US3546635A - Waveguide mode selective absorber - Google Patents

Waveguide mode selective absorber Download PDF

Info

Publication number
US3546635A
US3546635A US752229A US3546635DA US3546635A US 3546635 A US3546635 A US 3546635A US 752229 A US752229 A US 752229A US 3546635D A US3546635D A US 3546635DA US 3546635 A US3546635 A US 3546635A
Authority
US
United States
Prior art keywords
waveguide
mode
modes
hexagonal
lse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US752229A
Inventor
John P Quine
Cousby Younger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Air Force
Original Assignee
US Air Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Air Force filed Critical US Air Force
Application granted granted Critical
Publication of US3546635A publication Critical patent/US3546635A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/162Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion absorbing spurious or unwanted modes of propagation

Definitions

  • the invention comprehends a waveguide component adapted to selectively absorb unwanted TE TM (LSE modes propagating in high power oversized waveguide systems.
  • a section of unslotted hexagonal waveguide is used to convert (LSE modes of electromagnetic wave energy to (LSE modes.
  • the hexagonal waveguide is combined with a section or sections of rectangular waveguide having transverse sidewall slots which etfectively couple out the (LSE Q modes.
  • This invention relates to high power oversized waveguide systems and, in particular, to a waveguide mode selective absorber that is capable of selectively absorbing unwanted TE TM modes of electromagnetic wave energy propagating therein.
  • Mode absorbers are sometimes required in oversized waveguide systems in order to damp out spurious mode resonances.
  • Resonances can occur when a spurious mode becomes trapped within regions of the waveguide system having waveguide cross sectional dimensions which are larger than in the surrounding regions. Trapping can occur, for example, in the region between two tapered transitions.
  • Mode absorbers are also required in order to prevent the radiation of spurious mode power from antennas connected directly to the output of an oversize waveguide system, that is, without the use of tapers.
  • the mode absorber must provide high enough one way loss to reduce the radiated spurious mode power to acceptable levels; this value of one way loss may be considerably higher than that required to suppress resonance buildup in systems in which spurious mode trapping occurs, and may be obtained only with mode absorbers having inconveniently long lengths. For this reason, the suppression of spurious mode radiation is best accomplished by designing the system components to have the lowest possible spurious mode generation.
  • the principal problem encountered in the design of mode absorbers for ultra-high power waveguide systems is that of producing a required amount of absorption for the spurious mode, with only a negligible loss to the ultra-high power desired mode.
  • the fractional power loss experienced by the desired mode must be very small, if the power dissipated in the mode absorber is to be kept reasonably low. For example, a loss of 0.1 db for the desired mode carrying 100 kw. of average power would require the dissipation of approximately 2.5 kw. in the mode absorber. Obviously, losses which are considerably less than 0.1 db are desirable.
  • a hexagonal mode absorber which consists of a length of hexagonal waveguide with slots placed along the centers of the side wall andoriented in the transverse direction.
  • the length of the slots and the slot spacing of such a device are adjusted in order to obtain an optimum conductance per unit length. Because the longitudinal current for the desired TE mode is zero along the center of the side walls of the hexagonal waveguide, the transverse slots do not introduce loss to this mode. With this configuration, the TE TM composite modes having odd n can be absorbed; however, the modes having even 11 cannot be absorbed, because the longitudinal current along the center of the side walls is zero for these modes. The utility of this type of mode absorber is still further diminished because it also requires an impractically long length of hexagonal waveguide.
  • the state of the art hexagonal mode selective absorber referred to above consists of a length of hexagonal waveguide with transverse slots centered on the side walls to provide coupling to a dissipative medium. These slots provide direct dissipation for only the horizontally polarized (LSE modes, having odd values for the index, n.
  • the vertically polarized (LSE modes are dissipated by first being coupled (because of the hexagonality) to the horizontally polarized (LSE J modes and then being dissipated by coupling through the slots.
  • the subscripts V and H employed above refer to horizontally and vertically polarized modes.
  • the top wall and sidewall composite modes are defined as the particular combinations of TE and TM modes which have zero net longitudinal current along the top and bottom walls and along the sidewalls, respectively; the top wall and sidewall composite modes can also be called the horizontally and vertically polarized longitudinal section E-modes, respectively.
  • the present invention also employs a length of hexagonal waveguide. However, it contains no slots.
  • the hexagonal waveguide in this case is employed only as a polarization twisting medium.
  • an incident (LSE mode is converted partially to an (LSE mode.
  • the conversion occurs in this case also because of the coupling between the (LSE and (LSE modes provided by the hexagonal waveguide.
  • the energy converted to the (LSE J mode is absorbed by means of transverse slots placed on the side walls of sections of attached rectangular waveguide. These sections of rectangular waveguide are connected 'to the hexagonal waveguide by means of hexagonal to rectangular waveguide transition sections.
  • FIG. 1 illustrates a plan view of one presented preferred embodiment of the invention
  • FIG. 2 is a sectional view of FIG. 1 taken at II, II;
  • FIG. 3 is a sectional view of FIG. 1 taken at III, III;
  • FIG. 4 is a sectional view of FIG. 1 taken at IV, 1V.
  • the electric field along the top walls of an unslotted hexagonal waveguide is due entirely to the top wall composite mode, the electric field of the side wall composite mode being zero along the top wall.
  • the composite top wall mode is a characteristic mode of the rectangular waveguide, and consists of the particular combination of TE and TM characteristic modes for which the condition given by is satisfied.
  • Equation 1 (E and (E are the x components of the transverse electric fields of the components TE and TM modes comprising the top wall composite mode; the x-direction being parallel to the top wall. Equation 1 shows that the net electric field in the x-direction is zero for the composite top wall mode.
  • the difference between p and ,B causes E to vary with z; in the case the quantity, 1[E represents the power converted from the top wall to the side wall composite mode.
  • Equation 6 The mode absorption for Equation 6 shows that A has a minimum value equal to 1.0(0 db) when A0 is an even multiple of 1r, and that A is a maximum when A0 is equal to an odd multiple of 1r.
  • A is the free space wavelength and (A M and (AQ are the cutolf wavelengths of the TB and TM modes, respectively, in the hexagonal waveguide.
  • Mode suppressor 1 designed in accordance with the principles of the invention and the foregoing equations.
  • Mode suppressor 1 includes hexagonal waveguide section 2, hexagonal waveguide to rectangular waveguide transition sections 3, and rectangular waveguide sections 4. These sections are joined as shown by means of flanges 6 and fastening means 7 in a conventional manner.
  • Rectangular waveguide sections 4 are provided with a series of sidewall slots 5. The dimensions of the waveguide sections and the size and arrangement of the sidewall slots 5 are, of course, determined by the electromagnetic wave frequency for which the system is designed and by the foregoing equations.
  • a device utilizing but a single slotted rectangular section 4 would be equally effective. With such an arrangement, the rectangular section 4 could be joined to either end of the hexagonal waveguide section 2.
  • a mode selective absorber comprising a section of waveguide of hexagonal cross section, a section of waveguide of rectangular cross section, said waveguide of rectangular cross section having a series of transverse sidewall slots therein, and a hexagonal to rectangular waveguide transition section interconnecting said section of waveguide of hexagonal cross section and said section of waveguide of rectangular cross section.
  • a mode selective absorber as defined in claim 3 including a second section of rectangular waveguide having transverse sidewall slots therein and a second hexagonal to rectangular waveguide transition means, said first recited section of rectangular waveguide, said first recited 6 hexagonal to rectangular waveguide transition means, said section of waveguide of a substantially hexagonal cross section, said second hexagonal to rectangular waveguide means, and said second section of rectangular waveguide being connected in contiguous serial relationship within said waveguide system.

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Description

Dec. 8, 1970 QUlNE ETAL I WAVEGUIDE MODE SELECTIVE ABSORBER Filed Aug. 13, 1968 E =S E =Q E =mm t r a I N VENTO S Mai/V3 @l/l/YE C 00618 y Yam 6'5? W77 i? I United States Patent 3,546,635 WAVEGUIDE MODE SELECTIVE ABSORBER John P. Quine, Schenectady, and Coushy Younger, Scotia,
N.Y., assignors to the United States of America as represented by the Secretary of the Air Force Filed Aug. 13, 1968, Ser. No. 752,229 Int. Cl. H01p 1/16 US. Cl. 333-21 4 Claims ABSTRACT OF THE DISCLOSURE The invention comprehends a waveguide component adapted to selectively absorb unwanted TE TM (LSE modes propagating in high power oversized waveguide systems. A section of unslotted hexagonal waveguide is used to convert (LSE modes of electromagnetic wave energy to (LSE modes. The hexagonal waveguide is combined with a section or sections of rectangular waveguide having transverse sidewall slots which etfectively couple out the (LSE Q modes.
BACKGROUND OF THE INVENTION This invention relates to high power oversized waveguide systems and, in particular, to a waveguide mode selective absorber that is capable of selectively absorbing unwanted TE TM modes of electromagnetic wave energy propagating therein.
Mode absorbers are sometimes required in oversized waveguide systems in order to damp out spurious mode resonances. Resonances can occur when a spurious mode becomes trapped within regions of the waveguide system having waveguide cross sectional dimensions which are larger than in the surrounding regions. Trapping can occur, for example, in the region between two tapered transitions.
Mode absorbers are also required in order to prevent the radiation of spurious mode power from antennas connected directly to the output of an oversize waveguide system, that is, without the use of tapers. In this case the mode absorber must provide high enough one way loss to reduce the radiated spurious mode power to acceptable levels; this value of one way loss may be considerably higher than that required to suppress resonance buildup in systems in which spurious mode trapping occurs, and may be obtained only with mode absorbers having inconveniently long lengths. For this reason, the suppression of spurious mode radiation is best accomplished by designing the system components to have the lowest possible spurious mode generation.
When a spurious mode experiences resonances as a result of being trapped, large amounts of power can be converted from the desired mode to the spurious mode. If a mode absorber is not employed, the converted power is dissipated mostly in the waveguide walls within the trapped region; the fields in this case can build up to high values, and overheating and dielectric breakdown can occur.
The principal problem encountered in the design of mode absorbers for ultra-high power waveguide systems is that of producing a required amount of absorption for the spurious mode, with only a negligible loss to the ultra-high power desired mode. The fractional power loss experienced by the desired mode must be very small, if the power dissipated in the mode absorber is to be kept reasonably low. For example, a loss of 0.1 db for the desired mode carrying 100 kw. of average power would require the dissipation of approximately 2.5 kw. in the mode absorber. Obviously, losses which are considerably less than 0.1 db are desirable.
Effective practical absorption of TE TM degenof the short sections of rectangular waveguides that are erate mode pairs has been a long standing problem in the design of high power waveguides. A particular combination of these modes has zero longitudinal current all along the side walls, and therefore cannot always be selectively absorbed by transverse slots on the side walls. To date, investigations have shown that the degeneracy between the TE and TM modes that occurs in rectangular waveguides can be removed by transforming the rectangular waveguide into an hexagonal shape. With the degeneracy removed, no combination of modes results in zero longitudinal side wall currents, and transverse slots on the side Walls can provide mode selective absorption.
These principles have been applied in the current state of the art by the utilization of a hexagonal mode absorber which consists of a length of hexagonal waveguide with slots placed along the centers of the side wall andoriented in the transverse direction. The length of the slots and the slot spacing of such a device are adjusted in order to obtain an optimum conductance per unit length. Because the longitudinal current for the desired TE mode is zero along the center of the side walls of the hexagonal waveguide, the transverse slots do not introduce loss to this mode. With this configuration, the TE TM composite modes having odd n can be absorbed; however, the modes having even 11 cannot be absorbed, because the longitudinal current along the center of the side walls is zero for these modes. The utility of this type of mode absorber is still further diminished because it also requires an impractically long length of hexagonal waveguide.
SUMMARY OF THE INVENTION The state of the art hexagonal mode selective absorber referred to above consists of a length of hexagonal waveguide with transverse slots centered on the side walls to provide coupling to a dissipative medium. These slots provide direct dissipation for only the horizontally polarized (LSE modes, having odd values for the index, n. The vertically polarized (LSE modes are dissipated by first being coupled (because of the hexagonality) to the horizontally polarized (LSE J modes and then being dissipated by coupling through the slots. The subscripts V and H employed above refer to horizontally and vertically polarized modes. The (LSE and (LSE Q modes are combinations of the usual TE and TM modes which have either E or E =0, where E and E are the transverse electric fields. Stated another way, the top wall and sidewall composite modes are defined as the particular combinations of TE and TM modes which have zero net longitudinal current along the top and bottom walls and along the sidewalls, respectively; the top wall and sidewall composite modes can also be called the horizontally and vertically polarized longitudinal section E-modes, respectively.
The present invention also employs a length of hexagonal waveguide. However, it contains no slots. The hexagonal waveguide in this case is employed only as a polarization twisting medium. Thus, an incident (LSE mode is converted partially to an (LSE mode. The conversion occurs in this case also because of the coupling between the (LSE and (LSE modes provided by the hexagonal waveguide. The energy converted to the (LSE J mode is absorbed by means of transverse slots placed on the side walls of sections of attached rectangular waveguide. These sections of rectangular waveguide are connected 'to the hexagonal waveguide by means of hexagonal to rectangular waveguide transition sections.
Mode selective absorption for the (LSE Q and employed in conjunction with the lossless (unslotted) hexagonal waveguide. The important (LSE Q and (LSE modes can, therefore, be absorbed by the device of the present invention as well as the (LSE and (LSE Q modes.
It is a principal object of this invention to provide a new and improved waveguide mode selective absorber for use in high power oversized waveguide systems.
It is another object of this invention to provide an improved hexagonal type waveguide mode selective absorbet.
It is another object of the invention to provide a waveguide mode selective absorber of the type described that utilizes a substantially shorter section of hexagonal waveguide than prior art devices.
It is another object of the invention to provide a waveguide mode selective absorber of the type described that is capable of mode selective absorption for the (LSE and (LSE modes for even as well as odd values of n.
It is another object of the invention to provide a waveguide mode selective absorber of the type described that is more efficient than currently available devices.
These, together with other objects, advantages and features of the invention, will become more apparent from the following detailed description when taken in conjunction with the illustrative embodiments in the accompanying drawings.
DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a plan view of one presented preferred embodiment of the invention;
FIG. 2 is a sectional view of FIG. 1 taken at II, II;
FIG. 3 is a sectional view of FIG. 1 taken at III, III;
and
FIG. 4 is a sectional view of FIG. 1 taken at IV, 1V.
DESCRIPTION OF THE PREFERRED EMBODIMENT The electric field along the top walls of an unslotted hexagonal waveguide is due entirely to the top wall composite mode, the electric field of the side wall composite mode being zero along the top wall. Furthermore, the composite top wall mode is a characteristic mode of the rectangular waveguide, and consists of the particular combination of TE and TM characteristic modes for which the condition given by is satisfied. In Equation 1, (E and (E are the x components of the transverse electric fields of the components TE and TM modes comprising the top wall composite mode; the x-direction being parallel to the top wall. Equation 1 shows that the net electric field in the x-direction is zero for the composite top wall mode.
The ratio of the y-components of the electric fields of the components TE and TM modes comprising the composite top wall mode is represented by the equation ET: TM P(il TM y)TE P "1 5mm where p and B are the propagation constants of the TE and TM modes in the hexagonal waveguide. Using Equation 2 in Equation 3, there results The mode absorption, A, in a length of waveguide L is defined as the ratio between IE I at 2:0 and [E at z=L. Thus, the difference between p and ,B causes E to vary with z; in the case the quantity, 1[E represents the power converted from the top wall to the side wall composite mode. The mode absorption for Equation 6 shows that A has a minimum value equal to 1.0(0 db) when A0 is an even multiple of 1r, and that A is a maximum when A0 is equal to an odd multiple of 1r. The maximum value, A is given by a 2 mb A =qfr f01 na.
If the ratio the inverse ratio would, of course, be used. The value of A can be determined as a function of frequency and L from Equation 5 by noting that where A is the free space wavelength and (A M and (AQ are the cutolf wavelengths of the TB and TM modes, respectively, in the hexagonal waveguide.
Referring now to FIGS. 1 through 4, there is disclosed thereby a mode suppressor 1 designed in accordance with the principles of the invention and the foregoing equations. Mode suppressor 1 includes hexagonal waveguide section 2, hexagonal waveguide to rectangular waveguide transition sections 3, and rectangular waveguide sections 4. These sections are joined as shown by means of flanges 6 and fastening means 7 in a conventional manner. Rectangular waveguide sections 4 are provided with a series of sidewall slots 5. The dimensions of the waveguide sections and the size and arrangement of the sidewall slots 5 are, of course, determined by the electromagnetic wave frequency for which the system is designed and by the foregoing equations.
A device utilizing but a single slotted rectangular section 4 would be equally effective. With such an arrangement, the rectangular section 4 could be joined to either end of the hexagonal waveguide section 2.
While the invention has been described in one presently preferred embodiment, it is understood that the words which have been used are words of description rather than words of limitation and that changes within the purview of the appended claims may be made without departing from the scope and spirit of the invention in its broader aspects.
What is claimed is:
1. In combination with a high power waveguide system, a mode selective absorber comprising a section of waveguide of hexagonal cross section, a section of waveguide of rectangular cross section, said waveguide of rectangular cross section having a series of transverse sidewall slots therein, and a hexagonal to rectangular waveguide transition section interconnecting said section of waveguide of hexagonal cross section and said section of waveguide of rectangular cross section.
2. A mode selective absorber as defined in claim 1 wherein said section of waveguide of substantially hexagonal cross section has a length elfective to convert (LSE modes of electromagnetic wave energy propagating therethrough to (LSE J modes of electromagnetic wave energy.
3. A mode selective absorber as defined in claim 2 wherein said transverse sidewall slots are operable to absorb (LSE modes of electromagnetic wave energy.
4. A mode selective absorber as defined in claim 3 including a second section of rectangular waveguide having transverse sidewall slots therein and a second hexagonal to rectangular waveguide transition means, said first recited section of rectangular waveguide, said first recited 6 hexagonal to rectangular waveguide transition means, said section of waveguide of a substantially hexagonal cross section, said second hexagonal to rectangular waveguide means, and said second section of rectangular waveguide being connected in contiguous serial relationship within said waveguide system.
References Cited UNITED STATES PATENTS 2,611,087 9/1952 Alford 33321X 3,205,462 9/1965 Meinke 333--98MUX 3,233,241 2/1966 Alford 33321X PAUL L. GENSLER, Primary Examiner US. Cl. X.R.
US752229A 1968-08-13 1968-08-13 Waveguide mode selective absorber Expired - Lifetime US3546635A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US75222968A 1968-08-13 1968-08-13

Publications (1)

Publication Number Publication Date
US3546635A true US3546635A (en) 1970-12-08

Family

ID=25025436

Family Applications (1)

Application Number Title Priority Date Filing Date
US752229A Expired - Lifetime US3546635A (en) 1968-08-13 1968-08-13 Waveguide mode selective absorber

Country Status (1)

Country Link
US (1) US3546635A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777286A (en) * 1972-08-07 1973-12-04 Hughes Aircraft Co Die cast waveguide low pass filter
US20120243823A1 (en) * 2011-03-22 2012-09-27 Giboney Kirk S Gap-Mode Waveguide
KR101521806B1 (en) * 2013-05-03 2015-05-20 한국전자통신연구원 Penetration waveguide for broadband electromagnetic attenuation
FR3087954A1 (en) * 2018-10-31 2020-05-01 Thales WAVE GUIDE OBTAINED BY ADDITIVE MANUFACTURING

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2611087A (en) * 1946-01-29 1952-09-16 Alford Andrew Device for radiating circularly polarized waves
US3205462A (en) * 1962-02-23 1965-09-07 Gen Electric Low-loss waveguide for propagation of h10 wave
US3233241A (en) * 1955-05-25 1966-02-01 Alford Andrew Horn for radiating circularly polarized waves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2611087A (en) * 1946-01-29 1952-09-16 Alford Andrew Device for radiating circularly polarized waves
US3233241A (en) * 1955-05-25 1966-02-01 Alford Andrew Horn for radiating circularly polarized waves
US3205462A (en) * 1962-02-23 1965-09-07 Gen Electric Low-loss waveguide for propagation of h10 wave

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777286A (en) * 1972-08-07 1973-12-04 Hughes Aircraft Co Die cast waveguide low pass filter
US20120243823A1 (en) * 2011-03-22 2012-09-27 Giboney Kirk S Gap-Mode Waveguide
US8952678B2 (en) * 2011-03-22 2015-02-10 Kirk S. Giboney Gap-mode waveguide
KR101521806B1 (en) * 2013-05-03 2015-05-20 한국전자통신연구원 Penetration waveguide for broadband electromagnetic attenuation
FR3087954A1 (en) * 2018-10-31 2020-05-01 Thales WAVE GUIDE OBTAINED BY ADDITIVE MANUFACTURING

Similar Documents

Publication Publication Date Title
US3205462A (en) Low-loss waveguide for propagation of h10 wave
Cros et al. Whispering gallery dielectric resonator modes for W-band devices
US5187461A (en) Low-loss dielectric resonator having a lattice structure with a resonant defect
Itoh et al. A technique for computing dispersion characteristics of shielded microstrip lines (Short papers)
US5801598A (en) High-power RF load
US3451014A (en) Waveguide filter having branch means to absorb or attenuate frequencies above pass-band
GB2067020A (en) Circular electric mode microwave window
US3546635A (en) Waveguide mode selective absorber
US2869085A (en) Selective absorbers
US3110000A (en) Waveguide window structure having three resonant sections giving broadband transmission with means to fluid cool center section
US3365607A (en) Electron discharge device
US3593220A (en) High power microwave low-pass filter of the leaky wall type
US3543199A (en) Tapered mode selective absorber for use in high power waveguide systems
US2682641A (en) Selective mode attenuator for wave guides
CN109904574B (en) Waveguide load based on electromagnetic wave grain bispin
Wang et al. Design and measurement of a broadband compact TE 11 mode input coupler for an X-band gyrotron traveling wave tube
US3339102A (en) High frequency electron discharge devices and wave permeable windows
US3649934A (en) Quasi-optical low-pass absorption type filtering system
US3496497A (en) High-power harmonic suppression filters
US3218586A (en) Transmission of dominant transverse electric mode in large rectangular waveguide, with polarization parallel to width, by use of mode absorber
US2853682A (en) Waveguide filter
Jiang et al. Mode-matching analysis of waveguide T-junction loaded with an H-plane dielectric slab
Harris et al. Low-loss single-mode waveguide for submillimetre and millimetre wavelengths
Lanciani H/sub o1/Mode Circular Waveguide Components
Quine 3.2 Oversize Tubular Metallic Waveguides