US3553353A - Receiver for pal color television system - Google Patents

Receiver for pal color television system Download PDF

Info

Publication number
US3553353A
US3553353A US609140A US3553353DA US3553353A US 3553353 A US3553353 A US 3553353A US 609140 A US609140 A US 609140A US 3553353D A US3553353D A US 3553353DA US 3553353 A US3553353 A US 3553353A
Authority
US
United States
Prior art keywords
subcarrier
color
line
theta
delayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US609140A
Inventor
Gerard Melchior
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Francaise de Television SA
Original Assignee
Cft Comp Fse Television
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cft Comp Fse Television filed Critical Cft Comp Fse Television
Application granted granted Critical
Publication of US3553353A publication Critical patent/US3553353A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems
    • H04N11/06Transmission systems characterised by the manner in which the individual colour picture signal components are combined
    • H04N11/12Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous signals only
    • H04N11/14Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous signals only in which one signal, modulated in phase and amplitude, conveys colour information and a second signal conveys brightness information, e.g. NTSC-system
    • H04N11/16Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous signals only in which one signal, modulated in phase and amplitude, conveys colour information and a second signal conveys brightness information, e.g. NTSC-system the chrominance signal alternating in phase, e.g. PAL-system
    • H04N11/165Decoding means therefor

Definitions

  • the subcarrier S (t) in the systems considered here has at the time t a phase P (t) such that, T being a time equal or at least very nearly equal to one line period, the difference P (t) P (t- T), is a function of 1 (t), and/or of (r T), the phase-modulation of the subcarrier being moreover such that if (t) is considered as equal to P, D (2 '2T), then P (t 2T) P (t T) can be considered as equal to PM -P(r-T) which will be written Pt!) P(r2T).
  • the subcarrier alternately has two different forms, this alternation taking place at the line frequency.
  • the signals D, and D are obtained in two synchronous demodulators which respectively receive on the one hand the signal S, and an auxiliary sinusoidal signal sin wt, and on the other hand the signal s, and an auxiliary sinusoidal signal cos m, which auxiliary signals may be obtained in various ways, in particular by means of a reference signal of phase wt B where B is constant, during the horizontal blanking intervals.
  • phase P(t) of the subcarrier alternates between the forms w having the same significance as before, and the amplitude of the subcarrier being for example D (t)
  • signals D, and D can be obtained in two synchronous demodulators, one of which is fed with the subcarrier being transmitted and with the subcarrier delayed by T and brought to a constant amplitude, and the other of which receives the same waves, but for a or 1r/2 phase-shift alternatively imparted to the delayed subcarrier.
  • Systems of this kind are hereinafter referred to as systems of the described type.
  • phase shift or amplitude variation which may be imparted to the subcarrier for various ends will be disregarded here. It will simply be remarked that such phaseshifts are kept constant within each active line duration.
  • active line duration is meant any interval of time elapsing between two successive horizontal blanking intervals, and used for the transmission of signals related to the picture content.
  • the signal of phase P (t T') is obtained using a delay. device which is generally an ultrasonic delay line.
  • a delay line of this kind comprises a first transducer which transforms the electrical signals into ultrasonic signals, an ultrasonic channel which delays the ultrasonic signals, an ultrasonic channel and a second transducer which transforms the delayed ultrasonic signals back into electrical signals.
  • the precise amount of delay T is determined by transmission standards. In practice, if the delay T imparted by the delay device differs slightly from its nominal value T, the resultant phase error produced in the delayed signal can be adequately corrected using a phase-shifting network.
  • the demodulating device which uses the phase difference.
  • Instability of this kind may, for example, be due directly to the oscillator generating the subcarrier in the transmitter transmitting the composite video signal of which the subcarrier is a part; or, if the composite video signal is obtained from a magnetic storage device, such an error may be produced by an instability of the tape speed.
  • phase shift due to a delay is a function of the frequency.
  • the present invention allows correction of phase errors due to such instabilities.
  • the phase errors due to instabilities in a PAL receiver are eliminated by deriving the sequential color signals D and D from the sum and the difference of two terms, one of which is the modulated subcarrier delayed by a period T substantially equal to the duration of a line, and the other term is a signal obtained by mixing the nondelayed subcarrier with the subcarrier delayed by a period 2T substantially twice as long as the duration of a line.
  • FIG. 1 is the diagram of a PAL television receiver including an illustrative embodiment of a color subcarrier demodulating circuit according to the invention
  • FIG. 2 is a diagram of an alternative embodiment of the color subcarrier demodulating circuit illustrated in FIG. 1;
  • FIG. 3 depicts an illustrative delay device which may advantageously employed with the color subcarrier demodulating circuit shown in FIG. 2.
  • the amplitude of the subcarrier is D (l) for example.
  • the input 1 feeds in parallel a delay line 2, imparting a nominal delay T, a delay line 4, imparting a nominal delay 2T, and the first input of an adding device 6, the latter preferably being set to deliver the half sum of the two signals applied to its inputs.
  • the delay lines 2 and 4 are of identical type, with the exception of the length of the ultrasonic channels, such that an algebraic error AT, arising from a variation in temperature and occurring in the delay produced by the first ultrasonic channel, will normally be associated with an error 2 AT in the delay imparted by the second ultrasonic channel.
  • the invention will be explained on the basis of the assumption that there are no other instability factors affecting the delay devices, i.e. none other than those from which an error proportional to the ndminal delay arises.
  • the delay line 4 is followed by an amplifier 5, the output of which is connected to the second input of the adding device 6.
  • the delay line 2 supplies a signal of phase P(tT-T), which can, if necessary, be subsequently amplified, in order to bring it to the level D (t). Then:
  • the amplifier 5 is adjusted so that its gain compensates for the attenuation caused by the delay line 4. Its output is therefore S (t-2T-2A'I) D (t 2T 2AT) sinlwt wT- 2w. AT 6 (t 2T 2AT).
  • the adding device 6 will deliver at its output 7 a signal having the phase wtwT-l-0(t)+0(t2T)-aandan amplitude substantially equ ivalentgo pa Hie-2T cos a 2 which can be written as as long as a remains small.
  • the error in D (t) is of no importance as long as the amplitude of this signalis not used to recover video frequency signals, the information D (1) being then supplied by the output signal from the delay line 2, after suitable amplification.
  • the circuit in accordance with the invention when combined with a delay in the luminance signal with which the subcarrier is associated, produces a clear improvement in the vertical definition of the signal P in relation to conventional demodulating circuits.
  • the delay device 4 delivers a signal whose phase is P.(t-2T) -2T-Aw;
  • the adding device 6 delivers a signal the phase of which is substantially 1
  • the error term T* *Aw disappears when taking the phase difference between the signals obtained at the outputs 7 and 3 respectively.
  • FIG. 2 illustrates a modification of the circuit of FIG. 1, in which the delay lines 2 and 4 are substituted by a single delay device 10, with two outputs, delivering two signals delayed respectively by T and 2T (nominal values) at the outputs 23 and 22.
  • Y illustrates a modification of the circuit of FIG. 1, in which the delay lines 2 and 4 are substituted by a single delay device 10, with two outputs, delivering two signals delayed respectively by T and 2T (nominal values) at the outputs 23 and 22.
  • the input 1, the outputs 3 and 7, and the adding device 6 are, as described in relation to the preceding embodiment.
  • the input 1 feeds in parallel the first input of the adding device 6 and, through an amplifier 15, the input 21 ofthe delay device 10, the output 22 of which is coupled to the second input of the adding device, its output 23 being connected to the output 3 of the circuit.
  • the amplifier 15 is so adjusted that its gain compensates for the attenuation, imparted by the delay device 10; in the signals supplied at its output 22.
  • This arrangement of the amplifierls before the delay device 10 means that advantage is taken of the amplification for the signals delivered at the output 23 of the delay device 10. Apart from this, operation is the same as in circuit of FIG. 1.
  • the output of the transducer 27 being the output 23 of the device 10
  • a second output transducer 26 connected to the first end of the channel 24, over approximately half the area thereof, the output of the transducer 26 being the output 22 of the device 10. 5
  • the signals applied at 21 are converted into ultrasonic signals by the transducer 25, these signals passing through the channel 24 and being in part reflected towards the first end of the rod where the transducer 26 converts them back to electrical signals while the other fraction is applied to the transducer 27 and converted thereby into electrical signals which appear at the output 23.
  • the device could less advantageously comprise two identical delay devices connected in series, the output of the first one being equivalent to the output 23 and the output of the second to the output 22.
  • the demodulating device in accordance with the invention does not involve any loss of the vertical definition of the information 1 and, on the contrary, improves it.
  • This delay may be introduced at the transmitting side, which can be easily effected by means of a delay device included between the circuits delivering signal Y and the device forming the composite video signal.
  • the delay device is a simple one, it will be sufiicient to delay the entire composite video signal by T and then to provide a filtering to obtain Y (t-T) and S (t-T).
  • the delay device is a combined one, the composite 'video signal will be delayed both by T and by 2T, these delayed signals will then be filtered.
  • the number of filters can obviously be reduced if the half sum of the undelayed composite video signal and of the signal delayed by 2T is produced, 'the filtering being effected on the resulting signal.
  • a color TV receiver for the PAL system in which color information is transmitted on a subcarrier in the form of two sequential signals Dsin (wt 0) and D sin (wt 0), alternat ing with each other at the line frequency, D and 0 represent-' ing, respectively, the saturation and hue of a color dot trans mitted at a time t, and where w 21r times the frequency of j the subcarrier, said receiver being of the type wherein said color information is recovered by deriving signals representa-i tive of D cos 0 and D sin 0 from the sum and difference of two terms,'one of which is the modulated subcarrier delayed in a delay line by a period substantially equal to the duration T of a j line, a method of eliminating phase'errors' in the recovered color signals which arecaused by temperature variationsin the delay line, which comprises the steps of:
  • a color subcarrier demodulating'circuit for recovering said color information by deriving signals represen tative of D sin 0 and D cos 0 from the sum and difference of two terms, said demodulating circuit comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

Phase errors in a PAL color television receiver are eliminated. The color signals are derived from the sum and difference of two terms, the first being the modulated subcarrier, delayed by a period substantially equal to the duration of a line while the other term represents a signal obtained by mixing the nondelayed subcarrier with the subcarrier delayed by a period substantially twice as long as the duration of a line.

Description

United States Patent 1 1 3,553,353
[72] Inventor Gerard Melchior 56] References Cit d N 2332';- Fran UNITED STATES PATENTS [21] P 2,793,348 5/1957 Hunter l78/5.4 [22] Filed Jan. 13, 1967 2,993,086 7/1961 De France l78/5.4(3) [45] paemed 3 162 838 12/1964 Sauvanet 178/5 2 [73] Assignee Compagnie' Francaise De Television I corporation of France FOREIGN PATENTS [32] Priority Jan. 21, 1966 1,185,649 1/1965 Germany 178/54 [33] France Primarv Examiner- Robert L. Griffin [31] 46777 Assistqnl Examiner R. P. Lange A trorney Kurt Kelman [54] FOR PAL COLOR TELEVISION ABSTRACT: Phase errors in a PAL color television receiver 2 claim 3 Draw! Figs are eliminated. The color signals are derived from the sum and g difference of two terms, the first being the modulated subcat- [52] 178/54 rier, delayed by a period substantially equal to the duration of [51 H04n 9/40 a line while the other term represents a signal obtained by mix- [50] Field of Search .r 178/52, ing the nondelayed subcarrier with the subcarrier delayed by a 5.4, 5.4( 3) period substantially twice as long as the duration of a line.
721/2 er and ZUmi/Z (0123, ll/(escape II. a C'tflcuz' r R A 9 52 gas .5/ 1 r I l l 1 I ipela l e27 Ada xi? fieclar: In
Amplifier 1 i d zizy fiea/a'ce a I L (;figmz zana9 C'crca z'fr y 1 J 1 Cb/zve/zfz'o/zal PAL Color Democ/a lafar 6 Maz'rzxz'zgg RECEIVER FOR PAL COLOR TELEVISION SYSTEM The present invention relates to circuits for demodulating the subcarrier in color television systems, and to the associated transmitters or receivers, said systems being of the kind in which the composite video signal comprises, in addition to a luminance signal, a subcarrier which is c used for the transmission of two color signals D,=D cos a and DZI=D sin ,0
said subcarrier being amplitude-modulated as a function of D= y DP+D and phase-modulated as a function of 1 More particularly, the subcarrier S (t) in the systems considered here, has at the time t a phase P (t) such that, T being a time equal or at least very nearly equal to one line period, the difference P (t) P (t- T), is a function of 1 (t), and/or of (r T), the phase-modulation of the subcarrier being moreover such that if (t) is considered as equal to P, D (2 '2T), then P (t 2T) P (t T) can be considered as equal to PM -P(r-T) which will be written Pt!) P(r2T).
In systems of this kinds kind, the subcarrier alternately has two different forms, this alternation taking place at the line frequency.
The above mentioned conditions are satisfied in the P A L system in which a subcarrier S (t) is transmitted, having altemately the forms where w is a constant angular frequency in radians and T such, that wT is substantially a multiple of 2 1r.
In this system, at the receiving end, the sum S, and the difference S, are formed from the subcarrier being transmitted and from the subcarrier delayed by T. Since according to a permissible approximation D (t T) and I (t-t) are considered as respectively equal to D(t) and I (t), this gives S,=D cos 9 sin wt= 2D sin wt S ;l;D sin ,0 cos wt= i2D cos wt the sign or depending upon the form (8 or s") of the subcarrier being transmitted.
The signals D, and D, are obtained in two synchronous demodulators which respectively receive on the one hand the signal S, and an auxiliary sinusoidal signal sin wt, and on the other hand the signal s, and an auxiliary sinusoidal signal cos m, which auxiliary signals may be obtained in various ways, in particular by means of a reference signal of phase wt B where B is constant, during the horizontal blanking intervals.
These same conditions are satisfied if the phase P(t) of the subcarrier alternates between the forms w having the same significance as before, and the amplitude of the subcarrier being for example D (t) In this case, signals D, and D can be obtained in two synchronous demodulators, one of which is fed with the subcarrier being transmitted and with the subcarrier delayed by T and brought to a constant amplitude, and the other of which receives the same waves, but for a or 1r/2 phase-shift alternatively imparted to the delayed subcarrier.
These examples are of course in no way [imitative of the scope of the invention.
Systems of this kind are hereinafter referred to as systems of the described type.
It will be remembered on the other hand that, if D, and D are two chrominance signals, as far as chromaticity is concerned the magnitude D is a saturation information whilst the value I determines the hue, and that the exact reproduction of I is much more important than the exact reproduction of D. due to the fact that the human eye is much more sensitive to errors of hue, than to saturation errors.
ln receivers used in systems of the described type it is there fore necessary to have two simultaneous signals at subcarrier frequency, with respectively the phases P (t) and P (r- T).
Any additional phase shift or amplitude variation which may be imparted to the subcarrier for various ends will be disregarded here. It will simply be remarked that such phaseshifts are kept constant within each active line duration.
The case where the two signals referred to are the subcarrier S (t) and this same subcarrier delayed by a time T, i.e. S (r-T) will be considered here.
By active line duration is meant any interval of time elapsing between two successive horizontal blanking intervals, and used for the transmission of signals related to the picture content.
The signal of phase P (t T')is obtained using a delay. device which is generally an ultrasonic delay line.
A delay line of this kind comprises a first transducer which transforms the electrical signals into ultrasonic signals, an ultrasonic channel which delays the ultrasonic signals, an ultrasonic channel and a second transducer which transforms the delayed ultrasonic signals back into electrical signals.
The precise amount of delay T is determined by transmission standards. In practice, if the delay T imparted by the delay device differs slightly from its nominal value T, the resultant phase error produced in the delayed signal can be adequately corrected using a phase-shifting network.
This, however, is adequate only if the value T is constant in other words it does not allow any compensation for any insta bility of the delay device due in particular to the influence of temperature variations on the ultrasonic channel.
On the other hand, the demodulating device which uses the phase difference.
does not operate correctly even with a perfectly stable delay device, if the aforesaid phase difference is affected by an error due to the instability of the subcarrier frequency.
Instability of this kind may, for example, be due directly to the oscillator generating the subcarrier in the transmitter transmitting the composite video signal of which the subcarrier is a part; or, if the composite video signal is obtained from a magnetic storage device, such an error may be produced by an instability of the tape speed.
Of course, the phase shift due to a delay, is a function of the frequency.
The present invention allows correction of phase errors due to such instabilities.
According to the invention, the phase errors due to instabilities in a PAL receiver are eliminated by deriving the sequential color signals D and D from the sum and the difference of two terms, one of which is the modulated subcarrier delayed by a period T substantially equal to the duration of a line, and the other term is a signal obtained by mixing the nondelayed subcarrier with the subcarrier delayed by a period 2T substantially twice as long as the duration of a line.
. The invention will be better understood, and other features will become apparent, from the following more detailed description and accompanying drawings, wherein:
FIG. 1 is the diagram of a PAL television receiver including an illustrative embodiment of a color subcarrier demodulating circuit according to the invention;
FIG. 2 is a diagram of an alternative embodiment of the color subcarrier demodulating circuit illustrated in FIG. 1;
FIG. 3 depicts an illustrative delay device which may advantageously employed with the color subcarrier demodulating circuit shown in FIG. 2.
In the circuit of FIG. 1, there are formed on the one hand a subcarrier of nominal phase P (t-T) and on the other hand a subcarrier whose nominal phase is P(t) P(t 2t) In FIG. 1, the subcarrier S (t having a phase P ((t) wt+ 6 (z) is applied to input 1.
In the PAL system, 0 (i t) alternates between D (t and I (z).
In accordance with the second phase law set out above, (I) alternate'between q (t) and 0.
The amplitude of the subcarrier is D (l) for example. The input 1 feeds in parallel a delay line 2, imparting a nominal delay T, a delay line 4, imparting a nominal delay 2T, and the first input of an adding device 6, the latter preferably being set to deliver the half sum of the two signals applied to its inputs. 1
The delay lines 2 and 4 are of identical type, with the exception of the length of the ultrasonic channels, such that an algebraic error AT, arising from a variation in temperature and occurring in the delay produced by the first ultrasonic channel, will normally be associated with an error 2 AT in the delay imparted by the second ultrasonic channel. The invention will be explained on the basis of the assumption that there are no other instability factors affecting the delay devices, i.e. none other than those from which an error proportional to the ndminal delay arises. The delay line 4 is followed by an amplifier 5, the output of which is connected to the second input of the adding device 6. The delay line 2 supplies a signal of phase P(tT-T), which can, if necessary, be subsequently amplified, in order to bring it to the level D (t). Then:
If 0 (t) is zero, the error due to its substitution by 0 (t T 'AT) is zero.
If 0 (t) is equal to i l (t), the corresponding error can be considered as negligible. The same does not apply, however,
to'the error w* *AT, which can quite easily be in the order of 7 several tens of degrees, whilst the permissible tolerance is no more than 1 10. I
The amplifier 5 is adjusted so that its gain compensates for the attenuation caused by the delay line 4. Its output is therefore S (t-2T-2A'I) D (t 2T 2AT) sinlwt wT- 2w. AT 6 (t 2T 2AT).
' Since D and 0 (where 0 is not constant) are picture informaanother, this being usually the case, and also being in fact the case in the particularly critical zones which correspond to the areas of uniform color, the adding device 6 will deliver at its output 7 a signal having the phase wtwT-l-0(t)+0(t2T)-aandan amplitude substantially equ ivalentgo pa Hie-2T cos a 2 which can be written as as long as a remains small.
The tolerance on D (tjs thus very wide if D and D are two chrominance signals, which is generally the case.
Anyway, the error in D (t) is of no importance as long as the amplitude of this signalis not used to recover video frequency signals, the information D (1) being then supplied by the output signal from the delay line 2, after suitable amplification.
. It will be seen therefore that at the outputs 7 and 3 two signals are obtained, the phase shift between them being substantially Y which may be written sw e in accordance with the basic assumption, whereas in the case of the subcarrier S (t) and the subcarrierS-(t-HI'), the latter suitably delayed by the nominal value T, two signals would have been obtained, whose phase differenceP (t) I (t-T- AT) includes the term wAT that can be high enough to cause serious errors in the colors. 1 '15; v
.The signals available atoutputs 7 and 3 can subsequently be handled in the demodulating circuit in the same manner as S (t) and S (t T) would have been in a conventional demodulating circuit.
The approximation made by equating the term to of is generally substantially less important than the phase shifts which may result from-instability in a delay line. More important than this, as will be shown hereinafter, the circuit in accordance with the invention, when combined with a delay in the luminance signal with which the subcarrier is associated, produces a clear improvement in the vertical definition of the signal P in relation to conventional demodulating circuits.
Finally, the use of the mean value P(t- T) T -'Aw the delay device 4 delivers a signal whose phase is P.(t-2T) -2T-Aw;'
and the adding device 6 delivers a signal the phase of which is substantially 1 Here, again, the error term T* *Aw disappears when taking the phase difference between the signals obtained at the outputs 7 and 3 respectively.
FIG. 2 illustrates a modification of the circuit of FIG. 1, in which the delay lines 2 and 4 are substituted by a single delay device 10, with two outputs, delivering two signals delayed respectively by T and 2T (nominal values) at the outputs 23 and 22. Y
.The input 1, the outputs 3 and 7, and the adding device 6 are, as described in relation to the preceding embodiment.
The input 1 feeds in parallel the first input of the adding device 6 and, through an amplifier 15, the input 21 ofthe delay device 10, the output 22 of which is coupled to the second input of the adding device, its output 23 being connected to the output 3 of the circuit.
The amplifier 15 is so adjusted that its gain compensates for the attenuation, imparted by the delay device 10; in the signals supplied at its output 22. This arrangement of the amplifierls before the delay device 10 means that advantage is taken of the amplification for the signals delivered at the output 23 of the delay device 10. Apart from this, operation is the same as in circuit of FIG. 1.
second end of the channel 24, the output of the transducer 27 being the output 23 of the device 10, and a second output transducer 26 connected to the first end of the channel 24, over approximately half the area thereof, the output of the transducer 26 being the output 22 of the device 10. 5
The signals applied at 21 are converted into ultrasonic signals by the transducer 25, these signals passing through the channel 24 and being in part reflected towards the first end of the rod where the transducer 26 converts them back to electrical signals while the other fraction is applied to the transducer 27 and converted thereby into electrical signals which appear at the output 23.
The device could less advantageously comprise two identical delay devices connected in series, the output of the first one being equivalent to the output 23 and the output of the second to the output 22.
Contrary to what would appear to be the case at first sight, the demodulating device in accordance with the invention does not involve any loss of the vertical definition of the information 1 and, on the contrary, improves it.
In the following, 4 will be used to designate the transmitted value of I relative to a point situated on any given vertical on the picture, and on the n" scanning line.
0,, will be used to designate the value of I used in the receiver to reproduce this same point of the picture. Any phase errors due to imperfections of the equipment will be neglected here.
With a phase law of the PAL type, i.e. alternatively there is obtained, at the receiver and with a demodulating circuit which uses only S (t) and S (t-T),
while with the demodulating circuit of FIGS. 1 and 2 in accordance with the invention With the phase law P (t) wt there is obtained, with a demodulating circuit using only S (t) and S (r T), and for the scanning line for which the transmitted subcarrier has the phase P (t), e.g. for even lines -2x= pix and, for odd lines dim-i" MK With a demodulating circuit of the type illustrated in FIGS.
1 or 2, there is obtained Thus, there is no loss in vertical definition. However, it will be immediately apparent (although this is by no means essenderived from the scanning of the picture at this time t, those primary color signals being also used for generating the lu minance sing signal Y (t), the latter is delayed by the time T so that Y (r T'is used to reproduce the image at the same time that'S (t) is received. mm
This delay may be introduced at the transmitting side, which can be easily effected by means of a delay device included between the circuits delivering signal Y and the device forming the composite video signal.
it should be pointed out here that such a delay does not require so high a precision as that used for the subcarrier for which the phase must be preserved.
Using an arrangement of this kind, the following results are obtained: For the PAL system we get and with the second phase law it will be seen that the receiver will not need an additional delay device, if a delay device, having the required bandwidth for the transmission of the luminance signal, is provided for' imparting the T delay (this device can either be simple or combined with the second delay device).
If the delay device is a simple one, it will be sufiicient to delay the entire composite video signal by T and then to provide a filtering to obtain Y (t-T) and S (t-T).
If the delay device is a combined one, the composite 'video signal will be delayed both by T and by 2T, these delayed signals will then be filtered. The number of filters can obviously be reduced if the half sum of the undelayed composite video signal and of the signal delayed by 2T is produced, 'the filtering being effected on the resulting signal.
I claim:
1. In a color TV receiver for the PAL system, in which color information is transmitted on a subcarrier in the form of two sequential signals Dsin (wt 0) and D sin (wt 0), alternat ing with each other at the line frequency, D and 0 represent-' ing, respectively, the saturation and hue of a color dot trans mitted at a time t, and where w 21r times the frequency of j the subcarrier, said receiver being of the type wherein said color information is recovered by deriving signals representa-i tive of D cos 0 and D sin 0 from the sum and difference of two terms,'one of which is the modulated subcarrier delayed in a delay line by a period substantially equal to the duration T of a j line, a method of eliminating phase'errors' in the recovered color signals which arecaused by temperature variationsin the delay line, which comprises the steps of:
1. delaying said subcarrier in a delayline for a period sub stantially twice as long as the duration T of a line; and
2, mixing said delayed subcarrier (i.e. 2T) with the nondelayed subcarrier to obtain the other term for said sum and difference of two terms.
2. In a color TV receiver for the PAL systemin which the 1 color information is transmitted on a subcarrier in the form of two sequential signals D sin (wt+ 0) and D sin (wt 0), alternating with each other at the line frequency, where D and 9 represent, respectively, the saturation and hue of a color dot transmitted at a time t, and where w 211' times the frequency of the subcarrier, a color subcarrier demodulating'circuit for recovering said color information by deriving signals represen tative of D sin 0 and D cos 0 from the sum and difference of two terms, said demodulating circuit comprising:
1. means for delaying the modulated subcarrier in a delay line by a period substantially equal to the duration T of a f line to derive the first term for said sum and difi'erence of two terms; and, to render the operation of demodulating" 3. means for mixing the nondelayed subcarrier with the subcarrier delayed by the period substantially 2T, to derive 2. means for delaying said subcarrier in a delay line for a the second term for said sum and difference of two terms. period substantially twice as long as the duration T of a circuit free from phrase errors caused by temperature line; and
variations in said delay line;

Claims (5)

1. In a color TV receiver for the PAL system, in which color information is transmitted on a subcarrier in the form of two sequential signals D sin (wt + theta ) and D sin (wt - theta ), alternating with each other at the line frequency, D and theta representing, respectively, the saturation and hue of a color dot transmitted at a time t, and where w 2 pi times the frequency of the subcarrier, said receiver being of the type wherein said color information is recovered by deriving signals representative of D cos theta and D sin theta from the sum and difference of two terms, one of which is the modulated subcarrier delayed in a delay line by a period substantially equal to the duration T of a line, a method of eliminating phase errors in the recovered color signals which are caused by temperature variations in the delay line, which comprises the steps of: 1. delaying said subcarrier in a delay line for a period substantially twice as long as the duration T of a line; and 2. mixing said delayed subcarrier (i.e. 2T) with the nondelayed subcarrier to obtain the other term for said sum and difference of two terms.
2. means for delaying said subcarrier in a delay line for a period substantially twice as long as the duration T of a line; and
2. In a color TV receiver for the PAL system in which the color information is transmitted on a subcarrier in the form of two sequential signals D sin (wt + theta ) and D sin (wt - theta ), alternating with each other at the line frequency, where D and theta represent, respectively, the saturation and hue of a color dot transmitted at a time t, and where w 2 pi times the frequency of the subcarrier, a color subcarrier demodulating circuit for recovering said color information by deriving signals representative of D sin theta and D cos theta from the sum and difference of two terms, said demodulating circuit comprising:
2. mixing said delayed subcarrier (i.e. 2T) with the nondelayed subcarrier to obtain the other term for said sum and difference of two terms.
3. means for mixing the nondelayed subcarrier with the subcarrier delayed by the period substantially 2T, to derive the second term for said sum and difference of two terms.
US609140A 1966-01-21 1967-01-13 Receiver for pal color television system Expired - Lifetime US3553353A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR46777A FR1474859A (en) 1966-01-21 1966-01-21 Improvement in demodulation circuits of a color television subcarrier and transmitters transmitting said subcarrier

Publications (1)

Publication Number Publication Date
US3553353A true US3553353A (en) 1971-01-05

Family

ID=8599404

Family Applications (1)

Application Number Title Priority Date Filing Date
US609140A Expired - Lifetime US3553353A (en) 1966-01-21 1967-01-13 Receiver for pal color television system

Country Status (5)

Country Link
US (1) US3553353A (en)
CH (1) CH447271A (en)
FR (1) FR1474859A (en)
GB (1) GB1113083A (en)
NL (1) NL152424B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707596A (en) * 1969-12-19 1972-12-26 Philips Corp Circuit arrangement for surpressing the chrominance subcarrier in pal signal
US6496227B1 (en) * 1998-04-23 2002-12-17 Stmicroelectronics S.A. System with chrominance delay lines

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1941848C3 (en) * 1969-08-16 1973-10-04 Robert Bosch Fernsehanlagen Gmbh, 6100 Darmstadt Method for separating the luminance and chrominance components in a PAL color television signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793348A (en) * 1952-01-14 1957-05-21 Rca Corp Modulation system for color phase alternation
US2993086A (en) * 1956-05-25 1961-07-18 France Henri Georges De Color television system
US3162838A (en) * 1961-09-22 1964-12-22 Cft Comp Fse Television Systems for switching devices for sequentially transmitted signals
DE1185649B (en) * 1963-05-02 1965-01-21 Telefunken Patent Decoder for color television signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793348A (en) * 1952-01-14 1957-05-21 Rca Corp Modulation system for color phase alternation
US2993086A (en) * 1956-05-25 1961-07-18 France Henri Georges De Color television system
US3162838A (en) * 1961-09-22 1964-12-22 Cft Comp Fse Television Systems for switching devices for sequentially transmitted signals
DE1185649B (en) * 1963-05-02 1965-01-21 Telefunken Patent Decoder for color television signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707596A (en) * 1969-12-19 1972-12-26 Philips Corp Circuit arrangement for surpressing the chrominance subcarrier in pal signal
US6496227B1 (en) * 1998-04-23 2002-12-17 Stmicroelectronics S.A. System with chrominance delay lines

Also Published As

Publication number Publication date
FR1474859A (en) 1967-03-31
DE1512148B2 (en) 1975-09-25
NL6700968A (en) 1967-07-24
GB1113083A (en) 1968-05-08
DE1512148A1 (en) 1969-04-03
NL152424B (en) 1977-02-15
CH447271A (en) 1967-11-30

Similar Documents

Publication Publication Date Title
US3673320A (en) Television apparatus responsive to a transmitted color reference signal
US2754356A (en) Control systems for color-television receivers
US2885465A (en) Image-reproducing system for a color-television receiver
US3735026A (en) Automatic color corrector for a color video signal
US2759993A (en) Compatible image-reproducing system
US3553353A (en) Receiver for pal color television system
US2841643A (en) Color-saturation control apparatus
US2808455A (en) Color television camera switching system
GB767021A (en) Improvements in or relating to multiplex transmission systems
GB1322041A (en) Transducer system and method
US2858368A (en) Color television test apparatus
US3272916A (en) Color television systems utilizing a true luminance signal
GB709496A (en) Improvements in and relating to colour television systems
US3235656A (en) Color-television receiver
US3134850A (en) Color television control apparatus
US2951903A (en) Multiplex transmission system
US4095256A (en) Differential gain error correction in color television systems
US3946431A (en) Synchronized demodulation of the chrominance signal with switched carrier phase angles
US2927957A (en) Color television matrix amplifier system
US2857457A (en) Chrominance-signal demodulating system
US2904628A (en) Transmission system for television signals
US3820157A (en) Color television
US2875272A (en) Color synchronizing circuit
US2877290A (en) Transmission system for television signals
US3056853A (en) Matrixing apparatus for color-television signals