US3553345A - Vibration dampers - Google Patents

Vibration dampers Download PDF

Info

Publication number
US3553345A
US3553345A US630648A US3553345DA US3553345A US 3553345 A US3553345 A US 3553345A US 630648 A US630648 A US 630648A US 3553345D A US3553345D A US 3553345DA US 3553345 A US3553345 A US 3553345A
Authority
US
United States
Prior art keywords
wire
tube
damper
vibration
vibration damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US630648A
Inventor
Aubrey T Edwards
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SLATER CO N
Original Assignee
SLATER CO N
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SLATER CO N filed Critical SLATER CO N
Application granted granted Critical
Publication of US3553345A publication Critical patent/US3553345A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G7/00Overhead installations of electric lines or cables
    • H02G7/14Arrangements or devices for damping mechanical oscillations of lines, e.g. for reducing production of sound

Definitions

  • said vibration damper comprising an elongated U.S. member secured to longitudinal movement 1 along the wire and having rigidity and character to damp sub- [51 1 Int. tantial amounts of vibrational energy weight per foot of of Search the member is in the range of from about percent 188/13; 2 8/ 63 to about 125 percent of the weight per foot of the wire.
  • the minimum length of the damping member is approximately 3 [56] References Cned feet.
  • Overhead wires are subject to a number of different processes from which vibration can develop. The two types of greatest importance are referred to as aeolian vibration and galloping or dancing wires.
  • Aeolian vibration occurs in relatively light winds usually from one to about 15 miles per hour and results from eddies which form on the lee side of the wire. When the frequency of the eddies coincides with one of the many natural frequencies of the wire, the forces arising from the eddies cause vibration to occur. This type of vibration is usually present for 50 percent of the time and normally if permitted to occur without adequate control results in mechanical failure of the wire, sometimes within a very short period of time.
  • Galloping of wires or conductors usually, although not always, occurs during or after an icing storm. Ice forms on the windward side of the conductorand the resulting airfoil gives rise to aerodynamic lift and drag forces which cause the conductor to vibrate.
  • the winds giving rise to the phenomenon normally range from about to 35 miles per hour.
  • the frequency of vibration is usually in the range of 0.25 to 0.5 cycles per second with amplitudes up .to about 30 feet peak to peak. This compares with 3 to 150 cycles per second and a .peak to peak amplitude equal to the conductor diameter for aeolian vibration.
  • the principal difficulty arising from galloping is that the conductors constituting the transmission line collide with each other or move sufficiently close to each other to cause short circuits between them. This results in outages and the line becomes inoperative, sometimes for many hours.
  • This invention is directed to the control of these two types of vibration but is also applicable to other types referred to but not described herein. It involves the use of loose members on or about the wire. For example, these may take the form of tubes surrounding or rods on top of the wire. It has been found that many materials, e.g. metal, wood, plastic and elastomers are effective for this purpose. An important consideration is that the tube or rod be free to move relatively to the wire so that under conditions of vibration collision or impact occurs between the damper and wire. In the case of a tube surrounding the wire clearance between the inside wall of the tube and the wire need only be a few thousandths of an inch, although for practical purposes a minimum radial clearance of say 0.030 inches is used.
  • the impacts cause energy in the moving parts to be given up in the form of heat and result in a greatly increased capacity for dissipating vibration energy as compared with that inherent in the wire alone.
  • This principle which is employed in the impact damper, effectively controls the vibration to workable and safe levels. It is particularly effective for small wires and for large wires for controlling vibration at the upper end of the vibration frequency spectrum where conventional dampers tend to be marginally effective and are subject to fatigue failure themselves.
  • the damper in accordance with this invention provides a simple yet efficient, low cost damper which is effective in controlling aeolian vibration from about 8 cycles per second throughout the frequency range encountered in aeolian vibration.
  • the present invention further provides a damper which is easily installed and which requires a minimum of engineering time as the location of the damper in the span has little if any effect on its performance. It is therefore simply a matter of selecting the size and quantity of dampers for the particular conductor span.
  • the present invention provides a vibration damper for an overhead transmission line or the like including a wire supported by a clamp, the vibration damper comprising an elongated member at least a portion of which rests on the wire and is free to move relative to the wire whereby impact between the wire and a portion of the member dissipates vibration energy.
  • FIG. 1 shows vibration characteristics of an undamped conductor and conductors equipped with a conventional damper and various impact dampers in accordance with this invention.
  • FIG. 2 shows the vibration characteristics of a conductor equipped with an impact damper in accordance with this invention comprising 2, 3, 4, 6 and 12-foot lengths of aluminum rod.
  • FIG. 3 shows graphically the minimum length of free impact damper in feet for satisfactory vibration control plotted against conductor weight in'pounds per foot.
  • FIG. 4 shows graphically maximum bending amplitude plotted against frequency of '%-inch ground cable provided with a conventional damper as compared with two 4-foot lengths of tubing type impact damper in accordance with this invention.
  • the bending amplitude was measured by the method defined in the 'Task Force paper No. 31 CP 65-156 dated January 31', 1965 entitled Standardization of Conductor Vibration Measurements.
  • FIG. 5 is a perspective view ofa portion of a suspended conductor provided with a vibration damper in accordance with this invention.
  • FIG. 6 is a perspective view of a portion of a suspended conductor provided with an alternate form of vibration damper.
  • FIG. 7 is a sectional side elevational view of a portion of the vibration damper of FIG. 6.
  • FIG. 8 is a sectional view taken along the line 88 of FIG. 6.
  • FIG. 9 shows an alternative clamping arrangement for use with the vibration damper of FIG. 6.
  • FIGS. 10, ll, 12 and 13 are perspective views of alternate forms of the invention.
  • FIGS. 1 to 4 show typical performance characteristics of impact dampers.
  • FIG. 1 shows the results of tests on an indoor laboratory span of a medium size power conductor of about 1 inch in diameter. An 80-foot span is excited by a constant force over a wide range of frequencies. The resulting conductor loop velocity for an undampered conductor is compared with the same conductor fitted with conventional dampers and loose-fitting rods and tubes. The graph demonstrates the remarkable ability of the impact damper to control vibration over a wide range of frequencies. It will be seen that the particular conventional damper used for this comparison is relatively ineffective in the 40 cycle per second range which is in the conductor vibration frequency spectrum that occurs on operating lines.
  • FIG. 2 demonstrates the effect of various lengths of impact dampers showing that for this particular size of damper there is little advantage in using lengths greater than 6 feet.
  • FIG. 3 shows the minimum length of free damper versus conductor weight for damper to conductor a weight ratio of l to 3. Increasing the length of damper over some optimum length for the range of frequencies normally encountered with aeolian vibration does not appear to provide additional vibration control.
  • FIG. 4 shows field results using the impact type damper which demonstrates the relative effectiveness of a single conventional damper compared with two 4-foot lengths of rubber frequencies and indicates that it has fully satisfactory vibration control over the whole frequency spectrum. Similar results have been obtained for impact dampers allowed to work their way into the middle of the span. The vibration damping effectiveness of the impact damper is independent of conductor tension and temperature. It is necessary though for the materi a] to be capable of withstanding the operating conditions. For
  • materials are available for temperatures in excess of 300 F. at which conductors are operated. These materials also have brittle points well below 60 F. i
  • FIG. 5 one form of an impact vibration damper in accordance with this invention is indicated generally by the numeral 10.
  • the damper is shown in use on a conductor 12 which is suspended from a supporting tower (not shown) by a conventional clamp 14.
  • the damper 10 comprises an elongated member in the form of a length of tube or rod 15.
  • the tube or rod may be of such materials as steel, aluminum or semirigid plastic and a wooden dowel may also be used.
  • the impact damper 10 is secured to the conductor 12 by the clamp 14 or by any convenient means. It will be noted however that at least a portion of the vibration damper l0 rests on the conductor. This can be accomplished by having one end of the elongated member 15 secured in'the clamp so that the free end of the member 15 will be resting loosely on the conductor 12. Alternatively a double length of tube or rod 15 may be used and when clamped adjacent its midportion provides a damper 10 at each side of the clamp 14.
  • FIG. 6 an alternate form of a vibration damper in accordance with this invention is shown generally at 20.
  • the damper is installed on the conductor 12 adjacent the clamp 14 described with reference to FIG. 5.
  • the damper 20 comprises a length of tubing 22 provided with a slit 23 extending throughout its length to permit installation of the damper 20 on an existing conductor. It will be ap preciated however that the slit 23 in the sidewall of the tube would not be necessary if the tubing 22 were to be inserted over the conductor 12 before it is suspended from the supporting towers.
  • the damper 20 preferably comprises a synthetic plastic material such as for example ethylene propylene terpolymer or polyethylene. It is desirable to provide a semiconducting material to minimize deterioration caused by an electrical phenomenon known as tracking. Ethylene Propylene Terpolymer was selected as it combines all the desirable features of maximum damping, resistance to its environment, conductivity and uniformity of performance over a wide atmospheric temperature range in an economical material. The use of the semiconducting rubber and careful dimensional control minimizes radio or television interference. An annular clamp 24 may be provided to keep the slit 23 from opening after the tubing 22 has been installed on the conductor 12.
  • a synthetic plastic material such as for example ethylene propylene terpolymer or polyethylene. It is desirable to provide a semiconducting material to minimize deterioration caused by an electrical phenomenon known as tracking. Ethylene Propylene Terpolymer was selected as it combines all the desirable features of maximum damping, resistance to its environment, conductivity and uniformity of performance over a wide atmospheric temperature
  • the end of the tubing 22 adjacent the suspension clamp 14 is preferably provided with a clamp 25 if it is desirable to locate the damper 20 for easy accessibility from the tower. It is noted however that the damper 20 may be located anywhere on the conductor l2 and be free to move axiallytherealong while performing the desired function.
  • the clamp 25 shown more clearly in FIG. 7 comprises two substantially hemispherical portions and 31 secured together by bolts 32 as shown in FIG. 6.
  • the clamp 25 is adapted to grip the conductor 12 as well as the associated end of the tubing 22.
  • the clamp 25 is so shaped as not to be a source of corona discharge.
  • FIG. 9 an alternative clamping arrangement is shown wherein 'a split sleeve 40 is inserted between the conductor l2 and the damper 20 to increase the effectiveness of a clamp 24, similar to clamp 24, provided on this portion of the damper 20.
  • the sleeve 40 and clamp 24 perform the same function as the clamp 30 described above with reference to FIG. 6.
  • FIGS. 10, ll, 12 and 13 Alternative forms of impact dampers in accordance with this invention are generally indicated at 10a, 10b, 10c and 10d in FIGS. 10, ll, 12 and 13 respectively.
  • the damper 10a comprises a member 15a having a semiannular cross section.
  • the damper 10b in FIG. 11' comprises a member 15b having a varying cross section of alternate rod and slit tube configuration.
  • the damper 10c in FIG. 12 comprises a member 150 of uniform cross section so shaped as to make contact at one or more points. It will be appreciated that dampers 10a and 10b provide for dissipation of heat generated in the conductor.
  • the damper 10 of FIG. 6 may also be provided with apertures to dissipate heat.
  • a member 15d is provided which is in the form of a tube having alternating portions of two different diameters.
  • the principle used here is to inhibit the development of a relatively high frequency wave which would initiate galloping by travelling up and down the conductor span picking up energy from the wind. If unchecked this wave gradually builds up and eventually locks into one of the first four vibration modes of the conductor, usually the first or the second causing short circuiting. This vibration may also cause destruction of the transmission line or supporting structures.
  • the vibration damper of this invention is applicable to any overhead wires such as for example guy wires.
  • an elongated tube surrounding said wire and secured to inhibit longitudinal movement along said wire and having rigidity and character to damp substantial amounts of vibrational energy
  • said tube being free to move relative to said wire whereby impact between said wire and a portion of said tube dissipates said vibrational energy.

Abstract

A vibration damper including a wire supported by a clamp, said vibration damper comprising an elongated damping member secured to inhibit longitudinal movement along the wire and having rigidity and character to damp substantial amounts of vibrational energy. The weight per foot of the damping member is in the range of from about 20 percent to about 125 percent of the weight per foot of the wire. The minimum length of the damping member is approximately 3 feet. At least a portion of the damping member is in contact with the wire and the damping member is free to move relative to the wire whereby impact between the wire and portion of the damping member dissipates said vibrational energy.

Description

I Un ted States Patent 1111 3,553,345
[ 1 Inventor Aubrey Edwards 3,105,866 10/1963 Little 174 42 Oakville Ontarim Canada 1,675,391 7/1928 Stockbridge 1. 174/42 [21] No. 2310,6138 1967 2,374,823 5/1945 Leib et a1 174/42 [22] i e pr. Patented 126 047 12 1931 Z 1 PATENTS 174/42 [73] Assignee N. Slater Company, a division of Slater us steel Industries Limited 611,556 3/1935 Germany 174/42 632 509 7/1936 German 174/42 Hamilton, Ontario, Canada y a corporation of Ontario OTHER REFERENCES [32] Priority Apr. 15, 1966 Peterson, German printed application No. 1,055,074, [33] Canada published April 16, 1959. Copy in 174-42. [3 I 1 958048 Primary Examiner-Laramie E. Askin Attorney-Cushman, Darby & Cushman [54] :ER M ABSTRACT: A vibration damper including a wire supported arms, 13 Drawing Figs.
by a clamp, said vibration damper comprising an elongated U.S. member secured to longitudinal movement 1 along the wire and having rigidity and character to damp sub- [51 1 Int. tantial amounts of vibrational energy weight per foot of of Search the member is in the range of from about percent 188/13; 2 8/ 63 to about 125 percent of the weight per foot of the wire. The minimum length of the damping member is approximately 3 [56] References Cned feet. At least a portion of the damping member is in contact UNITED STATES PATE T with the wire and the damping member is free to move relative 1,902,008 3/1933 Austin 174/42UX to the wire whereby impact between the wire and portion of 3,026,077 3/1962 Peterson 174/42X the damping member dissipates said vi rational energy- PAIENIEUJAN SIB?! 3553 3 5 SHEET 1 [IF 9 SPAN LENGTH 80 FEET 5 TENSION 30% UTS INPUT FORCE 0.735 LB RIVIS UNDAMPED H I- CONVENTIONAL DAMPER e FEET FROM EACH END -x- I lzFEET LENGTH OF 7/6INCH ARDWOOD DOWEL AT EACH END |2FEET LENGTH OF 5/8INCH ALUMINUM ROD AT EACH END |5 FEET LOOSE POLYETHYLENE TUBE OVER CONDUCTOR NOTE oNE END ONLY OF wooo DOWEL LO0P\VELOCITY FT/SEC RMS AND ALUMINUM ROD CLAMPED TO CONDUCTOR CLOSE TO SPAN SUPPORT FREQUENCY CYCLES PER SECOND FIGURE I VIBRATION CHARACTERISTICS OF 795000 CM 54/7 ACSR CONDUCTOR MMM PATENIED JAN 5mm 3553345 FREQUENCY CYCLES PER SECOND FIGURE 2 VIBRATION CHARACTERISTICS 5/8INCH ALUMINUM ROD IMPACT DAMPER ON 795000 CM 54/7 ACSR CONDUCTOR PATENIED JAN 5191:
FREE LENGTH-FEET SHEET 3 0F 9 I a I if/ I 0-5 I-O I-5 2-0 CONDUCTOR WEIGHT/FT- LB MINIMUM LENGTH OF FREE DAMPER (FOR SATISFACTORY VIBRATION CONTROL) FIG. 3
PATENTEU JAN 5191 SHEET 0F 9 T F B L mm 0 N N MS R E MP PG m RB U m1 RR EE PB MB AU DR F M0 5 wH mm N VE L OT m L F N 4 mo RW 0T 6O 7O VIBRATION FREQUENCY IN CPS FIGURE 4 MAXlMUM BENDING AMPLITUDE VS FREQUENCY ON I385 FOOT SPAN OF 3/8 TNCH DIAMETER STEEL GROUND CABLE TENSIONED AT APP- ROX. l3 PER CENT UTS.
PATENTEUJAH SIS?! 3553345 v sum 5 0F 9 pge PATENTED JAN 5197! SHEET 7 OF 9 PATENTEU JAN 5 I97! SHEET 8 OF 9 PATENTFUJAH SIS?! 3.551345 SHEET 9 OF 9 VIBRATION DAMPERS This invention relates to vibration dampers and more particularly to impact vibration dampers for overhead wires such as transmission line conductors, ground wires, guy wires or the like.
Overhead wires are subject to a number of different processes from which vibration can develop. The two types of greatest importance are referred to as aeolian vibration and galloping or dancing wires.
Aeolian vibration occurs in relatively light winds usually from one to about 15 miles per hour and results from eddies which form on the lee side of the wire. When the frequency of the eddies coincides with one of the many natural frequencies of the wire, the forces arising from the eddies cause vibration to occur. This type of vibration is usually present for 50 percent of the time and normally if permitted to occur without adequate control results in mechanical failure of the wire, sometimes within a very short period of time.
Galloping of wires or conductors usually, although not always, occurs during or after an icing storm. Ice forms on the windward side of the conductorand the resulting airfoil gives rise to aerodynamic lift and drag forces which cause the conductor to vibrate. The winds giving rise to the phenomenon normally range from about to 35 miles per hour. The frequency of vibration is usually in the range of 0.25 to 0.5 cycles per second with amplitudes up .to about 30 feet peak to peak. This compares with 3 to 150 cycles per second and a .peak to peak amplitude equal to the conductor diameter for aeolian vibration. The principal difficulty arising from galloping is that the conductors constituting the transmission line collide with each other or move sufficiently close to each other to cause short circuits between them. This results in outages and the line becomes inoperative, sometimes for many hours.
This invention is directed to the control of these two types of vibration but is also applicable to other types referred to but not described herein. It involves the use of loose members on or about the wire. For example, these may take the form of tubes surrounding or rods on top of the wire. It has been found that many materials, e.g. metal, wood, plastic and elastomers are effective for this purpose. An important consideration is that the tube or rod be free to move relatively to the wire so that under conditions of vibration collision or impact occurs between the damper and wire. In the case of a tube surrounding the wire clearance between the inside wall of the tube and the wire need only be a few thousandths of an inch, although for practical purposes a minimum radial clearance of say 0.030 inches is used. The impacts cause energy in the moving parts to be given up in the form of heat and result in a greatly increased capacity for dissipating vibration energy as compared with that inherent in the wire alone. This principle, which is employed in the impact damper, effectively controls the vibration to workable and safe levels. It is particularly effective for small wires and for large wires for controlling vibration at the upper end of the vibration frequency spectrum where conventional dampers tend to be marginally effective and are subject to fatigue failure themselves.
The damper in accordance with this invention provides a simple yet efficient, low cost damper which is effective in controlling aeolian vibration from about 8 cycles per second throughout the frequency range encountered in aeolian vibration.
The present invention further provides a damper which is easily installed and which requires a minimum of engineering time as the location of the damper in the span has little if any effect on its performance. It is therefore simply a matter of selecting the size and quantity of dampers for the particular conductor span.
Accordingly the present invention provides a vibration damper for an overhead transmission line or the like including a wire supported by a clamp, the vibration damper comprising an elongated member at least a portion of which rests on the wire and is free to move relative to the wire whereby impact between the wire and a portion of the member dissipates vibration energy.
In the accompanying drawings:
FIG. 1 shows vibration characteristics of an undamped conductor and conductors equipped with a conventional damper and various impact dampers in accordance with this invention.
FIG. 2 shows the vibration characteristics of a conductor equipped with an impact damper in accordance with this invention comprising 2, 3, 4, 6 and 12-foot lengths of aluminum rod.
FIG. 3 shows graphically the minimum length of free impact damper in feet for satisfactory vibration control plotted against conductor weight in'pounds per foot.
FIG. 4 shows graphically maximum bending amplitude plotted against frequency of '%-inch ground cable provided with a conventional damper as compared with two 4-foot lengths of tubing type impact damper in accordance with this invention. The bending amplitude was measured by the method defined in the 'Task Force paper No. 31 CP 65-156 dated January 31', 1965 entitled Standardization of Conductor Vibration Measurements.
FIG. 5 is a perspective view ofa portion of a suspended conductor provided with a vibration damper in accordance with this invention.
FIG. 6 is a perspective view of a portion of a suspended conductor provided with an alternate form of vibration damper.
FIG. 7 is a sectional side elevational view of a portion of the vibration damper of FIG. 6.
FIG. 8 is a sectional view taken along the line 88 of FIG. 6.
FIG. 9 shows an alternative clamping arrangement for use with the vibration damper of FIG. 6.
FIGS. 10, ll, 12 and 13 are perspective views of alternate forms of the invention.
Referring now in detail to the drawings, FIGS. 1 to 4 show typical performance characteristics of impact dampers. FIG. 1 shows the results of tests on an indoor laboratory span of a medium size power conductor of about 1 inch in diameter. An 80-foot span is excited by a constant force over a wide range of frequencies. The resulting conductor loop velocity for an undampered conductor is compared with the same conductor fitted with conventional dampers and loose-fitting rods and tubes. The graph demonstrates the remarkable ability of the impact damper to control vibration over a wide range of frequencies. It will be seen that the particular conventional damper used for this comparison is relatively ineffective in the 40 cycle per second range which is in the conductor vibration frequency spectrum that occurs on operating lines. FIG. 2 demonstrates the effect of various lengths of impact dampers showing that for this particular size of damper there is little advantage in using lengths greater than 6 feet.
There is also an optimum weight of damper, i.e. weight per foot above which little apparently is gained in damping efficiently by varying the weight per foot of the damper. This weight per foot of the damper appears to be in the range of about 10 percent to about 200 percent of the weight per foot of the conductor and is preferably in the range of about 30 percent to 125 percent of the weight of the conductor or wire. FIG. 3 shows the minimum length of free damper versus conductor weight for damper to conductor a weight ratio of l to 3. Increasing the length of damper over some optimum length for the range of frequencies normally encountered with aeolian vibration does not appear to provide additional vibration control.
FIG. 4 shows field results using the impact type damper which demonstrates the relative effectiveness of a single conventional damper compared with two 4-foot lengths of rubber frequencies and indicates that it has fully satisfactory vibration control over the whole frequency spectrum. Similar results have been obtained for impact dampers allowed to work their way into the middle of the span. The vibration damping effectiveness of the impact damper is independent of conductor tension and temperature. It is necessary though for the materi a] to be capable of withstanding the operating conditions. For
example, materials are available for temperatures in excess of 300 F. at which conductors are operated. These materials also have brittle points well below 60 F. i
In FIG. 5 one form of an impact vibration damper in accordance with this invention is indicated generally by the numeral 10. The damper is shown in use on a conductor 12 which is suspended from a supporting tower (not shown) by a conventional clamp 14.
The damper 10 comprises an elongated member in the form of a length of tube or rod 15. The tube or rod may be of such materials as steel, aluminum or semirigid plastic and a wooden dowel may also be used. The impact damper 10 is secured to the conductor 12 by the clamp 14 or by any convenient means. It will be noted however that at least a portion of the vibration damper l0 rests on the conductor. This can be accomplished by having one end of the elongated member 15 secured in'the clamp so that the free end of the member 15 will be resting loosely on the conductor 12. Alternatively a double length of tube or rod 15 may be used and when clamped adjacent its midportion provides a damper 10 at each side of the clamp 14.
In FIG. 6 an alternate form of a vibration damper in accordance with this invention is shown generally at 20. The damper is installed on the conductor 12 adjacent the clamp 14 described with reference to FIG. 5.
The damper 20 comprises a length of tubing 22 provided with a slit 23 extending throughout its length to permit installation of the damper 20 on an existing conductor. It will be ap preciated however that the slit 23 in the sidewall of the tube would not be necessary if the tubing 22 were to be inserted over the conductor 12 before it is suspended from the supporting towers.
The damper 20 preferably comprises a synthetic plastic material such as for example ethylene propylene terpolymer or polyethylene. It is desirable to provide a semiconducting material to minimize deterioration caused by an electrical phenomenon known as tracking. Ethylene Propylene Terpolymer was selected as it combines all the desirable features of maximum damping, resistance to its environment, conductivity and uniformity of performance over a wide atmospheric temperature range in an economical material. The use of the semiconducting rubber and careful dimensional control minimizes radio or television interference. An annular clamp 24 may be provided to keep the slit 23 from opening after the tubing 22 has been installed on the conductor 12. The end of the tubing 22 adjacent the suspension clamp 14 is preferably provided with a clamp 25 if it is desirable to locate the damper 20 for easy accessibility from the tower. It is noted however that the damper 20 may be located anywhere on the conductor l2 and be free to move axiallytherealong while performing the desired function.
The clamp 25 shown more clearly in FIG. 7 comprises two substantially hemispherical portions and 31 secured together by bolts 32 as shown in FIG. 6. The clamp 25 is adapted to grip the conductor 12 as well as the associated end of the tubing 22. The clamp 25 is so shaped as not to be a source of corona discharge.
It will also be appreciated that it is desirable to have a clamping system designed to provide minimum contact pressure thus reducing compression set of the elastomer which would otherwise result in loss of the clamping function.
In manufacturing the tube-type damper 20, it is very important to provide a uniform internal diameter throughout, otherwise the damper will not have the necessary loose fit on the conductor. To avoid distortion extruded tubes of large cross section should be cured on mandrels. Furthermore the damper must be straight and therefore it is necessary to take precautions to prevent any permanent set or deformation resulting from handling, shipping or storing. It has been found that packing the tube-type dampers tightly in crates or packaging individual dampers in tubular containers alleviates this problem.
In FIG. 9 an alternative clamping arrangement is shown wherein 'a split sleeve 40 is inserted between the conductor l2 and the damper 20 to increase the effectiveness of a clamp 24, similar to clamp 24, provided on this portion of the damper 20. The sleeve 40 and clamp 24 perform the same function as the clamp 30 described above with reference to FIG. 6.
Alternative forms of impact dampers in accordance with this invention are generally indicated at 10a, 10b, 10c and 10d in FIGS. 10, ll, 12 and 13 respectively.
In FIG. 10 the damper 10a comprises a member 15a having a semiannular cross section. The damper 10b in FIG. 11' comprises a member 15b having a varying cross section of alternate rod and slit tube configuration. The damper 10c in FIG. 12 comprises a member 150 of uniform cross section so shaped as to make contact at one or more points. It will be appreciated that dampers 10a and 10b provide for dissipation of heat generated in the conductor. The damper 10 of FIG. 6 may also be provided with apertures to dissipate heat. Alternatively as shown in FIG. 13, a member 15d is provided which is in the form of a tube having alternating portions of two different diameters.
The impact dampers described have the advantages of simplicity, ease of manufacture and economy and open up the possibility of economically increasing conductor operating mechanical tension while maintaining vibration at acceptable levels. Hitherto this has been inhibited due to the difficulty of controlling the vibration problem and because of the high cost of conventional vibration dampers. The tube-type damper also has been found to have a substantial measure of control over galloping conductors. Firstly, the tube completely covers the conductor and thus reduces the tendency of ice to lock the damper to the conductor. This allows the damper to move over most of its length relative to the conductor thereby permitting the impact principle to be used in the presence'of ice. As shown more clearly in FIG. 8 the damper 20 is installed with the slit 23 at the underside of the conductor to make it more difficult for water to enter the damper 20. This arrangement thus minimizes the danger of ice locking the damper 20 to the conductor 12. Furthermore, by distributing the dampers along the conductor to cover between 10 and 20 percent ofits length, a substantial measure of control of galloping is obtained. Observation on a 5-mile line of four circuits of 1.6 in. dia., conductor supported by a common steel structure, two of which were fitted with distributed impact dampers, showed that the critical velocity to induce galloping has been increased from about 8 miles per hour to about 25 miles per hour and that above this velocity the amplitude was reduced generally by about 50 percent compared with the undamped conductors. The principle used here is to inhibit the development of a relatively high frequency wave which would initiate galloping by travelling up and down the conductor span picking up energy from the wind. If unchecked this wave gradually builds up and eventually locks into one of the first four vibration modes of the conductor, usually the first or the second causing short circuiting. This vibration may also cause destruction of the transmission line or supporting structures.
Although the term conductor is used herebefore however,
the vibration damper of this invention is applicable to any overhead wires such as for example guy wires.
Iclaim:
l. A vibration damper including a wire supported by a clamp, said vibration damper comprising:
a. an elongated tube surrounding said wire and secured to inhibit longitudinal movement along said wire and having rigidity and character to damp substantial amounts of vibrational energy;
b. the weight per foot of said tube being in the range of from about 20 percent to about percent of the weight per foot of said wire;
c. at least a portion of said tube being in contact with said wire; and
d. said tube being free to move relative to said wire whereby impact between said wire and a portion of said tube dissipates said vibrational energy.
5. A vibration damper as claimed in claim 1 wherein said tube comprises semiconducting rubber.
6. A vibration damper as claimed in claim 1 wherein a slit is provided along the length of a wall of said tube.
7'. A vibration damper as claimed in claim 6 wherein at least one clamp is provided to prevent the slit from opening when the tube has been installed on the wire.

Claims (7)

1. A vibration damper including a wire supported by a clamp, said vibration damper comprising: a. an elongated tube surrounding said wire and secured to inhibit longitudinal movement along said wire and having rigidity and character to damp substantial amounts of vibrational energy; b. the weight per foot of said tube being in the range of from about 20 percent to about 125 percent of the weight per foot of said wire; c. at least a portion of said tube being in contact with said wire; and d. said tube being free to move relative to said wire whereby impact between said wire and a portion of said tube dissipates said vibrational energy.
2. A vibration damper as claimed in claim 1 wherein a clamp is provided to prevent longitudinal movement of said tube relative to said wire.
3. A vibration damper as claimed in claim 2 wherein said clamp comprises a pair of substantially hemispherical members for gripping said tube and said wire.
4. A vibration damper as claimed in claim 2 wherein a split sleeve is inserted between said tube and said clamp.
5. A vibration damper as claimed in claim 1 wherein said tube comprises semiconducting rubber.
6. A vibration damper as claimed in claim 1 wherein a slit is provided along the length of a wall of said tube.
7. A vibration damper as claimed in claim 6 wherein at least one clamp is provided to prevent the slit from opening when the tube has been installed on the wire.
US630648A 1966-04-15 1967-04-13 Vibration dampers Expired - Lifetime US3553345A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA958048 1966-04-15

Publications (1)

Publication Number Publication Date
US3553345A true US3553345A (en) 1971-01-05

Family

ID=4142505

Family Applications (1)

Application Number Title Priority Date Filing Date
US630648A Expired - Lifetime US3553345A (en) 1966-04-15 1967-04-13 Vibration dampers

Country Status (2)

Country Link
US (1) US3553345A (en)
CA (1) CA872446A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826339A (en) * 1973-09-07 1974-07-30 H Brokaw Vibration damper for elongate members
US4068479A (en) * 1975-12-31 1978-01-17 Lane Jr Noel W Float tether terminator
US5158162A (en) * 1989-09-15 1992-10-27 Westinghouse Electric Corp. Tube vibration dampener and stiffener apparatus and method
US5207302A (en) * 1990-12-31 1993-05-04 Fatzer Ag Shock absorbing structure for a stretched cable, particularly for cable retaining rock wall fences, rock fill retaining grids or fences, snow fences, and the like
US6023549A (en) * 1997-08-15 2000-02-08 Thomas P. Polidori Dead end connector for a fiber optic cable
US6096971A (en) * 1998-10-28 2000-08-01 Hull; Norman Douglas Adaptable, overhead line vibration damping/sag adjustment device
US6131873A (en) * 1998-12-30 2000-10-17 Blazon; Fred R. Energy absorbing high impact cable device
US6386526B1 (en) * 1999-08-23 2002-05-14 Texas Tech University Cable stay aerodynamic damper band and method of use
US6435323B2 (en) * 1999-12-16 2002-08-20 Texas Tech University Distributed aerodynamic and mechanical damping of cables with active smart control
US6705440B2 (en) 1999-08-23 2004-03-16 Texas Tech University Cable stay damper band and method of use for reduction of fluid induced cable vibrations
US20120024640A1 (en) * 2010-07-29 2012-02-02 Rodolphe Argoud Energy absorbing device for anchoring a lifeline or the like

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1675391A (en) * 1925-11-12 1928-07-03 George H Stockbridge Vibration damper
AT126047B (en) * 1930-02-12 1931-12-28 Wilhelm Hofmann Fa J Device for damping vibrations in overhead lines.
US1902008A (en) * 1929-03-12 1933-03-21 Ohio Brass Co Conductor clamp
DE611556C (en) * 1935-03-29 Siemens Schuckertwerke Akt Ges Device for damping the mechanical vibrations of overhead lines, which is freely suspended from the line
DE632509C (en) * 1934-10-18 1936-07-09 Ver Aluminium Werke Akt Ges Device for damping the vibrations on overhead lines
US2374823A (en) * 1942-06-15 1945-05-01 Copperweld Steel Co Vibration damper for suspended wires and cables
US3026077A (en) * 1951-06-08 1962-03-20 Preformed Line Products Co Support for armored cables
US3105866A (en) * 1960-06-27 1963-10-01 Fanner Mfg Co Conductor vibration dampener

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE611556C (en) * 1935-03-29 Siemens Schuckertwerke Akt Ges Device for damping the mechanical vibrations of overhead lines, which is freely suspended from the line
US1675391A (en) * 1925-11-12 1928-07-03 George H Stockbridge Vibration damper
US1902008A (en) * 1929-03-12 1933-03-21 Ohio Brass Co Conductor clamp
AT126047B (en) * 1930-02-12 1931-12-28 Wilhelm Hofmann Fa J Device for damping vibrations in overhead lines.
DE632509C (en) * 1934-10-18 1936-07-09 Ver Aluminium Werke Akt Ges Device for damping the vibrations on overhead lines
US2374823A (en) * 1942-06-15 1945-05-01 Copperweld Steel Co Vibration damper for suspended wires and cables
US3026077A (en) * 1951-06-08 1962-03-20 Preformed Line Products Co Support for armored cables
US3105866A (en) * 1960-06-27 1963-10-01 Fanner Mfg Co Conductor vibration dampener

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Peterson, German printed application No. 1,055,074, published April 16, 1959. Copy in 174-42. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826339A (en) * 1973-09-07 1974-07-30 H Brokaw Vibration damper for elongate members
US4068479A (en) * 1975-12-31 1978-01-17 Lane Jr Noel W Float tether terminator
US5158162A (en) * 1989-09-15 1992-10-27 Westinghouse Electric Corp. Tube vibration dampener and stiffener apparatus and method
US5207302A (en) * 1990-12-31 1993-05-04 Fatzer Ag Shock absorbing structure for a stretched cable, particularly for cable retaining rock wall fences, rock fill retaining grids or fences, snow fences, and the like
US6023549A (en) * 1997-08-15 2000-02-08 Thomas P. Polidori Dead end connector for a fiber optic cable
US6096971A (en) * 1998-10-28 2000-08-01 Hull; Norman Douglas Adaptable, overhead line vibration damping/sag adjustment device
US6131873A (en) * 1998-12-30 2000-10-17 Blazon; Fred R. Energy absorbing high impact cable device
US6386526B1 (en) * 1999-08-23 2002-05-14 Texas Tech University Cable stay aerodynamic damper band and method of use
US6705440B2 (en) 1999-08-23 2004-03-16 Texas Tech University Cable stay damper band and method of use for reduction of fluid induced cable vibrations
US6435323B2 (en) * 1999-12-16 2002-08-20 Texas Tech University Distributed aerodynamic and mechanical damping of cables with active smart control
US20120024640A1 (en) * 2010-07-29 2012-02-02 Rodolphe Argoud Energy absorbing device for anchoring a lifeline or the like

Also Published As

Publication number Publication date
CA872446A (en) 1971-06-01

Similar Documents

Publication Publication Date Title
US3553345A (en) Vibration dampers
US2469167A (en) Vibration damper
US3432610A (en) Vibration dampers for suspended members
US3260789A (en) Bundled conductor spacer damper
US4346255A (en) Overhead electrical conductor system including subspan oscillation and aeolian vibration absorber for single and bundle conductors
US3711624A (en) Cable vibrator damper with moveable additional weights
US3826339A (en) Vibration damper for elongate members
US5801329A (en) Outdoor power line having a damping device
US3400209A (en) Aeolian vibration damper
US3454247A (en) Bulkhead mounting plate
US3992566A (en) Aerodynamic aerial conductor vibration damper
US5721393A (en) Transmission line spacer-damper device
US3778527A (en) Means for preventing or inhibiting galloping vibrations in overhead transmission lines
US3052747A (en) Aeolian vibration dampers
US2374823A (en) Vibration damper for suspended wires and cables
US2879964A (en) Transformer mounting apparatus
US3806627A (en) Spacer-damper for bundle conductors
US3048649A (en) Cable motion damper
US3916083A (en) Method for suppressing galloping in electric transmission line conductors and conductor for effecting same
US2279625A (en) Vibration damping tie wire
US3388208A (en) Overhead transmission line with aerodynamic damper for suppressing galloping
US3443019A (en) Spacer damper
US3291892A (en) Apparatus for spacing conductors
US5362920A (en) Transmission line spacer-damper device
US2683185A (en) Flexible suspension for high-tension cables