US3541848A - Acoustical imaging system - Google Patents
Acoustical imaging system Download PDFInfo
- Publication number
- US3541848A US3541848A US770928A US3541848DA US3541848A US 3541848 A US3541848 A US 3541848A US 770928 A US770928 A US 770928A US 3541848D A US3541848D A US 3541848DA US 3541848 A US3541848 A US 3541848A
- Authority
- US
- United States
- Prior art keywords
- energy
- detector
- acoustical
- waveguide
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003384 imaging method Methods 0.000 title description 9
- 230000008878 coupling Effects 0.000 description 19
- 238000010168 coupling process Methods 0.000 description 19
- 238000005859 coupling reaction Methods 0.000 description 19
- 238000002604 ultrasonography Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J31/00—Cathode ray tubes; Electron beam tubes
- H01J31/08—Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
- H01J31/495—Pick-up tubes adapted for an input of sonic, ultrasonic, or mechanical vibrations and having an electric output
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H3/00—Measuring characteristics of vibrations by using a detector in a fluid
- G01H3/10—Amplitude; Power
- G01H3/12—Amplitude; Power by electric means
- G01H3/125—Amplitude; Power by electric means for representing acoustic field distribution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2437—Piezoelectric probes
- G01N29/2443—Quartz crystal probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2462—Probes with waveguides, e.g. SAW devices
Definitions
- ACOUSTICAL IMAGING SYSTEM Filed Oct. 28, 1968 32 ELECTRON M [8 su/v V I NVENTOR. FREDP/C/f L. THURS TONE ATTORNEY United States Patent Oihce 3,541,848 Patented Nov. 24, 1970 US. Cl. 73-67.5 Claims ABSTRACT OF THE DISCLOSURE
- a system for electroacoustically producing images of objects placed in an ultrasound transmitting medium which is coupled to a piezoelectric transducer.
- the coupling includes a sonic waveguide for accepting acoustical energy thorugh a large angle of incidence and directing the energy to the transducer at a normal angle of incidence.
- the critical angle of incidence for total reflection of acoustical energy may be quite small.
- the effective aperture or output of the system When used for imaging purposes is seriously restricted by a substantial loss of sonic energy by reflection from the detector back into the coupling medium.
- the present invention overcomes this restriction With coupling which greatly increases the angle through which acoustic energy will be transmitted through the coupling interface in a system of the aforesaid type.
- the acoustic energy acceptance angle at the interface of a detector medium e.g., piezoelectric plate
- coupling medium e.g., water
- the waveguide is placed immediately adjacent to the detector plate in the coupling medium and comprises a rigid matrix of acoustical waveguides each in the form of a hollow channel extending right angularly toward the detector plate.
- Each channel is of a diametral size in the order of a wavelength of the acoustic energy applied to the image producing system so that a single mode piston type propagation of acoustic energy will take place axially thereof and accordingly be received by the detector plate at a zero angle of incidence.
- Such energy propagation will be excited at the entrance aperture of each channel through a large angle of incidence of incident acoustical energy and the channel, in turn, will deliver this energy only along its axial direction,
- FIG. 1 diagrammatically illustrates an acoustical image producing system which is exemplary of a type to which the improvement of this invention is applicable;
- FIG. 2 is a greatly enlarged fragmentary cross-sectional view of a portion of the system of FIG. 1;
- FIG. 3 is a greatly enlarged fragmentary cross-sectional view similiar to FIG. 2 wherein details of the present inventive concept are illustrated.
- FIG. 1 diagrammatically illustrates an electroacoustical image producing cell 10 having an electron image converter tube 12 associated therewith.
- This unit is exemplary of a type of system to which the present inventive concept is applicable.
- Cell 10 includes tank 14 having a window at one end in the form of a piezoelectric image transducer (e.g., a quartz plate) which will be referred to hereinafter as image detector 16.
- image detector 16 At the opposite end of tank 14 is ultrasound generator 18 preferably in the form of a crystal transducer capable of producing acoustic energy of frequencies in the order of from 1. to 20 megacycles per second,
- Tank 14 is filled to a level above image detector 16 with an ultrasound transmitting coupling medium 20 (e.g., water) which transmits acoustic energy from generator 18 to detector 16.
- an ultrasound transmitting coupling medium 20 e.g., water
- An object 22 intended to be nondestructively examined by ultrasonic imaging is immersed in the liquid coupling medium between generator 18 and detector 16.
- Object 22 may be an industrial product such as a weldment or the like or an in vivo or excised biological specimen.
- Sound waves 24 produced by generator 18 in coupling medium 20 which become incident upon object 22 are suppressed, partially absorbed, diiferently refracted and/ or otherwise modified according to the external configuration and/or internal structure or nature of the object during transmittance therethrough.
- Such sound waves may be considered as image forming waves.
- Their effect upon detector 16 is to induce electrical charges on surface 26 of piezoelectric detector 16 of values corresponding to the position of incidence and respective sonic pressures applied thereby upon detector 16.
- the ultrasound field of waves 25 is converted to what may be termed as an electrical image of object 22 located on the piezoelectric surface 26 of detector 16.
- Image converter tube 12 is illustrative of means which may be employed to convert the aforesaid electrical image into a modulated electrical signal which in turn may be applied to the scanning circuit of a conventional cathode ray tube for visual display of the image.
- Tube 12 having electron gun 28 scans surface 26 of detector 16 with electron beam 30 whereupon secondary emission electrons produced by the incident scanning beam are modulated by the piezoelectric voltage present on surface 26.
- the modulated secondary emission electrons 32 are induced by accelerating mesh 34 into electron multiplier 36 from which, through lead 38, the signal may be directed to a cathode ray display tube (not shown).
- angle 1' represents a critical angle of incidence at which total reflection of acoustic energy takes place and arrows 42 and 44 represent paths of image forming acoustic energy incident upon face 40 at angles larger than the critical angle.
- This flected back into coupling medium 20, as shown, and acoustic energy is, accordingly, totally internally reflected hack into coupling medium 20, as shown, and fails to excite detector 16.
- piezoelectric detector 16 is provided with waveguide 46 placed against the detector 16c0upling 20 interface.
- Waveguide 46 comprises a rigid matrix of hollow channels 48 which are axially right angularly extended toward face 40 of detector 16.
- the diametral size of each of channels 48 is in the order of a wavelength of the sonic energy produced by generator 18.
- Each channel 48 is surrounded by a relatively thick wall 50 which gives the waveguide structure sufficient rigidity to be itself nonvibratile in the coupling medium 20.
- Waveguide 46 may be formed of various metals such as aluminum, copper, brass or steel or of certain glasses and plastics or their equivalents. Preferred materials would be those which would provide the aforesaid rigidity of structure with minimum thicknesses of walls 50 or, in other words, with a maximum number of channels 48 per unit of surface area.
- the waveguide may be cemented or otherwise attached to surface 40 of detector 16. Alternatively, it may be supported immediately adjacent to surface 40 by suitable brackets or the like (not shown) extending from. the side walls and/or bottom of tank 14 (FIG. 1).
- Paths 42 and 44 (FIG. 2) of image forming acoustic energy which, as already mentioned, would ordinarly be totally reflected by face 40 of detector 16 are reproduced in FIG. 3 to illustrate the entirely different energy transfer effect produced by waveguide 46.
- paths 42 and 44 of acoustic energy upon incidence at the entrance aperture of a waveguide channel, induce a single mode piston type propagation of acoustic energy axially thereof as represented by arrows 42a and 44a and by lines 42b and 44b.
- This energy then being directed right angularly (i.e., flatly and well within the critical angle i of incidence) against face 40 of detector 16 in each case, now excites the detector to produce electrical charges by piezoelectric action on its surface 26 which charges are positionally and quantitatively representative of the image forming acoustic energy propagated along paths 42 and 44 at angles considerably greater than the aforesaid critical angle.
- Image forming acoustic energy normally being propagated in medium 20 toward detector 16 within the critical i, as represented by arrow 52 (FIG. 3), is, naturally, largely propagated through a particular one or plurality of channels 48 against whose entrance apertures this energy becomes incident.
- An acoustical imaging system having an acoustic energy transmitting medium of one acoustical impedance interfacially coupled to a transducer medium of a different acoustical impedance and means for generating acoustic energy in said transmitting medium wherein the improvement comprises:
- an acoustical waveguide positioned at said coupling interface, said waveguide having a number of juxtapositioned energy transmitting channels in a matrix material with each channel having an entrance aperture exposed to said energy transmitting medium for receiving acoustic energy generated in said transmitting medium.
- transducer is a piezoelectric plate having an acoustic energy receiving face immediately adjacent to which said waveguide is positioned with said channels extending perpendicularly from said face into said energy transmitting medium.
- An acoustical imaging system wherein the matrix of said waveguide is nonvibratile when subjected to said acoustic energy.
- An acoustical imaging system wherein said energy transmitting medium is a liquid and an object to be imaged is immersed in said liquid between said acoustic energy generating means and waveguide whereby said generated energy is modified by transmittance through and around said object and is received by said waveguide as image forming acoustic energy.
- An acoustical imaging system wherein said image forming acoustic energy is received by said waveguide through angles less and greater than the critical angle of incidence for said coupling interface as determined by said acoustical impedances of said transmitting and transducing media and is transmitted through said waveguide channels to said face of said plate at normal angles of incidence for piezoelectric conversion by said plate into electrical image forming energy.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77092868A | 1968-10-28 | 1968-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3541848A true US3541848A (en) | 1970-11-24 |
Family
ID=25090140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US770928A Expired - Lifetime US3541848A (en) | 1968-10-28 | 1968-10-28 | Acoustical imaging system |
Country Status (6)
Country | Link |
---|---|
US (1) | US3541848A (enrdf_load_stackoverflow) |
JP (1) | JPS4814271B1 (enrdf_load_stackoverflow) |
DE (1) | DE1952760A1 (enrdf_load_stackoverflow) |
FR (1) | FR2022317A1 (enrdf_load_stackoverflow) |
GB (1) | GB1289507A (enrdf_load_stackoverflow) |
NL (1) | NL6915721A (enrdf_load_stackoverflow) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3831137A (en) * | 1972-04-14 | 1974-08-20 | Us Navy | Acousto-optic underwater detector |
US3903498A (en) * | 1974-02-28 | 1975-09-02 | Us Health | Ultrasound imaging system utilizing shaped acoustic matching elements to increase the effective aperture of an acoustic transducer |
US20120061901A1 (en) * | 2010-09-10 | 2012-03-15 | Kabushiki Kaisha Toshiba | Ultrasonic detecting device and sheet handling apparatus comprising ultrasonic detecting device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2567683B1 (fr) * | 1984-07-12 | 1986-11-14 | Commissariat Energie Atomique | Dynode a emission secondaire reglable et dispositifs utilisant une telle dynode |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2567407A (en) * | 1948-04-23 | 1951-09-11 | Stromberg Carlson Co | Electroacoustic transducer |
US2580439A (en) * | 1949-09-07 | 1952-01-01 | Bell Telephone Labor Inc | Directional acoustic system |
US2820214A (en) * | 1949-05-28 | 1958-01-14 | John P O'neill | Sonar transducers |
US2899580A (en) * | 1959-08-11 | Electron tube |
-
1968
- 1968-10-28 US US770928A patent/US3541848A/en not_active Expired - Lifetime
-
1969
- 1969-10-06 GB GB1289507D patent/GB1289507A/en not_active Expired
- 1969-10-13 FR FR6935058A patent/FR2022317A1/fr not_active Withdrawn
- 1969-10-17 NL NL6915721A patent/NL6915721A/xx unknown
- 1969-10-20 DE DE19691952760 patent/DE1952760A1/de active Pending
- 1969-10-22 JP JP44083959A patent/JPS4814271B1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2899580A (en) * | 1959-08-11 | Electron tube | ||
US2567407A (en) * | 1948-04-23 | 1951-09-11 | Stromberg Carlson Co | Electroacoustic transducer |
US2820214A (en) * | 1949-05-28 | 1958-01-14 | John P O'neill | Sonar transducers |
US2580439A (en) * | 1949-09-07 | 1952-01-01 | Bell Telephone Labor Inc | Directional acoustic system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3831137A (en) * | 1972-04-14 | 1974-08-20 | Us Navy | Acousto-optic underwater detector |
US3903498A (en) * | 1974-02-28 | 1975-09-02 | Us Health | Ultrasound imaging system utilizing shaped acoustic matching elements to increase the effective aperture of an acoustic transducer |
US20120061901A1 (en) * | 2010-09-10 | 2012-03-15 | Kabushiki Kaisha Toshiba | Ultrasonic detecting device and sheet handling apparatus comprising ultrasonic detecting device |
CN102401815A (zh) * | 2010-09-10 | 2012-04-04 | 株式会社东芝 | 超声波检查装置以及具备该装置的纸张类处理装置 |
Also Published As
Publication number | Publication date |
---|---|
JPS4814271B1 (enrdf_load_stackoverflow) | 1973-05-04 |
DE1952760A1 (de) | 1970-04-30 |
FR2022317A1 (enrdf_load_stackoverflow) | 1970-07-31 |
NL6915721A (enrdf_load_stackoverflow) | 1970-05-01 |
GB1289507A (enrdf_load_stackoverflow) | 1972-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6105431A (en) | Ultrasonic inspection | |
US5734588A (en) | Bore probe for tube inspection with guided waves and method therefor | |
US3911730A (en) | Ultrasonic transducer probe system | |
Kino | Acoustic imaging for nondestructive evaluation | |
US4333474A (en) | Ultrasonic imaging system | |
US4207901A (en) | Ultrasound reflector | |
US3898840A (en) | Multi-frequency ultrasonic search unit | |
US5681995A (en) | Ultrasonic flaw detecting apparatus for inspecting multi-layer structure and method thereof | |
US3780572A (en) | Ultrasonic inspection apparatus | |
CN113874721B (zh) | 一种用于板材的无损测试的方法和设备 | |
US3541848A (en) | Acoustical imaging system | |
US4995260A (en) | Nondestructive material characterization | |
KR101877769B1 (ko) | 복합 다중 주파수 초음파 위상배열 영상화 장치 | |
JP3635453B2 (ja) | 超音波横波斜角探傷方法及び装置 | |
CN114002323B (zh) | 一种固体火箭发动机ⅱ界面脱粘的成像检测方法及系统 | |
US3709029A (en) | Ultrasonic inspection apapratus | |
JPS59151057A (ja) | 超音波探傷装置 | |
JPS6326344B2 (enrdf_load_stackoverflow) | ||
JPS634142B2 (enrdf_load_stackoverflow) | ||
JPS637846Y2 (enrdf_load_stackoverflow) | ||
JPS58171663A (ja) | 金属管の超音波探傷方法 | |
JP3023642B2 (ja) | 溶接式管継手における差し込み深さ測定方法 | |
JPH06113398A (ja) | 音波変換素子 | |
JPH01187447A (ja) | 2分割形垂直探触子 | |
JPS6229957Y2 (enrdf_load_stackoverflow) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WARNER LAMBERT COMPANY, 201 TABOR ROAD, MORRIS PLA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMERICAN OPTICAL CORPORATION,;REEL/FRAME:004034/0681 Effective date: 19820513 Owner name: WARNER LAMBERT TECHNOLOGIES, INC.; 6373 STEMMONS F Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WARNER LAMBERT COMPANY;REEL/FRAME:004034/0700 Effective date: 19820514 |