US3551314A - Apparatus for the production of high-purity gallium - Google Patents

Apparatus for the production of high-purity gallium Download PDF

Info

Publication number
US3551314A
US3551314A US737250*A US3551314DA US3551314A US 3551314 A US3551314 A US 3551314A US 3551314D A US3551314D A US 3551314DA US 3551314 A US3551314 A US 3551314A
Authority
US
United States
Prior art keywords
gallium
electrolyte
electrolysis
solution
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US737250*A
Inventor
Robert I Stearns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Application granted granted Critical
Publication of US3551314A publication Critical patent/US3551314A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02Ā -Ā C25C1/20

Definitions

  • This invention relates to an improved method for the preparation of gallium. More particularly this invention relates to an improved process for the refining and production of gallium of very high purity, which process comprises the electrodeposition of ultra-pure gallium from an acidic solution. This invention further relates to an apparatus useful in carrying out the process described herein.
  • continuous electrolysis as used above and elsewhere in the disclosure and claims, shall be construed to mean an electrolysis capable of operation for an extended period of time free from the difiiculties previously encountered in electrolyses of acidic solutions of gallium salts.
  • the continuous electrolysis of an aqueous acidic solution of gallium ions resulting in the deposition of metallic gallium is achieved by adding to the above-mentioned solution during the electrolysis suflicient quantities of gallium ions and halide anions to maintain the mole ratio of anion]/ [Ga+ between 2.5 to 1 and 3.5 to 1 during the operation of the process.
  • Gallium halides have a stoichiometric [anion]/[Ga+ ratio of 3 to l.
  • the requirements of this invention demand that this ratio be maintained as closely as possible to its original value throughout the electrolysis when a gallium halide is used as the electrolyte.
  • Preferred is a range of stoichiometric ratios from about 2.9 to 1 up to about 3.1 to 1.
  • any gallium halide can be used in the practice of the present invention.
  • any of the halogen acids may be used to provide a source of available anions for the electrolysis.
  • Preferred reactants are gallium chloride, 'GaCl and gallium bromide, GaBr in combination with either hydrochloric or hydrobromic acids.
  • the other gallium halides, gallium fluoride and gallium iodide can nevertheless be used herein, either in combination with the corresponding halogen acid, hydrofluoric or hydroiodic acid, or with one or more of the other halogen acids.
  • Electrolysis a-t first proceeds with little or no hydrogen gas produced at the cathode.
  • the two reduction potentials 0.51 and 0.50 indicate that in a freshly prepared aqueous solution of GaCl the reductions take place with about equal ease and roughly in proportion to their relative concentrations which greatly favors the Ga+ at the outset. Because of similar reasons the current efficiency at the anode for the oxidation of Clto chlorine gas is higher than at the cathode for the reduction of Ga+ to gallium metal. This results in the phenomena indicated in (c) and (d). Several things are occurring to produce these phenomena. The gallium concentration is being decreased by the formation of gallium metal. The pH is increased by the formation of hydrogen gas which finally results in the precipitation of gallium oxychloride, GaOCl. Thus the gallium ion concentration is finally reduced effectively to zero and further electrolysis produces only hydrogen at the cathode.
  • the second requirement is satisfied by the addition of concentated hydrochloric acid in amounts necessary to restore the [Cl-]/ [Ga+ ratio to 3. Excess water is also removed.
  • the gallium reduction proceeds at high current efficiencies exceeding for short periods.
  • a method utilizing this discovery proceeds as follows: a quantity of pure gallium metal is used as the cathode; a pure graphite rod is used as the anode.
  • the electrolyte is composed of a gallium salt solution of known concentration. The electrolysis is started and the current, the distance of electrodes from each other, and the periodic additions of measured quantities of concentrated electrolyte and acid are so interdependently adjusted as to maintain approximately the original pH and [anion]/ [cation] ratio of the solution.
  • the graphite anode and molten gallium cathode areas should be such as to have current densities of 0.3 to 1.0 amp per om. at each electrode, and they should be horizontally mounted parallel to each other at a distance that passes the required current of 50-100 amps at a potential of 12-16 volts. It is advisable to perforate and channel the anode to facilitate the escape of chlorine gas.
  • tapered joints should be sealed with some material such as Teflon sleeves, and the ball and socket joints should be wrapped with some material such as Teflon pressure-sensitive tape and then clamped.
  • Teflon tape should also be applied to the graphite anode and the tungsten contact rod just above the pressed Teflon fittings to prevent the entry of dust and to hold the two items in position.
  • this apparatus comprises an enclosed electrolysis vessel containing a pool of metallic gallium which is provided with a source of electricity to cause the pool to function as a cathode. Also contained within the vessel is an anode, preferably of ultra-pure graphite. Attached to the vessel is a reflux column which can be converted to discharge condensate instead of returning it to the electrolysis vessel. This conversion from reflux to discharge is effected when the level of electrolyte reaches the point where the [anion]/ [Ga+ ratio will be changed significantly. This change in electrolyte level can be observed visually or through some automatic sensing device and then adjusted manually or automatically.
  • EXAMPLE 1 High purity gallium chloride was prepared from crude gallium metal by direct chlorination of the metal followed by two simple distillations and one fractional distillation of the chloride. The gallium chloride so prepared was used as the electrolyte in this final purification step. A 2 M GaCl aqueous solution was prepared and introduced into the electrolysis vessel 9. About 400 grams of molten gallium was poured down the tungsten contact support tube 11 until a small quantity spilled over into the settling chamber 8. The solution above the gallium in the support tube was removed by suction to prevent attack on the tungsten by hydrochloric acid. This tube was then rinsed a few times with tripple-distilled water.
  • the tungsten con tact rod 19 was put into place.
  • This gallium cathode pool was connected to the power supply 27 by means of a tungsten rod 19 of the highest purity and a brass clarnp 21.
  • the anode 18 for this electrolysis consisted of a high purity graphite rod made by United Carbon Products, Grade UF-4-S. This anode was drilled and slotted along the portion which lies in a plane parallel to the cathode pool. This was done to facilitate the escape of hydrogen and chlorine gases.
  • the anode was held in place by a support collar 12 with a pressed Teflon fitting and was connected to the power supply 27 by means of a brass clamp 20.
  • the nitrogen lift pump 7 was started by introducing nitrogen gas at the filter tube 235 This flow was then adjusted to deliver approximately 900 or 1000 ml./ min. as read on the flow meter 22.
  • the nitrogen purge was started through the top of the graphite filter 6 and reservoir supports 5 at a slow rate of perhaps 30 or 40 ml./ minute. It was not necessary to meter this flow.
  • a vent 17 at the top of the graphite filter 6 was provided to relieve any excess pressure not required to carry the concentrated electrolyte and acid to the electrolysis cell 9. With the nitrogen pump operating, the electrolyte level in the center chamber of the graphite filter 6 and reservoir supports 5 was marked.
  • the electrolyte level in the arm of the graphite filter and reservoir supports through which the concentrated HCl is introduced was marked with a worm type rubber tubing clamp 24.
  • the clamp was placed along the exterior surface of reservoir sup port 5 just above the level of the electrolyte.
  • the clamp was then connected by a short piece of bare silver wire to a Thermocap relay 25, manufactured by Niagara Electron Laboratories. This relay is a power controlling instrument actuated by minute changes in electrical capacity.
  • the clamp was positioned and the relay adjusted so that any rise in the level of the electrolyte would change the capacitance between the plates of the clamp 24.
  • This change in capacitance would close a circuit within the relay 25, thereby actuating the solenoid 26, which in turn would direct the flow of distillate to a discharge drain instead of to the reflux drain.
  • the direction of distillate flow is varied by changing the position of the flow-return funnel within the liquid divider 13. This result can be accomplished by means of an electromagnet within the liquid divider 13. When the electromagnet is operating, the flow-return funnel can be pulled into a position so that the flow of distillate is directed into a discharge drain instead of to the reflux drain.
  • the cold water was started through the condensers. Then a timer to measure total elapsed time, the HCl addition timer 3, the GaCl addition timer 4, and the power supply 27 with an automatic current monitor adjusted to deliver 75 amperes, were turned on simultaneous- 1y.
  • the concentrated HCl reservoir buret I delivered a total of 5.7 ml. at 6.5 minute intervals, and the 10 M GaCl reservoir buret 2 delivered 27.0 ml. at 22.6 minute intervals. These additions were arrived at empirically and do not necessarily represent the best possible quantities of material or rates of addition.
  • the electrolysis was continued for 450 minutes using 75 amps at a potential of 12-15 volts.
  • the voltage was controlled by adjusting the distance between the gallium cathode pool 10 and graphite anode 18. As the gallium pool 10 increased in size, it spilled over into the tube 28 and was carried to the settling bottle 8. At the end of this time of 450 minutes, the electrolysis was stopped. After removing the tungsten contact rod 19 and st-oppering the support tube 1 1, the gallium was removed both from the settling chamber 8 and the cathode pool area 10 by applying suction at these points.
  • EXAMPLE 2 The procedure described in Example 1 is followed except that gallium bromide, GaBr and hydrobromic acid, are used in place of gallium chloride and hydrochloric acid.
  • the amount of gallium produced should be compared to the gallium input, and if the two figures do not correspond, the electrolyte should be analyzed to determine the gallium and halide concentrations. Using the results of these analyses and the chart below, an operator can determine which case is applicable and proceed to adjust the gallium and halide concentrations of the electrolyte according to the directions given for each case.
  • Case E First add concentrated halogen acid as calculated g1 Calsge D. Then electrolyze for the time calculated as in ase Case F.Arld 10 M gallium halide and concentrated halogen acid as calculated in Cases C and D.
  • a device for continuously electrolyzing a solution of gallium ions comprising (a) an enclosed vessel;
  • an anode extending into said vessel and positioned at a distance from said pool of gallium sufiicient to permit a current of 50 to 100 amperes to flow between said anode and said pool;
  • sensing means operatively associated with the level of electrolyte within said vessel for detecting the rise or fall of the level of electrolyte within said vessel;
  • sensing means comprises (a) a capacitor operatively associated with the level of electrolyte in said vessel;
  • a device comprising (a) an electromagnet;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

R. l. 'S-TEARNS Dec. 29, 1970 APPARATUS FOR THE PRODUCTION OF HIGH-PURITY'GALLIUM Original-Filed Nov; 2, 1964 27) POWER SUPPLY O v COLD WATER HCl RELAY 3,551,314 APPARATUS FOR THE PRODUCTION OF HIGH-PURITY GALLIUM Robert I. Stearns, St. Louis, Mo., assignor to Monsanto Company, St. Louis, Mo., a corporation of Delaware Continuatiou-in-part of application Ser. No. 245,199, Dec. 17, 1962. Division of application Ser. No. 410,344, Nov. 2, 1964, now Patent No. 3,423,301. This application May 7, 1968, Ser. No. 737,250 Claims priority, applicatgors lfauada, Dec. 4, 1963,
Int. (:1. Jim; 3/00 US. Cl. 204-194 3 Claims ABSTRACT OF THE DISCLOSURE This invention is a continuation-in-part of my copending US. application Ser. No. 245,199, filed Dec. 17, 1962, now abandoned, and a division of copending application Ser. No. 410,344 filed Nov. 2, 1964, now US. Patent No. 3,423,301.
This invention relates to an improved method for the preparation of gallium. More particularly this invention relates to an improved process for the refining and production of gallium of very high purity, which process comprises the electrodeposition of ultra-pure gallium from an acidic solution. This invention further relates to an apparatus useful in carrying out the process described herein.
Previous electrodepositions of gallium have been carried out in alkaline mediums utilizing electrolytes such as sodium gallate. Such a process requires the use of an alkaline material such as sodium hydroxide, which use results in contamination of the product with sodium as well as other substances present as impurities in sodium hydroxide. Elimination of these contaminants would result in a superior product for the preparation of semiconductor materials, one of the principal uses for gallium today. Theoretically, electrolysis in an acid medium is capable of producing gallium free from metal impurities, but previous attempts to produce the metal by such a method have failed. Because of the inherent advantages of an acidic electrolysis of a gallium solution, much time and effort have been expended by researchers in an attempt to devise a workable process. And yet, according to Hampels Rare Metals Handbook (1961), there is no record of success in attempting to electrolyze acid solutions of gallium as a means of production. The principal difficulties to the successful electrodeposition of gallium in an acidic medium have been poor current efliciencies and formation of solid gallium oxychloride, GaOCl, which prevents the formation of metallic gallium.
It is an object of this invention to provide an improved United States Patent ice process for the production of high-purity gallium. It is a further object of this invention to provide an improved process for the continuous electrolysis of an acid solution of gallium with the resultant deposition of metallic gallium of very high purity. It is yet another object of this invention to provide a novel apparatus for use in the continuous electrodeposition of gallium metal. Additional objects and advantages will become apparent from the discussion following.
The phrase continuous electrolysis as used above and elsewhere in the disclosure and claims, shall be construed to mean an electrolysis capable of operation for an extended period of time free from the difiiculties previously encountered in electrolyses of acidic solutions of gallium salts.
The continuous electrolysis of an aqueous acidic solution of gallium ions resulting in the deposition of metallic gallium is achieved by adding to the above-mentioned solution during the electrolysis suflicient quantities of gallium ions and halide anions to maintain the mole ratio of anion]/ [Ga+ between 2.5 to 1 and 3.5 to 1 during the operation of the process. Gallium halides have a stoichiometric [anion]/[Ga+ ratio of 3 to l. The requirements of this invention demand that this ratio be maintained as closely as possible to its original value throughout the electrolysis when a gallium halide is used as the electrolyte. Preferred is a range of stoichiometric ratios from about 2.9 to 1 up to about 3.1 to 1. Even this range will not provide as good results, however, as a ratio more closely approximating the stoichiometric ratio of 3.0 to 1. When the ratio drops below about 2.5 to 1 or rises above about 3.5 to 1, the difliculties encountered in the prior art manifest themselves to such an extent that the objects of this invention are no longer achieved.
Any gallium halide can be used in the practice of the present invention. Likewise, any of the halogen acids may be used to provide a source of available anions for the electrolysis. Preferred reactants are gallium chloride, 'GaCl and gallium bromide, GaBr in combination with either hydrochloric or hydrobromic acids. The other gallium halides, gallium fluoride and gallium iodide, can nevertheless be used herein, either in combination with the corresponding halogen acid, hydrofluoric or hydroiodic acid, or with one or more of the other halogen acids.
The requirement of controlling the concentration levels of the electrolyte and acid was incorporated into the process after observing the electrolysis of an aqueous solution of GaCl using a molten gallium cathode with a tungsten contact and a high density graphite anode. Phenomena observed were as follows:
(a) Upon dissolving solid GaCl in water, an acidic solution results.
(b) Electrolysis a-t first proceeds with little or no hydrogen gas produced at the cathode.
(c) As the electrolysis proceeds further, the amount of hydrogen gas produced at the cathode becomes increasingly greater.
((1) Finally the electrolyte becomes clouded by a precipitate of GaOCl and the current efiiciency with respect to the deposition of gallium metal approaches zero. The pH of the solution at this point is higher than that of the freshly prepared solution.
(e) If hydrochloric acid is added in increasing amounts to a GaCl solution, the current efliciency with respect to the gallium deposition decreases, finally approaching zero.
Observation (a) is readily explained by noting that hydrolysis of a salt of a strong acid and weak base (HCl and Ga(OH) herein) results in an acidic solution. The pH of a 2 M GaCl solution is approximately 1.0.
In order to explain (b), it is necessary to apply the Nernst Equation. Thus for the system Ga Ga+ +3c, where the Ga+ concentration is 2 M and E=0.52:
Ez0.52 'g log 2:20.51
In the same solfiution, the pH is about 1. Therefore for /2H H++e The discharge potential of hydrogen in this system is calculated by adding the hydrogen overvoltage 0.44 at a molten gallium cathode.
The two reduction potentials 0.51 and 0.50 indicate that in a freshly prepared aqueous solution of GaCl the reductions take place with about equal ease and roughly in proportion to their relative concentrations which greatly favors the Ga+ at the outset. Because of similar reasons the current efficiency at the anode for the oxidation of Clto chlorine gas is higher than at the cathode for the reduction of Ga+ to gallium metal. This results in the phenomena indicated in (c) and (d). Several things are occurring to produce these phenomena. The gallium concentration is being decreased by the formation of gallium metal. The pH is increased by the formation of hydrogen gas which finally results in the precipitation of gallium oxychloride, GaOCl. Thus the gallium ion concentration is finally reduced effectively to zero and further electrolysis produces only hydrogen at the cathode.
The addition of hydrochloric acid, (e) above, results eventually in the reversal of the relative concentrations of the gallium and hydrogen ions. This situation results in the formation of only hydrogen gas.
In view of the preceding discussion, many simple variations in the disclosed process should become obvious to those skilled in the art. For instance, modification of the method described in the example to produce greater or lesser amounts of gallium is not necessarily achieved by adjusting all the reagents by one factor. However, such a theoretical explanation as given here will suggest many modifications to those skilled in the art, thus enabling them to devise a method for the production of varying amounts of gallium. Other modifications may also become apparent, such as the production of other elements whose characteristics resemble those of gallium. This is the purpose of the theoretical discussion-to provide a basis for such modification. It should not be construed as an integral part of my invention so as to constitute a limitation thereof.
These observations, together with the explanations for their occurrence, indicate that, in order to conduct a continuous electrolytic reduction of GaCl to metallic gallium, it is necessary first to replenish the Ga+ concentration as gallium metal is formed, and secondly to control the acidity so that GaOCl precipitate does not form and so that the formation of hydrogen gas goes not become the predominate reduction at the cathode. The first requirement is accomplished by addition of a concentrated stock solution of GaCl and secondly by removal by distillation or evaporation of excess water in the system. The heat required for this water removal is supplied by the electrical energy input necessary for the electroylsis or by external heating. The second requirement is satisfied by the addition of concentated hydrochloric acid in amounts necessary to restore the [Cl-]/ [Ga+ ratio to 3. Excess water is also removed. In a solution with the Ga+ and Cl concentrations controlled in such a manner, the gallium reduction proceeds at high current efficiencies exceeding for short periods. A method utilizing this discovery proceeds as follows: a quantity of pure gallium metal is used as the cathode; a pure graphite rod is used as the anode. The electrolyte is composed of a gallium salt solution of known concentration. The electrolysis is started and the current, the distance of electrodes from each other, and the periodic additions of measured quantities of concentrated electrolyte and acid are so interdependently adjusted as to maintain approximately the original pH and [anion]/ [cation] ratio of the solution.
Many variations in equipment and operating conditions are conceivable but certain features are desirable.
(1) There should be continuous agitation of the solution. This is best provided by an air-lift pump operated by nitrogen.
(2) The escaping quantities of hydrogen and chloride gas should be diluted by an inert gas such as nitrogen to reduce the danger of explosion.
(3) The graphite anode and molten gallium cathode areas should be such as to have current densities of 0.3 to 1.0 amp per om. at each electrode, and they should be horizontally mounted parallel to each other at a distance that passes the required current of 50-100 amps at a potential of 12-16 volts. It is advisable to perforate and channel the anode to facilitate the escape of chlorine gas.
(4) A cooling arrangement to keep the operating temperature within the range of 70-90 C. is desirable.
(5) The only materials coming in contact with the gallium chloride solution should be Pyrex, quartz, or Teflon. Other materials are badly attacked and olfer sources of contamination.
(6) Since no greases or lubricants should be used on tapered joints or the ball and socket connections, tapered joints should be sealed with some material such as Teflon sleeves, and the ball and socket joints should be wrapped with some material such as Teflon pressure-sensitive tape and then clamped. Several layers of Teflon tape should also be applied to the graphite anode and the tungsten contact rod just above the pressed Teflon fittings to prevent the entry of dust and to hold the two items in position.
One such apparatus which provides these desirable features is shown herein. In general, this apparatus comprises an enclosed electrolysis vessel containing a pool of metallic gallium which is provided with a source of electricity to cause the pool to function as a cathode. Also contained within the vessel is an anode, preferably of ultra-pure graphite. Attached to the vessel is a reflux column which can be converted to discharge condensate instead of returning it to the electrolysis vessel. This conversion from reflux to discharge is effected when the level of electrolyte reaches the point where the [anion]/ [Ga+ ratio will be changed significantly. This change in electrolyte level can be observed visually or through some automatic sensing device and then adjusted manually or automatically.
The following examples and accompanying drawing of the apparatus will further explain the invention. The apparatus and the quan'tites mentioned in the example were designed for the production of 400 grams of gallium in a six hour period. Simple modifications are apparent to adapt this procedure for production of greater or lesser amounts.
It should also be obvious to one skilled in the art of commercial production that such an operation as will be subsequently described is capable of completely or nearly completely automatic control and adjustment. For instance, using the equipment and procedure outlined below, it is advisable to maintain a visual check on the operation and make manual adjustments as necessary to avoid precipitation of GaOCl or too rapid evolution of hydrogen gas. It is also advisable to withdraw a sample of electrolyte at periodic intervals of six to ten hours for analysis. This allows the electrolyte to be adjusted for maximum gallium production. An apparatus to provide for automatic sample withdrawal and analysis with subsequent adjustment of the electrolyte is feasible. Other similar modifications could likewise be introduced. It is within the scope of this invention to apply its use to such an automatic device as well as to the apparatus described below and shown in FIG. 1.
EXAMPLE 1 High purity gallium chloride was prepared from crude gallium metal by direct chlorination of the metal followed by two simple distillations and one fractional distillation of the chloride. The gallium chloride so prepared was used as the electrolyte in this final purification step. A 2 M GaCl aqueous solution was prepared and introduced into the electrolysis vessel 9. About 400 grams of molten gallium was poured down the tungsten contact support tube 11 until a small quantity spilled over into the settling chamber 8. The solution above the gallium in the support tube was removed by suction to prevent attack on the tungsten by hydrochloric acid. This tube was then rinsed a few times with tripple-distilled water. After the last rinse was removed by suction, the tungsten con tact rod 19 was put into place. During this operation the gallium pool 10 which was subsequently used as the cathode was warmed slightly to prevent its solidifying. This gallium cathode pool was connected to the power supply 27 by means of a tungsten rod 19 of the highest purity and a brass clarnp 21. The anode 18 for this electrolysis consisted of a high purity graphite rod made by United Carbon Products, Grade UF-4-S. This anode was drilled and slotted along the portion which lies in a plane parallel to the cathode pool. This was done to facilitate the escape of hydrogen and chlorine gases. The anode was held in place by a support collar 12 with a pressed Teflon fitting and was connected to the power supply 27 by means of a brass clamp 20.
The nitrogen lift pump 7 was started by introducing nitrogen gas at the filter tube 235 This flow was then adjusted to deliver approximately 900 or 1000 ml./ min. as read on the flow meter 22. The nitrogen purge was started through the top of the graphite filter 6 and reservoir supports 5 at a slow rate of perhaps 30 or 40 ml./ minute. It was not necessary to meter this flow. A vent 17 at the top of the graphite filter 6 was provided to relieve any excess pressure not required to carry the concentrated electrolyte and acid to the electrolysis cell 9. With the nitrogen pump operating, the electrolyte level in the center chamber of the graphite filter 6 and reservoir supports 5 was marked. The electrolyte level in the arm of the graphite filter and reservoir supports through which the concentrated HCl is introduced was marked with a worm type rubber tubing clamp 24. The clamp was placed along the exterior surface of reservoir sup port 5 just above the level of the electrolyte. The clamp was then connected by a short piece of bare silver wire to a Thermocap relay 25, manufactured by Niagara Electron Laboratories. This relay is a power controlling instrument actuated by minute changes in electrical capacity. The clamp was positioned and the relay adjusted so that any rise in the level of the electrolyte would change the capacitance between the plates of the clamp 24. This change in capacitance would close a circuit within the relay 25, thereby actuating the solenoid 26, which in turn would direct the flow of distillate to a discharge drain instead of to the reflux drain. The direction of distillate flow is varied by changing the position of the flow-return funnel within the liquid divider 13. This result can be accomplished by means of an electromagnet within the liquid divider 13. When the electromagnet is operating, the flow-return funnel can be pulled into a position so that the flow of distillate is directed into a discharge drain instead of to the reflux drain. When the liquid level of the apparatus returns to a proper level, the electrolyte will fall in the reservoir support, thereby restoring the original capacitance to the clamp 24, opening the relay 25, deactivating the solenoid 26, releasing the electromagnet within the liquid divider 13, and returning the flow-return funnel to the refluxing drain. During the operation of the system, water vapor is carried along with the nitrogen, hydrogen and other gases formed from the oxidation of anions in solution, up into the cold water condensers 14 and 15. The gases continue on through vent 16 but the water is condensed and returned to the liquid divider where it is refluxed or discarded, depending upon the quantity of electrolyte present in the electrolysis cell. This mechanism is helpful in a continuous process such as this where quantities of additional solutions are added periodically throughout the electrolysis.
The cold water was started through the condensers. Then a timer to measure total elapsed time, the HCl addition timer 3, the GaCl addition timer 4, and the power supply 27 with an automatic current monitor adjusted to deliver 75 amperes, were turned on simultaneous- 1y. The concentrated HCl reservoir buret I delivered a total of 5.7 ml. at 6.5 minute intervals, and the 10 M GaCl reservoir buret 2 delivered 27.0 ml. at 22.6 minute intervals. These additions were arrived at empirically and do not necessarily represent the best possible quantities of material or rates of addition. The electrolysis was continued for 450 minutes using 75 amps at a potential of 12-15 volts. The voltage was controlled by adjusting the distance between the gallium cathode pool 10 and graphite anode 18. As the gallium pool 10 increased in size, it spilled over into the tube 28 and was carried to the settling bottle 8. At the end of this time of 450 minutes, the electrolysis was stopped. After removing the tungsten contact rod 19 and st-oppering the support tube 1 1, the gallium was removed both from the settling chamber 8 and the cathode pool area 10 by applying suction at these points.
EXAMPLE 2 The procedure described in Example 1 is followed except that gallium bromide, GaBr and hydrobromic acid, are used in place of gallium chloride and hydrochloric acid.
For electrolytic processes, such as described above, the amount of gallium produced should be compared to the gallium input, and if the two figures do not correspond, the electrolyte should be analyzed to determine the gallium and halide concentrations. Using the results of these analyses and the chart below, an operator can determine which case is applicable and proceed to adjust the gallium and halide concentrations of the electrolyte according to the directions given for each case.
(anion)/(Ga+ )-3 CaseA Case B Case 0. (an on\/(Ga+ 3.. Case D Case E Case F. (an1on)/(Ga+ 3 Case G Case H Case I.
Case A.No adjustments necessary.
Case B.Reduce the gallium concentration to approximatelv 2 M by electrolyzing at 75 amps for the time calculated by the equation:
3 ml. of 10 M gallium halide=w Case D.Increase the halide concentration by adding the volume of concentrated halogen acid as calculated by the equation +3 ml. of cone. halogen acid:
Case E.-First add concentrated halogen acid as calculated g1 Calsge D. Then electrolyze for the time calculated as in ase Case F.Arld 10 M gallium halide and concentrated halogen acid as calculated in Cases C and D.
Cases G, H, and I.-Electrolyze at amps until there is a noticeable decrease in hydrogen being liberated at the cathode. Then reanalyze and redetermine the applicable case and act accordingly.
7 This invention has been described in terms of specific embodiments. However, it should be understood that this has been done for illustrative purposes only and therefore is not meant to limit the invention thereto. Many incidental changes may be incorporated into this process without departing from the spirit of this invention.
What is claimed is:
1. A device for continuously electrolyzing a solution of gallium ions comprising (a) an enclosed vessel;
(b) a pool of liquid metallic gallium positioned inside said vessel, said pool having a source of electricity attached thereto to cause said pool to function as a cathode;
(c) an anode extending into said vessel and positioned at a distance from said pool of gallium sufiicient to permit a current of 50 to 100 amperes to flow between said anode and said pool;
(d) sensing means operatively associated with the level of electrolyte within said vessel for detecting the rise or fall of the level of electrolyte within said vessel;
(e) refluxing-condensate discharging means attached to said vessel;
(f) means for converting said refluxing-condensate discharging means from refluxing action to discharging action and vice versa, the converting means being operatively associated with said sensing means and said refluxing-condensate discharging means.
2. A device according to claim 1 wherein said sensing means comprises (a) a capacitor operatively associated with the level of electrolyte in said vessel; and
(b) a relay connected to said capacitor, said relay being actuated by changes in electrical capacitance. 6. A device according to claim 1, wherein said converting means comprises (a) an electromagnet;
(b) magnet-actuating means, said magnet actuating means being connected to said electromagnet and to said relay; and
(c) a magnetically attractable liquid divider within said refluxing-condensate discharging means, said divider capable of movement between a refluxing position and a discharging position, the movement of said divider between said positions being dependent upon the activation and inactivation of said electromagnet.
References Cited UNITED STATES PATENTS 3,311,834 3/1967 Barker 328-1 2,573,807 11/1951 Piros et al 202-l53 FOREIGN PATENTS 542,501 4/1956 Italy 202-81L OTHER REFERENCES H. S. Martin & Co., Glass Catalog, 1949, p. 125.
HOWARD S. WILLIAMS, Primary Examiner R. L. ANDREWS, Assistant Examiner U.S. Cl. X.R. 204237, 250
US737250*A 1963-12-04 1968-05-07 Apparatus for the production of high-purity gallium Expired - Lifetime US3551314A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA890511 1963-12-04

Publications (1)

Publication Number Publication Date
US3551314A true US3551314A (en) 1970-12-29

Family

ID=4141871

Family Applications (1)

Application Number Title Priority Date Filing Date
US737250*A Expired - Lifetime US3551314A (en) 1963-12-04 1968-05-07 Apparatus for the production of high-purity gallium

Country Status (1)

Country Link
US (1) US3551314A (en)

Similar Documents

Publication Publication Date Title
US3423301A (en) Electrolytic production of high-purity gallium
US3114685A (en) Electrolytic production of titanium metal
JPH10314740A (en) Electrolytic bath for acidic water production
RU2059023C1 (en) Quaternary ammonium hydroxides solutions purification method
JPH10137763A (en) Electrolytic ionic water forming device and semiconductor producing device
JPH05295579A (en) Production of ozone
US3316164A (en) Etching of aluminum foil
US3453187A (en) Apparatus and process for reduction of hydrogen chloride
US3551314A (en) Apparatus for the production of high-purity gallium
NO116692B (en)
JP3146706B2 (en) Gallium electrolysis method
US3103472A (en) Electrolytic production of aluminum
US9783898B2 (en) System and method for purification of electrolytic salt
WO2014004610A1 (en) System and method for electrorefining of silicon
US20090127125A1 (en) Method for the purification of a semiconductor material by application of an oxidation-reduction reaction
US3503857A (en) Method for producing magnesium ferrosilicon
US4166013A (en) Method of making metal beta-alumina and refining metal using it
US3262871A (en) Preparation of phosphine
US3510408A (en) Process for producing high surface area nickel powder
Baxter et al. A REVISION OF THE ATOMIC WEIGHT OF ZINC. THE ELECTROLYTIC DETERMINATION OF ZINC IN ZINC BROMIDE.
US3617453A (en) Temperature control in electrochemical conversion process
Carr et al. Differential capacitance of the platinum/aqueous-solution interphase
JPH0215187A (en) Production of iron and chlorine from aqueous solution containing iron chloride
US3108934A (en) Process for the manufacture of antimony of high purity
FI935661A0 (en) Electrolytic foil extraction Foer extrahering av platinum med renhet ur orenplatina