US3544706A - Electrical conductor configuration providing length stable with temperature - Google Patents

Electrical conductor configuration providing length stable with temperature Download PDF

Info

Publication number
US3544706A
US3544706A US694146A US3544706DA US3544706A US 3544706 A US3544706 A US 3544706A US 694146 A US694146 A US 694146A US 3544706D A US3544706D A US 3544706DA US 3544706 A US3544706 A US 3544706A
Authority
US
United States
Prior art keywords
conductor
conductors
strip
temperature
electrical conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US694146A
Inventor
Marcel Aupoix
Francois Moisson-Franckhauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Compagnie Generale dElectricite SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale dElectricite SA filed Critical Compagnie Generale dElectricite SA
Application granted granted Critical
Publication of US3544706A publication Critical patent/US3544706A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/002Joints between bus-bars for compensating thermal expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/93Electric superconducting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/812Stock
    • Y10S505/813Wire, tape, or film
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/884Conductor
    • Y10S505/887Conductor structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12361All metal or with adjacent metals having aperture or cut
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1241Nonplanar uniform thickness or nonlinear uniform diameter [e.g., L-shape]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12701Pb-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12743Next to refractory [Group IVB, VB, or VIB] metal-base component

Definitions

  • Goldberg Attorney-Craig, Antonelli, Stewart & I-lill ABSTRACT An electrical conductor, comprising a metal strip in which bending areas are formed to take up longitudinal stresses exerted on the said strip, so that the said conductor may be deformed in its plane under the action of thermal stresses without any change in length.
  • the metal strip has a plurality of slots.
  • the strip may be of normal metal and within the strip can be embedded a plurality of superconductive wires.
  • PATENTED UE CI I970 06 SHEET 4 OF 5 'PATENTED HEB] I970 3,544,706
  • the present invention relates in general to conductors, and more particularly to an electrical conductor having a structure which is characterized by the fact that its length does not vary as a function of temperature.
  • This conductor may be employed singly, or in a set with other identical conductors to form electric cables. It may be considered for operation with direct current or with singlephase or multiphase alternating current, and its ope-ating temperature may either lie above ambient temperature in the case of conductors or cables of normal conductivity, or below arnbient temperature in the case of hyperconductive or superconductive conductors or cables,
  • an aluminum conductor will contract by as much as 4.2 percent when its temperature passes from ambient temperature to an operating temperature close to l. Since this contraction may occur in a conductor of very great length, he stresses thus engendered cause a substantial plastic deformation in the longitudinal direction of the material-the elastic limit at 20 ii. corresponding to a relative elongation of 0.5 percent linked with a stress of 3.4 irgs/mmF. The plastic deformation engendered in this case reaches eight times the limit of permissible elastic deformation.
  • the invention has for its primary object the provision of an electrical conductor of appropriate structure, which does not incur the aforesaid disadvantages when brought to the operating temperature,
  • the conductor according to the invention is essentially characterized in that it consists of a metal strip in which are formed bending areas for absorbing forces exerted longitudinally on the strip, in such manner that the conductor may be deformed in its plane under the action of thermal stresses while its length remains substantially unchanged.
  • the said areas or sections comprise at least one set of parallel slots.
  • FlG. ll shows a plan view of a portion of a conductor according to a first embodiment of the invention, efore eing shaped to assume its final form.
  • FlG. illustrates the conductor of FIG. l after having been formed to proper shape ready for application.
  • HG. 3 is an illustration in plan view of a partially finished conductor according to a first modification of the invention, prior to being formed to proper shape.
  • FlG. 4 illustrates the conductor of FlG. 3 after being formed to proper shape ready for application.
  • H63. 5 and 6 illustrate the appearance of a conductor according to a second modification of the invention, when at ambient temperature and at low temperature, respectively.
  • H6. 7 shows the cross section or" a cable comprising a plurality of conductors corresponding to the conductor of FlG. 4.
  • H65. 8 and 9 show the cross section and longitudinal section, respectively, of a cable comprising a plurality of conductors corresponding to the conductor of P16. 5.
  • H68 Ill and ilillustrate a conductor having the same general form as that illustrated in .FlGS. l and 2, within which are contained wires of super conductive material.
  • hi6. 1 illustrates the blank or partially finished form of a conductor consisting of a conductive strip l in which areas of lesser resistance to stresses exerted in the plane of the strip, substantially perpendicularly to its axis have been obtained periodically along the length of the strip by cutting slots 2 in the strip extending parmlel to the length of the strip.
  • the conductor is then deformed in the areas of the slots in such a manner as to obtain the form illustrated in FlG. 2. 'ihe edges of each corresponding slot in the two angular surfaces being joined together or not in accordance with the degree of deformation depending on the intended application.
  • This conductor may be employed as a cryogenic conductor operating at very low temperature. With the shape illustrated in H6. 2 and with its slots as shown, the conductor has its extremities secured to fixed elements (not shown) at ambient temperature. After cooling, the conductor contracts with a small reduction in the height of the V-shaped bend accompanied by a spreading of the slots.
  • the conductor may also be employed as a conventional conductor at a higher operating temperature than ambient temperature.
  • the conductor is wrought to have the form illustrated in FlG 2 at ambient temperature, but while maintaining a specific width of the slots, in such manner as to promote subsequent deformations due solely to thermal actions.
  • the unconfined conductor then has its extremities anchored still at ambient temperature. While in operation at a temperature exceeding ambient temperature, the conductor will expand and undergo lateral deformations, assuming the form of FIG. 2, the initial width of the slots being reduced.
  • the length of the conductor will remain constant and its restoration to ambient temperature after operation will not engender any harmful strains.
  • Refined electrolytic aluminum of high purity, coated by one or more layers of a superconductive material, for example lead, columbium-zirconium or colurnbium-titanium alloy, or columbium-tin compound, may be employed for conductors of the superconductive type.
  • FlGS. ill and ill show a superconductive conductor based upon the configuration of FIGS. 1 and 2 and consisting of wires Sll of superconductive material imbedded in a strip 3 of stabilizing metal, such as aluminum for example, the slots 2 being out between the superconductive wires.
  • the width of each slot may, for example, be equal to the distance separating two adjacent slots.
  • the length of the slots amounts to between 20 and 100 times their width.
  • the separate areas of deformation are identical and separated by a distance substantially equal to 30 times the length of an area of deformation. It is demonstrable that, in such case, the relative increase in electrical resistance of the conductor is smaller than 20 percent which is acceptable in the majority of applications.
  • FIG. 3 illustrates a modified form of-a conductor according to the invention, in which the area of deformation comprises a row of slots 2 parallelto each other and-to the edges of the strip, and adjacent to which a rectangular-piece of metal has been cut away.
  • this arrangement renders it possible to prevent a local increase in the width of the conductor adjacent to the area of deformation.
  • FIGS. and 6 illustrate another embodiment of a conductor according to the invention.
  • FIG. 5 illustrates the configuration at ambient temperature in plan view of a conductor according to this modified form. From a metal strip delimited by the dashed lines and have been cut metal pieces of trapezoidal shape alternating regularly on both edges of the strip in such a manner as to produce a' planar element substantially possessing a generally serpentine shape.
  • the deformed areas are produced by making cuts suchas 2 in the strip, parallel to the inclined sides 4 and 5 and substantially of the same length as these sides.
  • the portions 6 which are not slotted, and extend to the truncated corners, retain satisfactory mechanical resistance against contraction stresses caused by a reduction in temperature.'The'conductor is assumed to be'anchored at its extremities 7 and 8. Contrary to the embodiments described above, the width of the cuts is very small, the edges of the cuts being almost in contact.
  • FIG. 6 illustrates the appearance of the conductor when its temperature reaches a substantiallylower level than ambient temperature, in the case of hyperconductive or superconductive conductors.
  • the extremities of the conductor being anchored, its contraction has caused a rotation of the slotted portions about the unslotted parts, so that the angle b, of the order of 160 has changed to an angle Q, close to 180, the distance between theextrcmities 7 and 8 being constant in practice and the conductor being unaffected by any harmful longitudinal strain.
  • FIG. 7 illustrates the cross section of a cable comprising astack of hyperconductive or superconductive conductors having the form illustrated in FIG.'2 or FIG. 4.
  • the conductors are stacked and secured against the inner side of an outer tube 31.
  • An insulating material 32 may be situated between the conductors and the tube.
  • the central space 33 acts as a duct for circulation of a cryogenic fluid.
  • the conductors may 'carry direct current, in which case theywill be connected in parallel.
  • the cable may equally be employed for single-phase alternating current inthe same conditions of application.
  • a three-phase cable may be formed by separating different conductors or groups of conductors allotted to one and the same phase by means of insulating strips.
  • Another embodiment of a cable in accordance with the invention is illustrated in cross section in FIG. 8 and in longitudinal section in FIG. 9.
  • This cable consists of a plurality of conductors 42 of analogous shape to that illustrated in FIGS. 2, 4 or 5.
  • the conductors are positioned closely to each other, are electrically connected in parallel and are enclosed in an insulating sheath 43.
  • the dotted outline enclosingthe space 44 is occupied by the conductor.
  • the conductors are positioned in phase" geometrically, that is to say in such manner that the slotted portions of one conductor are situated against the slotted portions of the adjacent conductor.
  • the method of securing the conductors within the sheath does not lie within the scope of the present invention and has not been illustrated. Analogously, the devices for thermal insulation and cryogenic arrangements have not been illustrated either.
  • the conductors according to the invention may be applied in cables of coaxial structure, employing a plurality of conductors, such as those illustrated in FIGS. 1-6 and 10 and 11, and with deformations formed to troughshape.
  • An electrical conductor comprising a metal strip in which spaced deformed portions lying in the plane of that strip are each provided with a plurality of slots, said slots being angularly disposed with respect to the longitudinal edges of said metal strip and having a lesser resistance to deformation in said plane than the remaining portions of the strip.
  • An electrical conductor comprising a metal strip in which spaced deformed portions of the strip are each provided with a plurality of slots and have lesser resistance to be deformed in said plane thanthe remaining portions of the strip.
  • a cable comprising a plurality of electrical conductors as defined in claim 3 positioned together in contiguous relation ship within a tubular member, an insulating material being provided between said conductors and said tubular member.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Insulated Conductors (AREA)

Description

United States Patent Inventors Marcel Aupoix Paris; Francois Moison-Franckhauser, Bretignysur-Orge, France Appl. No. 694,146 Filed Dec. 28, 1967 Patented Dec. 1, 1970 Assignee Compagnie Generale DElectricite Paris, France a French corporation Priority Dec. 28, 1966 France No. PV-89180 ELECTRICAL CONDUCTOR CONFIGURATION PROVIDING LENGTH STABLE WITH TEMPERATURE 11 Claims, 11 Drawing Figs.
Int. Cl H01v 11/02 Field of Search l74/(SC),
[56] References Cited UNITED STATES PATENTS 1,688,954 10/1928 Atkinson 174/106 2,891,303 6/1959 Stevenson 338/206X 3,088,994 5/1963 Cataldo 174/133 2,457,616 12/1948 Van Dyke... 29/193.5UX 3,443,021 5/1969 Schrader 174/117 3,453,725 7/1969 Donelan 174/128X FOREIGN PATENTS 649,733 12/1962 Italy 174/10231 Primary ExaminerE. A. Goldberg Attorney-Craig, Antonelli, Stewart & I-lill ABSTRACT: An electrical conductor, comprising a metal strip in which bending areas are formed to take up longitudinal stresses exerted on the said strip, so that the said conductor may be deformed in its plane under the action of thermal stresses without any change in length.
The metal strip has a plurality of slots. The strip may be of normal metal and within the strip can be embedded a plurality of superconductive wires.
CONDUCTIVE STRIP PATENTED DEE] I976 SHEET 1 OF 6 PATENTEUUEEI I978 3544'706 SHEET 2 OF 5 PATENTEU DEC] 1970 SHEET 3 OF 6 FIG.6
PATENTED UE CI I970 06 SHEET 4 OF 5 'PATENTED HEB] I970 3,544,706
SHEET 5 OF 6 HHHH mum
PATENTED BEE] I970 3.544.706
SHEET 6 OF 5 EMBEDDED CONDUCTORS 50 CONDUCTIVE STRIP ELECTREQAL QQNDUCTQR 'CGNFHGURATEQN lllUVlDlNG LENGTH STABLE Wl'l'l'l TEMBERATUERE The present invention relates in general to conductors, and more particularly to an electrical conductor having a structure which is characterized by the fact that its length does not vary as a function of temperature.
This conductor may be employed singly, or in a set with other identical conductors to form electric cables. it may be considered for operation with direct current or with singlephase or multiphase alternating current, and its ope-ating temperature may either lie above ambient temperature in the case of conductors or cables of normal conductivity, or below arnbient temperature in the case of hyperconductive or superconductive conductors or cables,
it is known that when electrical conductors of great length are brought to their rated temperature from ambient temperature, they undergo substantial mechanical stresses unless the material of which they are constituted is provided with the possibility of displacement, for example, expansion in the case of conventional conductors, or contraction in the case of superconductive or hyperconductive conductors.
As an example, an aluminum conductor will contract by as much as 4.2 percent when its temperature passes from ambient temperature to an operating temperature close to l. Since this contraction may occur in a conductor of very great length, he stresses thus engendered cause a substantial plastic deformation in the longitudinal direction of the material-the elastic limit at 20 ii. corresponding to a relative elongation of 0.5 percent linked with a stress of 3.4 irgs/mmF. The plastic deformation engendered in this case reaches eight times the limit of permissible elastic deformation.
The disadvantages which are to be eliminated and which are linlted with thermal expansion or contraction, are numerous. For example, the expansions and contractions produce destructive reactions on the anchoring points of the conductor. in addition, there is destruction to the conductor itself arising from entering of the material within the range of plastic deformation, such as creep, strain hardening, premature wear and fracture. in the case of conductorsmade of hyperconductive materials, there is also experienced an increase in resistivity coupled with strain hardening.
The invention has for its primary object the provision of an electrical conductor of appropriate structure, which does not incur the aforesaid disadvantages when brought to the operating temperature,
it is another object of the present invention to provide an electrical conductor which may be deformed in its plane under the action of thermal stresses while its length remains substantially unchanged. it is a further object of the present invention to provide an electrical conductor of the type described which is simple in construction and economical to manufacture.
it is still another object of the present invention to provide an electrical conductor of the type described which is capable of absorbing in an efficient manner both expansive and contractive stresses due to temperature deviation in the conducit is still a further object of the present invention to provide an electrical conductor capable of internally absorbing thermal stresses and isolating the anchoring points of the conductor from these stresses.
The conductor according to the invention is essentially characterized in that it consists of a metal strip in which are formed bending areas for absorbing forces exerted longitudinally on the strip, in such manner that the conductor may be deformed in its plane under the action of thermal stresses while its length remains substantially unchanged.
in a preferred embodiment, the said areas or sections comprise at least one set of parallel slots.
The invention will now be described with reference to the accompanying drawings, which illustrate several embodiments of the invention but in no restrictive sense.
FlG. ll shows a plan view of a portion of a conductor according to a first embodiment of the invention, efore eing shaped to assume its final form.
FlG. illustrates the conductor of FIG. l after having been formed to proper shape ready for application.
HG. 3 is an illustration in plan view of a partially finished conductor according to a first modification of the invention, prior to being formed to proper shape.
FlG. 4 illustrates the conductor of FlG. 3 after being formed to proper shape ready for application.
H63. 5 and 6 illustrate the appearance of a conductor according to a second modification of the invention, when at ambient temperature and at low temperature, respectively.
H6. 7 shows the cross section or" a cable comprising a plurality of conductors corresponding to the conductor of FlG. 4.
H65. 8 and 9 show the cross section and longitudinal section, respectively, of a cable comprising a plurality of conductors corresponding to the conductor of P16. 5.
H68. Ill and ilillustrate a conductor having the same general form as that illustrated in .FlGS. l and 2, within which are contained wires of super conductive material.
hi6. 1 illustrates the blank or partially finished form of a conductor consisting of a conductive strip l in which areas of lesser resistance to stresses exerted in the plane of the strip, substantially perpendicularly to its axis have been obtained periodically along the length of the strip by cutting slots 2 in the strip extending parmlel to the length of the strip. The conductor is then deformed in the areas of the slots in such a manner as to obtain the form illustrated in FlG. 2. 'ihe edges of each corresponding slot in the two angular surfaces being joined together or not in accordance with the degree of deformation depending on the intended application.
This conductor may be employed as a cryogenic conductor operating at very low temperature. With the shape illustrated in H6. 2 and with its slots as shown, the conductor has its extremities secured to fixed elements (not shown) at ambient temperature. After cooling, the conductor contracts with a small reduction in the height of the V-shaped bend accompanied by a spreading of the slots.
The conductor may also be employed as a conventional conductor at a higher operating temperature than ambient temperature. To this end, the conductor is wrought to have the form illustrated in FlG 2 at ambient temperature, but while maintaining a specific width of the slots, in such manner as to promote subsequent deformations due solely to thermal actions. The unconfined conductor then has its extremities anchored still at ambient temperature. While in operation at a temperature exceeding ambient temperature, the conductor will expand and undergo lateral deformations, assuming the form of FIG. 2, the initial width of the slots being reduced. The length of the conductor will remain constant and its restoration to ambient temperature after operation will not engender any harmful strains.
The nature of the material employed for the conductor depends on its subsequent application. Standard grades or" copper and aluminum may be employed for conductors intended for conventional application. Electrolytic aluminum or copper of a high degree of purity will preferably be employed for conductors of the hyperconductive type.
Refined electrolytic aluminum of high purity, coated by one or more layers of a superconductive material, for example lead, columbium-zirconium or colurnbium-titanium alloy, or columbium-tin compound, may be employed for conductors of the superconductive type. FlGS. ill and ill show a superconductive conductor based upon the configuration of FIGS. 1 and 2 and consisting of wires Sll of superconductive material imbedded in a strip 3 of stabilizing metal, such as aluminum for example, the slots 2 being out between the superconductive wires.
One versed in the art may easily determine the number, length and width of the slots, in consideration of the coeffcient of expansion of the material of the conductor, or its limit of elastic deformation and the maximum difference in temtor, and the width of each slot may, for example, be equal to the distance separating two adjacent slots. The length of the slots amounts to between 20 and 100 times their width.
The separate areas of deformation are identical and separated by a distance substantially equal to 30 times the length of an area of deformation. It is demonstrable that, in such case, the relative increase in electrical resistance of the conductor is smaller than 20 percent which is acceptable in the majority of applications.
FIG. 3 illustrates a modified form of-a conductor according to the invention, in which the area of deformation comprises a row of slots 2 parallelto each other and-to the edges of the strip, and adjacent to which a rectangular-piece of metal has been cut away. On forming the strip to shape corresponding to FIG. 4, this arrangement renders it possible to prevent a local increase in the width of the conductor adjacent to the area of deformation.
FIGS. and 6 illustrate another embodiment of a conductor according to the invention. FIG. 5 illustrates the configuration at ambient temperature in plan view of a conductor according to this modified form. From a metal strip delimited by the dashed lines and have been cut metal pieces of trapezoidal shape alternating regularly on both edges of the strip in such a manner as to produce a' planar element substantially possessing a generally serpentine shape.
The deformed areas are produced by making cuts suchas 2 in the strip, parallel to the inclined sides 4 and 5 and substantially of the same length as these sides. The portions 6which are not slotted, and extend to the truncated corners, retain satisfactory mechanical resistance against contraction stresses caused by a reduction in temperature.'The'conductor is assumed to be'anchored at its extremities 7 and 8. Contrary to the embodiments described above, the width of the cuts is very small, the edges of the cuts being almost in contact.
FIG. 6 illustrates the appearance of the conductor when its temperature reaches a substantiallylower level than ambient temperature, in the case of hyperconductive or superconductive conductors. The extremities of the conductor being anchored, its contraction has caused a rotation of the slotted portions about the unslotted parts, so that the angle b, of the order of 160 has changed to an angle Q, close to 180, the distance between theextrcmities 7 and 8 being constant in practice and the conductor being unaffected by any harmful longitudinal strain. v
The areas of deformation described and illustrated are obviously not givenin any restrictive senseand obvious modifications may be introduced therein without thereby departing from the scope of the invention. 1
The invention equally relates to a cable comprising a plurality of conductors of nature combined into-a cable configuration. As an example, FIG. 7 illustrates the cross section of a cable comprising astack of hyperconductive or superconductive conductors having the form illustrated in FIG.'2 or FIG. 4. The conductors are stacked and secured against the inner side of an outer tube 31. An insulating material 32 may be situated between the conductors and the tube. The central space 33 acts as a duct for circulation of a cryogenic fluid. The conductors may 'carry direct current, in which case theywill be connected in parallel. The cable may equally be employed for single-phase alternating current inthe same conditions of application. In a modified construction, a three-phase cable may be formed by separating different conductors or groups of conductors allotted to one and the same phase by means of insulating strips. Another embodiment of a cable in accordance with the invention is illustrated in cross section in FIG. 8 and in longitudinal section in FIG. 9. This cable consists of a plurality of conductors 42 of analogous shape to that illustrated in FIGS. 2, 4 or 5. In the case of a direct current cable, as illustrated, the conductors are positioned closely to each other, are electrically connected in parallel and are enclosed in an insulating sheath 43. The dotted outline enclosingthe space 44 is occupied by the conductor.
The conductors are positioned in phase" geometrically, that is to say in such manner that the slotted portions of one conductor are situated against the slotted portions of the adjacent conductor. The method of securing the conductors within the sheath does not lie within the scope of the present invention and has not been illustrated. Analogously, the devices for thermal insulation and cryogenic arrangements have not been illustrated either.
The invention is in no way limited to the specific forms of the embodiments described and illustrated, which were not given in any restrictive sense, and modifications of detail and technically equivalent means may be incorporated therein without thereby exceeding the scope of the invention.
In particular, the conductors according to the invention may be applied in cables of coaxial structure, employing a plurality of conductors, such as those illustrated in FIGS. 1-6 and 10 and 11, and with deformations formed to troughshape.
We have shown anddescribed several embodiments in accordance with the present invention. It is understood that the same is not limited thereto but is susceptible of numerous changesand modifications as known to a person skilled in the art and we, therefore do not wish to be limited to the details shown and described herein but intend to cover all such changes and modifications as are encompassed by the scope of the appended claims.
We claim:
1. An electrical conductor comprising a metal strip in which spaced deformed portions lying in the plane of that strip are each provided with a plurality of slots, said slots being angularly disposed with respect to the longitudinal edges of said metal strip and having a lesser resistance to deformation in said plane than the remaining portions of the strip.
2. An electrical conductor comprising a metal strip in which spaced deformed portions of the strip are each provided with a plurality of slots and have lesser resistance to be deformed in said plane thanthe remaining portions of the strip.
, 3. An electrical conductor as defined in claim 2 wherein said slots extend parallel to, the longitudinal edges of said metal strip. I
4. An electrical conductor as defined in claim 3 wherein a notch is cut into said metal strip adjacent said sets of slots and extending to at leastone edge of said strip. v
5. An electrical conductor as defined in claim 3 wherein notches are cut into said'metalstrip adjacent said sets of slots in either-longitudinaledge thereof alternately to provide for said strip a plane serpentlike configuration.
6. An electrical conductor as defined in claim 2 wherein said strip is made of a metal of standard conductivity and includes a plurality of wires embedded therein extending longitudinallyof the strip and made of a superconductive material.
7. An'electricalconductor as defined in claim 6 wherein said strip is made of aluminum and said wires are made of a metal selected from the group consisting of lead, columbiumzirconium alloys, columbium-titanium alloys and columbiumtin alloys.
8. A cable comprising a plurality of electrical conductors as defined in claim 3 positioned together in contiguous relation ship within a tubular member, an insulating material being provided between said conductors and said tubular member.
9. A cable as defined in claim 8 wherein said electrical conductors are stacked so as to provide a central passage for cir culation of cryogenic fluid.
10. A cable as defined in claim 8 wherein said electrical conductors are positioned so that slotted portions of one contwo consecutive deformed portions are angularly disposed with respect to one another in the plane of the strip.
US694146A 1966-12-28 1967-12-28 Electrical conductor configuration providing length stable with temperature Expired - Lifetime US3544706A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR89180A FR1513452A (en) 1966-12-28 1966-12-28 Electric conductor of invariable length as a function of temperature

Publications (1)

Publication Number Publication Date
US3544706A true US3544706A (en) 1970-12-01

Family

ID=8623079

Family Applications (1)

Application Number Title Priority Date Filing Date
US694146A Expired - Lifetime US3544706A (en) 1966-12-28 1967-12-28 Electrical conductor configuration providing length stable with temperature

Country Status (8)

Country Link
US (1) US3544706A (en)
BE (1) BE708361A (en)
DE (1) DE1615935A1 (en)
ES (1) ES348589A1 (en)
FR (1) FR1513452A (en)
GB (1) GB1181449A (en)
LU (1) LU55161A1 (en)
NL (1) NL6717452A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657466A (en) * 1969-06-19 1972-04-18 Imp Metal Ind Kynoch Ltd Superconductors
US4753918A (en) * 1985-08-29 1988-06-28 Interatom Gmbh Growth compensating metallic exhaust gas catalyst carrier body and metal sheet for manufacturing the same
EP1073159A2 (en) * 1999-07-26 2001-01-31 Alps Electric Co., Ltd. Switch device with AC inlet and AC switch
FR2819112A1 (en) * 2001-01-04 2002-07-05 Labinal Aircraft power distribution networks having power conductor bar with end fixing support sites and section with limiting slots/adjacent conductor segments.
WO2011006493A2 (en) 2009-07-16 2011-01-20 Taller Gmbh Current bar having a compensation section
US20130192890A1 (en) * 2010-10-15 2013-08-01 Yazaki Corporation Wiring harness and routing structure of the same
CN103492232A (en) * 2011-01-20 2014-01-01 矢崎总业株式会社 Electrical conduction path structure and wiring harness incorporating the same
US9524811B2 (en) 2010-08-24 2016-12-20 Yazaki Corporation Wire harness

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1940147A1 (en) * 1969-07-10 1971-02-25 Kabel Metallwerke Ghh Conductor arrangement from several conductor strings for superconducting cables
GB2620443A (en) * 2022-07-08 2024-01-10 Gkn Aerospace Services Ltd Apparatus
GB2620440A (en) * 2022-07-08 2024-01-10 Gkn Aerospace Services Ltd Hyperconducting arrangement

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657466A (en) * 1969-06-19 1972-04-18 Imp Metal Ind Kynoch Ltd Superconductors
US4753918A (en) * 1985-08-29 1988-06-28 Interatom Gmbh Growth compensating metallic exhaust gas catalyst carrier body and metal sheet for manufacturing the same
EP1073159A2 (en) * 1999-07-26 2001-01-31 Alps Electric Co., Ltd. Switch device with AC inlet and AC switch
EP1073159A3 (en) * 1999-07-26 2001-11-14 Alps Electric Co., Ltd. Switch device with AC inlet and AC switch
FR2819112A1 (en) * 2001-01-04 2002-07-05 Labinal Aircraft power distribution networks having power conductor bar with end fixing support sites and section with limiting slots/adjacent conductor segments.
DE102009033370A1 (en) * 2009-07-16 2011-02-17 Taller Gmbh Busbar with compensation section
WO2011006493A2 (en) 2009-07-16 2011-01-20 Taller Gmbh Current bar having a compensation section
DE102009033370B4 (en) * 2009-07-16 2011-12-15 Taller Gmbh Busbar with compensation section
US9524811B2 (en) 2010-08-24 2016-12-20 Yazaki Corporation Wire harness
US20130192890A1 (en) * 2010-10-15 2013-08-01 Yazaki Corporation Wiring harness and routing structure of the same
US9960577B2 (en) * 2010-10-15 2018-05-01 Yazaki Corporation Wiring harness and routing structure of the same
CN103492232A (en) * 2011-01-20 2014-01-01 矢崎总业株式会社 Electrical conduction path structure and wiring harness incorporating the same
CN103492232B (en) * 2011-01-20 2016-01-20 矢崎总业株式会社 Conduction path and comprise the wire harness of this conduction path

Also Published As

Publication number Publication date
LU55161A1 (en) 1969-08-08
NL6717452A (en) 1968-07-01
GB1181449A (en) 1970-02-18
DE1615935A1 (en) 1970-06-04
ES348589A1 (en) 1969-03-16
FR1513452A (en) 1968-02-16
BE708361A (en) 1968-06-21

Similar Documents

Publication Publication Date Title
US3544706A (en) Electrical conductor configuration providing length stable with temperature
US4950841A (en) Thermally efficient splice joint for electrical distribution busway
US3812448A (en) Electrical connector
US3730966A (en) Cryogenic cable
US3895853A (en) Electrical connector
US3363050A (en) Wiring duct with hermaphroditic connecting elements
US4886468A (en) Insulated electrical power distribution busway tabs
US4291935A (en) Self-stripping contact element for a connector
CA2122685A1 (en) High Tc Superconducting Cable Conductor Employing Oxide Superconductor
US2157906A (en) Electric fuse
JP3076418B2 (en) Multifilament superconducting cable and manufacturing method thereof
US2043044A (en) Electric cable
US3551585A (en) Electrical distribution systems
US4590328A (en) Plastic sealing plugs for cable fittings
US3470508A (en) Superconducting winding
US4251290A (en) Thermopile formed of conductors
US3728472A (en) Mechanical pressure type electrical connections for terminating and connecting metallic cable shields
US1997146A (en) Electric heater
US4163166A (en) Field winding assembly for rotor in electric rotary machine
EP0007478B1 (en) Insulating covering for interlocking and electrically isolating parallel bus bars
US3048643A (en) Thermoelectric generator unit
US3427391A (en) Composite superconductive conductor
SU905954A1 (en) Channel magnetohydrodynamic generator
US3064064A (en) Thermoelectric devices
US3902004A (en) Clips