the same result as the plain steel core gilding-metal jacket combination under the same weight and velocity conditions.
The Tefloncoated bullet was capable of being decreased in weight by one to twelve grains and fired at equal or reduced velocity than other ammunition yet still was capable of piercing from 2 to 9 additional plates than other tested ammunition. Solely in terms of plates pierced, the Teflon-coated and bonded core-jacket combination gave an increase in penetration of better than 18 percent over the closest competing bullet (plain steel core and solder bonded jacket) and over 300 percent in excess of the wadcutter.
The advantages of a bullet having a Teflon or comparable fluorocarbon resin coating its core and bonding the core and jacket are obvious'in any situation where metal-piercing ammunition is used. In law enforcement applications especially, the principles of the invention can be used to produce a bullet capable of increased penetration potential. This can effectively be utilized when thepolice officer, for example, finds it necessary to shoot through metallic objects such as doors or automobiles.
We claim:
1. A method of making a bullet which comprises; providing a core of relatively hard metallic material and with the core having a cylindrical region near one end, applying a thin unsintered coating of fluorocarbon resin to said core and including said cylindrical region thereof, then mounting a metallic jacket member having a cylindri cal region on the core with the cylindrical region of the jacket member closely telescopically fitting the coated cylindrical region of the core, and applying heat to the coated core having the jacket member mounted thereon to sinter the said coating and to bond the coating to the core and to the jacket member thereby fixedly to connect the acteristics to the core to increase its penetration characteristics.
2. A method according to claim 1 in which said resin is polytetrafluoroethylene.
3. A method according to claim 2 in which the coating is applied by dipping the core in a dispersion of the resln.
4. A method according to claim 2 in which the coating is applied by spraying the core with a dispersion of the resin.
5. The method of claim 1 including cleaning the core prior to the application of the fluorocarbon coating.
6. The method of claim 5 wherein the cleaning is accomplished by rinsing the core with a solvent for grease, oil or the like.
7. The method of claim 5 wherein the cleaning is accomplished by sandblasting the core.
References Cited UNITED STATES PATENTS 163,154 5/1875 Cook l0238 3,034,433 5/1962 Gronn 102-43 3,048,104 8/1962 Riggs 29474.4X
JOHN F. CAMPBELL, Primary Examiner R. J. CRAIG, Assistant Examiner U.S. C1. X.R.
US839598A 1969-07-07 1969-07-07 Method of making a bullet Expired - Lifetime US3553804A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83959869A 1969-07-07 1969-07-07

Publications (1)

Publication Number Publication Date
US3553804A true US3553804A (en) 1971-01-12

Family

ID=25280168

Family Applications (1)

Application Number Title Priority Date Filing Date
US839598A Expired - Lifetime US3553804A (en) 1969-07-07 1969-07-07 Method of making a bullet

Country Status (1)

Country Link
US (1) US3553804A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4449278A (en) * 1981-03-26 1984-05-22 Agfa-Gevaert Aktiengesellschaft Roller for supporting material sensitive to radiation and, method of making the same
WO2005022072A2 (en) * 2003-05-29 2005-03-10 Natec, Inc. Ammunition articles and method of and apparatus for making ammunition articles
US6869666B2 (en) 2001-05-02 2005-03-22 3M Innovative Properties Company Controlled-puncture films
US20050257711A1 (en) * 1999-01-15 2005-11-24 Natec, Inc. A Cartridge Casing Body And An Ammunition Article Having A Cartridge Casing Body Wherein The Cartridge Casing Body Is Plastic, Ceramic, Or A Composite Material
US20060123684A1 (en) * 2001-03-13 2006-06-15 Bunney Robert F Apparatus
US20060236541A1 (en) * 2003-10-21 2006-10-26 Prucher Stephen L Over-molded net-shaped gear and manufact uring method
US20070095241A1 (en) * 2005-06-24 2007-05-03 Thomas Steel Strip Corporation Polymer-coated metal substrate
US20070163459A1 (en) * 2004-02-23 2007-07-19 Macdougall John Jacketed one piece core ammunition
USD849874S1 (en) 2018-01-21 2019-05-28 Vista Outdoor Operations Llc Muzzleloader propellant cartridge
USD857523S1 (en) 2018-03-16 2019-08-27 Vista Outdoor Operations Llc Cartridge packaging
US10753718B1 (en) 2018-03-16 2020-08-25 Vista Outdoor Operations Llc Colored cartridge packaging

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4449278A (en) * 1981-03-26 1984-05-22 Agfa-Gevaert Aktiengesellschaft Roller for supporting material sensitive to radiation and, method of making the same
US20050257711A1 (en) * 1999-01-15 2005-11-24 Natec, Inc. A Cartridge Casing Body And An Ammunition Article Having A Cartridge Casing Body Wherein The Cartridge Casing Body Is Plastic, Ceramic, Or A Composite Material
US20060123684A1 (en) * 2001-03-13 2006-06-15 Bunney Robert F Apparatus
US6869666B2 (en) 2001-05-02 2005-03-22 3M Innovative Properties Company Controlled-puncture films
US20070044644A1 (en) * 2003-05-29 2007-03-01 Natec, Inc. Ammunition Article And Apparatus For Making Ammunition Articles
WO2005022072A2 (en) * 2003-05-29 2005-03-10 Natec, Inc. Ammunition articles and method of and apparatus for making ammunition articles
US20050081704A1 (en) * 2003-05-29 2005-04-21 Nabil Husseini Ammunition articles and method of making ammunition articles
WO2005022072A3 (en) * 2003-05-29 2005-12-08 Natec Inc Ammunition articles and method of and apparatus for making ammunition articles
US7059234B2 (en) 2003-05-29 2006-06-13 Natec, Inc. Ammunition articles and method of making ammunition articles
US20060236541A1 (en) * 2003-10-21 2006-10-26 Prucher Stephen L Over-molded net-shaped gear and manufact uring method
US20070163459A1 (en) * 2004-02-23 2007-07-19 Macdougall John Jacketed one piece core ammunition
US7980180B2 (en) * 2004-02-23 2011-07-19 General Dynamics Ordnance And Tactical Systems-Canada Inc. Jacketed one piece core ammunition
US20070095241A1 (en) * 2005-06-24 2007-05-03 Thomas Steel Strip Corporation Polymer-coated metal substrate
USD849874S1 (en) 2018-01-21 2019-05-28 Vista Outdoor Operations Llc Muzzleloader propellant cartridge
USD857523S1 (en) 2018-03-16 2019-08-27 Vista Outdoor Operations Llc Cartridge packaging
US10753718B1 (en) 2018-03-16 2020-08-25 Vista Outdoor Operations Llc Colored cartridge packaging

Similar Documents

Publication Publication Date Title
US3580178A (en) Externally lubricated projectile and method of making same
US5686693A (en) Soft steel projectile
US5535495A (en) Die cast bullet manufacturing process
EP0010845B1 (en) Plastics coated ammunition and method of manufacture
US7765934B2 (en) Lead-free projectile
JP4744454B2 (en) One piece core ammunition with jacket
US6439124B1 (en) Lead-free tin projectile
US3553804A (en) Method of making a bullet
US20020005137A1 (en) Lead-free frangible projectile
SK284793B6 (en) Jacketed projectile with a hard core
JPH0131120B2 (en)
US2926612A (en) Projectile
JP4713577B2 (en) Lead free bullet
US20110290141A1 (en) Subsonic small-caliber ammunition and bullet used in same
US4109581A (en) Projectile for an infantry rifle
US20110290142A1 (en) Subsonic small-caliber ammunition and bullet used in same
US6363856B1 (en) Projectile for a small arms cartridge and method for making same
US20200141706A1 (en) Small-arms ammunition with non-brass casing and non-lead projectile
US2103155A (en) Projectile
EP0647308B1 (en) Soft steel projectile
US20190033046A1 (en) Small-arms ammunition with non-brass casing and non-lead projectile
US7197986B1 (en) Composite steel and ceramic gun barrels
US3040662A (en) Bullets
DE10209035A1 (en) Bullet for hand fired weapon ammunition, comprises a plastic mantle located in a ring groove, and a cylindrical section
RU2094732C1 (en) Barrel of riffled weapon