US3541194A - Method for making syntactic foam - Google Patents

Method for making syntactic foam Download PDF

Info

Publication number
US3541194A
US3541194A US798823*A US3541194DA US3541194A US 3541194 A US3541194 A US 3541194A US 3541194D A US3541194D A US 3541194DA US 3541194 A US3541194 A US 3541194A
Authority
US
United States
Prior art keywords
container
syntactic foam
buoyancy
filler
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US798823*A
Inventor
Israel Resnick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Application granted granted Critical
Publication of US3541194A publication Critical patent/US3541194A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/36Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and impregnating by casting, e.g. vacuum casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • B29C70/66Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres the filler comprising hollow constituents, e.g. syntactic foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/06Molding microballoons and binder

Definitions

  • a method of preparing syntactic foam buoyancy material including confining and compacting a quantity of low density iiller, flowing an uncured epoxy resin mix through the compacted iiller by drawing the said mix upward by means of a vacuum pump attached to the mold confining the iiller to fill the entire volume of the mold not occupied by the said filler and curing the epoxy resin mix.
  • This invention relates to buoyancy materials for general applications but more particularlyfor deep sea applications.
  • buoyancy materials are needed for incorporating in payload transporting deep submergence buoyant vehicles and are also needed for supporting tethered ocean platforms, acoustic arrays, and underwater equipments above the bottom.
  • the buoyancy material it would be advantageous for the buoyancy material to be a sound attenuator.
  • An ideal deep submergence buoyancy material would have substantial net buoyancy in terms of its weight and volume, minimum cost per pound of net buoyancy,
  • buoyancy material for deep submergence vehicles when the bathyscaphe Trieste made its now historic dive.
  • the Trieste can be compared to a blimp in the sense that both have a pod appended to a comparatively large buoyancy tank.
  • the buoyancy tank of the Trieste was designed to contain gasoline for want of a better buoyancy material despite serious disadvantages including fire hazard, substantial compressibility affecting buoyancy and trim stability, significant contraction With drop in temperature, and the danger accompanying the use of any tluid for buoyancy, namely, escape of the 3,541,194 Patented Nov. 17, 1970 icc tluid through any fault in the Wall of the buoyancy tank.
  • buoyancy tanks suitable for the pressure range are very expensive.
  • Metallic lithium with a density of 33 lbs. per cubic foot is one of the least dense solids available. It has been considered for use as a deep sea submergence buoyancy material. Because lithium and water react vigorously when brought together, liberating hydrogen gas, this material has been deemed too hazardous for personnel carrying vehicles. Suitable corrosion resistant metallic containers for lithium significantly reduce the net buoyancy of the combination. Also, the cost of lithium plus the suitable container is too high.
  • wood as a buoyancy material is limited to surface or near surface applications because of low strength and high water absorption.
  • Low density plastics have limited buoyancy as a class. At moderate depth, plastics in the form of thickwalled hollow spheres are useful but for deep submergence applications, they are unsuitable.
  • An object of this invention is to provide a buoyancy material as near ideal as possible for deep submergence applications.
  • a further object is to provide a buoyancy material suitable for long term use under hydrostatic pressure greater than 10,000 pounds per s quare inch.
  • a further object is to provide a reliable buoyancy material for long term use in a deep submergence vehicle that may range between the surface and thousands of feet in depth and that can also provide structural support to the hull of the vehicle.
  • a further object is to provide superior deep-depth buoys for reliable long-term use as cable, platform, acousticarray or equipment supports.
  • a further object is to provide a superior buoyant material for long term use under water at great depth and which has sound attenuation characteristics as well as superior buoyancy characteristics.
  • a further object is to provide a buoyant material suitable for potting the insides of unmanned oceanographic probes.
  • FIG. l illustrates graphically the relationship between compressive strength of a particular cured resin and the parts of hardener per parts of uncured resin
  • FIGS. 2 and 3 illustrate a preferred technique of forming -a block of syntactic foam of a selected geometry.
  • Syntactic foam is a material consisting of a resinous plastic matrix containing low density hollow granular ller.
  • the iiller consists of high strength, approximately spherical, microscopic hollow glass grains, average particle density not over .45, wall thickness approximately 1.8 microns, 2090 microns outside diameter, a product which has been marketed commercially.
  • the ller is ernbedded in a particular epoxy resin matrix.
  • a composition 3 for the resin component of the syntactic foam that I discovered to have the best properties is as follows:
  • a hardener consisting of methylbicyclo [2,2,1] heptene 2,3-dicarboxylic anhydride isomers 100-104
  • An eccelerator consisting of benzyldimethylamine(3) 1
  • Other hardeners were not satisfactory either because a syntactic foam of lower strength resulted or because of diiculties in handling; many of the acid type hardeners are solid at room temperature and require preheating for use.
  • the resin cured according to the temperature schedule described below, and without filler, has a uniaxial compressive strength of approximately 21,600 pounds per square inch, which is higher than that of any other resin that might be used in syntactic foam for deep submergence applications.
  • the range of hardener concentration is due to variations among commercially purchased hardeners. Actually the composition described is the optimum composition.
  • FIG. 1 shows the relationship between concentration of hardener and uniaxial compressive strength.
  • the quantity of the above-recited accelerator may range from 0.2 to 1.0 part by weight.
  • Other accelerators may be used, e.g. trimethyl amino methyl phenol 0.5 to 3.0 parts by weight, or dimethyl amino methyl phenol 0.5 to 3.0 parts by weight, or alpha-methylbenzyl dimethyl amine 1 to 3 parts by weight.
  • the choice of accelerator and the quantity affects the temperature and time of cure, as is well known to those skilled in the art.
  • the cure time and temperature for the resin system described varies with specimen or casting size and geometry. The following cure schedule is preferred for a small specimen:
  • the other component of the syntactic foam is the microscopic hollow glass spheres.
  • the syntactic foam has superior properties for deep submergence applications if the percentage of glass filler by weight is within the range of to 50 percent.
  • the properties of the syntactic foam varies with percentage of glass filler as follows. The density of the foam is lower with a higher percentage of ller. However, compressive strength, compressive modulus decrease while percentage water absorption increases with increased percentage of filler.
  • the water absorptiveness of the syntactic foam is reduced and the compressive strength increased by the addition of less than one part by weight of one of the following coupling agents to the resin system.
  • FIG. 2 there is shown a method of making the syntactic foam described with optimum properties.
  • a container 10 the serve as a mold has an open end 12 and an opposite closed end 14 with an opening 16.
  • a transparent pipe stub 18 is sealed in the opening 16.
  • the inner surface of the container in the direction between the bot tom 14 and the open end, all around the container, is continuous or straight and preferably formed with enough draft to permit easy withdrawal of a casting formed in the container.
  • the opening 16 is overlaid with a swatch of fiber glass cloth 20 attached to the surface around opening 16.
  • the inside surface of the container is waxed to render it relatively non-adherent.
  • the container is supported level on any convenient means 22 that provides clearance for pipe stub 18, and completely filled with the hollow spherical granular glass filler 24.
  • the container is vibrated, shaken, or tapped gently to compact the filler in the container and more of the tller is added till level full.
  • fiber glass cloth 26 is stretched across the open end 12 and cemented to the exterior surface.
  • a stiff metal screen 28 is laid over the fiber glass cloth 26 and bent over the edge of the open end of the container.
  • the container is turned over and seated on spacer elements 30 in the bottom of a comparatively large waxed pan 32 thereby permitting fluid in the pan to ow into the open end of the container.
  • a hose 34 is coupled to the transparent pipe stub 18 and to a vacuum pump, not shown, through a conventional trap 36.
  • the apparatus assembled as in FIG. 3 is located in a temperature controlled chamber wherein the temperature is continuously adjustable up to about 300 F.
  • a supply of the resin system mix is poured into the pan 32.
  • the vacuum pump is set in operation. It is advantageous to choose from among available resins that meet the previously recited specifications that resin having the lowest viscosity to facilitate the operation illustrated in FIG. 3. If the viscosity of the fluid appears to be too high the temperature of the chamber is elevated.
  • Gelation is not hastened if the temperature remains well below 200 F.
  • the fluid rises into the container and after filling the container rises into the transparent pipe stub or in the alternative, into a transparent sight tube, not shown, just past the pipe stub which, in the latter case, is not transparent.
  • the vacuum pump is adjusted to reduce the pressure differential thereacross whereby the fluid level terminates in the glass stub.
  • the pump is continued at that setting. Entrapped gas continues to escape thereafter.
  • the resin is polymerized, the pump is shut down and the hose 34 disconnected. Some of the cured resin around the exterior of the container is chipped away. Then the casting in the container is readily removable.
  • the described method of making a cast block of the syntactic foam results in a maximum ratio of glass to foam, namely, about percent glass filler by volume and 35% resin system mix or about 40 percent glass filler by weight. Also, there is minimum breakage of glass spheres in the course of handling and forming the block, no dry or weaker areas, and minimum entrapped gas. It is not necessary to measure the filler; the quantity of filler used is the amount that fills the container compactly. If the filler and resin system mix are combined in a container and mixed with a stirring paddle and then cured, a product that is superior to other buoyancy means known in the art can be obtained but not as good and of as consistent quality as that obtained by the method described.
  • syntactic foam buoyancy material comprising illing a straight-sided container that is open at one end, and that has a central screened small opening in its end wall, with low density hollow spherical granular glass ller free of resin coating,
  • syntactic foam buoyancy material comprising:
  • a lfluid epoxy resin system mix consisting of 100 parts by lweight uncured reaction product of epichlorohydrin with bis(4hydroxyphenyl)di methyl methane and 100104 parts by weight of methylbicyclo (2,2,1) heptene 2,3 dicarboxylic anhydride isomers and 1 part by weight of benzyldimethylamine (i3),

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

' Nov. 17, 1970 l. REsNlcK l METHOD FOR MAKING SYNTACTIC FOAM Original Filed March 2a, 196e 2 sheets-sheet i wm wm s mm. wm um mm n QQN Nxm
www
- Nov. 17, 1970 1. REsNlcK METHOD FOR MAKING SYNTACTIC FOAM Original Filed March 28, 1966 TEMPERHrZ/ef 60A/mouw l I l l l l I I I I I l l I I l I I l I I l l l l I l l I l l l n l OVE/Vgn United States Patent O 3,541,194 METHOD FOR MAKING SYNTACTIC FOAM Israel Resnick, Bellerose, N.Y., assignor to the United States of America as represented by the Secretary of the Navy Original application Mar. 28, 1966, Ser. No. 538,920, now Patent No. 3,477,967, dated Nov. 11, 1969. Divided and this application Oct. 15, 1968, Ser. No. 798,823
Int. Cl. B2Sb 1/.08; C08f 47/10; C08g 53/08 U.S. Cl. 264-71 2 Claims ABSTRACT OF THE DISCLOSURE A method of preparing syntactic foam buoyancy material is disclosed including confining and compacting a quantity of low density iiller, flowing an uncured epoxy resin mix through the compacted iiller by drawing the said mix upward by means of a vacuum pump attached to the mold confining the iiller to fill the entire volume of the mold not occupied by the said filler and curing the epoxy resin mix.
This application is a division of U.S. application Ser. No. 538,920, filed Mar. 28, 1966 for Syntactic foam, now Pat. No. 3,477,967.
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
This invention relates to buoyancy materials for general applications but more particularlyfor deep sea applications.
Better buoyancy materials are needed for incorporating in payload transporting deep submergence buoyant vehicles and are also needed for supporting tethered ocean platforms, acoustic arrays, and underwater equipments above the bottom. For some applications, it would be advantageous for the buoyancy material to be a sound attenuator. An ideal deep submergence buoyancy material would have substantial net buoyancy in terms of its weight and volume, minimum cost per pound of net buoyancy,
such high compressive strength as to suffer no damage even in the deepest places in the oceans, zero water absorption, shall suffer no deterioration in compressive strength nor absorb water whether subjected to continuous high pressure or cyclic changes in pressure ranging 'between atmospheric and that at the ocean door, essentially zero temperature coeicient of expansion and constraction, adequate impact strength, and bulk modulus of compressibility equal to or higher than that of water. The latter is dened as the ratio of pressure to compressibility; compressibility is the change in Volume (over the pressure range), divided by the volume.
Attention was focused on buoyancy material for deep submergence vehicles when the bathyscaphe Trieste made its now historic dive. The Trieste can be compared to a blimp in the sense that both have a pod appended to a comparatively large buoyancy tank. The buoyancy tank of the Trieste was designed to contain gasoline for want of a better buoyancy material despite serious disadvantages including fire hazard, substantial compressibility affecting buoyancy and trim stability, significant contraction With drop in temperature, and the danger accompanying the use of any tluid for buoyancy, namely, escape of the 3,541,194 Patented Nov. 17, 1970 icc tluid through any fault in the Wall of the buoyancy tank. Furthermore, buoyancy tanks suitable for the pressure range are very expensive.
Metallic lithium with a density of 33 lbs. per cubic foot is one of the least dense solids available. It has been considered for use as a deep sea submergence buoyancy material. Because lithium and water react vigorously when brought together, liberating hydrogen gas, this material has been deemed too hazardous for personnel carrying vehicles. Suitable corrosion resistant metallic containers for lithium significantly reduce the net buoyancy of the combination. Also, the cost of lithium plus the suitable container is too high.
Other materials which have been considered include wood, organic polymers including polyethylene and polypropylene, foamed plastics, and metal or ceramic foams. Wood as a buoyancy material is limited to surface or near surface applications because of low strength and high water absorption. Foams, both plastic and inorganic, have excessive permeability and inadequate strength for deep submergenc. Low density plastics have limited buoyancy as a class. At moderate depth, plastics in the form of thickwalled hollow spheres are useful but for deep submergence applications, they are unsuitable.
An object of this invention is to provide a buoyancy material as near ideal as possible for deep submergence applications.
A further object is to provide a buoyancy material suitable for long term use under hydrostatic pressure greater than 10,000 pounds per s quare inch.
A further object is to provide a reliable buoyancy material for long term use in a deep submergence vehicle that may range between the surface and thousands of feet in depth and that can also provide structural support to the hull of the vehicle.
A further object is to provide superior deep-depth buoys for reliable long-term use as cable, platform, acousticarray or equipment supports.
A further object is to provide a superior buoyant material for long term use under water at great depth and which has sound attenuation characteristics as well as superior buoyancy characteristics.
A further object is to provide a buoyant material suitable for potting the insides of unmanned oceanographic probes.
Other objects and advantages will appear from the following description of an example of the invention, and the novel features will be particularly pointed out in the appended claims.
FIG. l illustrates graphically the relationship between compressive strength of a particular cured resin and the parts of hardener per parts of uncured resin, and
FIGS. 2 and 3 illustrate a preferred technique of forming -a block of syntactic foam of a selected geometry.
I have discovered that a specific syntactic foam fabricated by a particular technique is exceptionally suited to deep sea submergence applications. Syntactic foam is a material consisting of a resinous plastic matrix containing low density hollow granular ller. In this invention the iiller consists of high strength, approximately spherical, microscopic hollow glass grains, average particle density not over .45, wall thickness approximately 1.8 microns, 2090 microns outside diameter, a product which has been marketed commercially. The ller is ernbedded in a particular epoxy resin matrix. A composition 3 for the resin component of the syntactic foam that I discovered to have the best properties is as follows:
Parts by wt. (a) The reaction product of epichlorohydrin with bis (4-hydroxyphenyl) dimethyl methane which is an epoxy resin. The resin shall have an epoxide equivalent in the range 175-210 and shall have a viscosity as low as is available but no higher than 5000 centipoises at C. As a practical matter the lowest viscosity of available commercial materials is somewhat less than 5000 centipoises at 25 C. 100 (b) A hardener consisting of methylbicyclo [2,2,1] heptene 2,3-dicarboxylic anhydride isomers 100-104 (c) An eccelerator consisting of benzyldimethylamine(3) 1 Other hardeners were not satisfactory either because a syntactic foam of lower strength resulted or because of diiculties in handling; many of the acid type hardeners are solid at room temperature and require preheating for use.
The resin cured according to the temperature schedule described below, and without filler, has a uniaxial compressive strength of approximately 21,600 pounds per square inch, which is higher than that of any other resin that might be used in syntactic foam for deep submergence applications. The range of hardener concentration is due to variations among commercially purchased hardeners. Actually the composition described is the optimum composition. The same materials in a composition wherein the hardener concentration per hundred parts of resin by weight is anywhere between 83-110 parts by weight, results in a cured resin which has a compressive strength higher than that of any other resin that might be used in syntactic foam for deep submergence applications. FIG. 1 shows the relationship between concentration of hardener and uniaxial compressive strength.
The quantity of the above-recited accelerator may range from 0.2 to 1.0 part by weight. Other accelerators may be used, e.g. trimethyl amino methyl phenol 0.5 to 3.0 parts by weight, or dimethyl amino methyl phenol 0.5 to 3.0 parts by weight, or alpha-methylbenzyl dimethyl amine 1 to 3 parts by weight. The choice of accelerator and the quantity affects the temperature and time of cure, as is well known to those skilled in the art. The cure time and temperature for the resin system described varies with specimen or casting size and geometry. The following cure schedule is preferred for a small specimen:
(a) 2 hours at 100 degrees C. (b) then 2 hours at 121 degrees C. (c) then postcured 16 hours at 177 degrees C.
Since the curing of the resin system is exothermic, larger specimens require a slower, more gradual cure schedule.
The other component of the syntactic foam is the microscopic hollow glass spheres. The syntactic foam has superior properties for deep submergence applications if the percentage of glass filler by weight is within the range of to 50 percent. The properties of the syntactic foam varies with percentage of glass filler as follows. The density of the foam is lower with a higher percentage of ller. However, compressive strength, compressive modulus decrease while percentage water absorption increases with increased percentage of filler.
The water absorptiveness of the syntactic foam is reduced and the compressive strength increased by the addition of less than one part by weight of one of the following coupling agents to the resin system.
(a) gamma-aminopropyltriethoxysilane (b) 3,4-epoxycyclohexylethyltrimethoxysilane In the composition described the resin is somewhat stronger than the glass. The strength of commercially 4 marketed glass filler has been improved and it is foreseeable that a glass filler of the type described stronger than the resin described will become available.
In FIG. 2, there is shown a method of making the syntactic foam described with optimum properties. A container 10 the serve as a mold has an open end 12 and an opposite closed end 14 with an opening 16. A transparent pipe stub 18 is sealed in the opening 16. The inner surface of the container in the direction between the bot tom 14 and the open end, all around the container, is continuous or straight and preferably formed with enough draft to permit easy withdrawal of a casting formed in the container. The opening 16 is overlaid with a swatch of fiber glass cloth 20 attached to the surface around opening 16. The inside surface of the container is waxed to render it relatively non-adherent. The container is supported level on any convenient means 22 that provides clearance for pipe stub 18, and completely filled with the hollow spherical granular glass filler 24. The container is vibrated, shaken, or tapped gently to compact the filler in the container and more of the tller is added till level full. Then fiber glass cloth 26 is stretched across the open end 12 and cemented to the exterior surface. A stiff metal screen 28 is laid over the fiber glass cloth 26 and bent over the edge of the open end of the container.
The container is turned over and seated on spacer elements 30 in the bottom of a comparatively large waxed pan 32 thereby permitting fluid in the pan to ow into the open end of the container. A hose 34 is coupled to the transparent pipe stub 18 and to a vacuum pump, not shown, through a conventional trap 36. The apparatus assembled as in FIG. 3 is located in a temperature controlled chamber wherein the temperature is continuously adjustable up to about 300 F. A supply of the resin system mix is poured into the pan 32. The vacuum pump is set in operation. It is advantageous to choose from among available resins that meet the previously recited specifications that resin having the lowest viscosity to facilitate the operation illustrated in FIG. 3. If the viscosity of the fluid appears to be too high the temperature of the chamber is elevated. Gelation is not hastened if the temperature remains well below 200 F. The fluid rises into the container and after filling the container rises into the transparent pipe stub or in the alternative, into a transparent sight tube, not shown, just past the pipe stub which, in the latter case, is not transparent. When this occurs the vacuum pump is adjusted to reduce the pressure differential thereacross whereby the fluid level terminates in the glass stub. The pump is continued at that setting. Entrapped gas continues to escape thereafter. When the resin is polymerized, the pump is shut down and the hose 34 disconnected. Some of the cured resin around the exterior of the container is chipped away. Then the casting in the container is readily removable. Since the hollow glass spheres are buoyant in the resin system mix, a thin layer of the casting that was nearest the open end of the container may be comparatively free of the glass if there was any clearance in the container for the glass to rise upwardly. That layer is cut away on a band saw.
The described method of making a cast block of the syntactic foam results in a maximum ratio of glass to foam, namely, about percent glass filler by volume and 35% resin system mix or about 40 percent glass filler by weight. Also, there is minimum breakage of glass spheres in the course of handling and forming the block, no dry or weaker areas, and minimum entrapped gas. It is not necessary to measure the filler; the quantity of filler used is the amount that fills the container compactly. If the filler and resin system mix are combined in a container and mixed with a stirring paddle and then cured, a product that is superior to other buoyancy means known in the art can be obtained but not as good and of as consistent quality as that obtained by the method described. Stirring results in some breakage of the hollow glass spheres. If the mixture is not stirred the concentration of ller near the bottom of the mixture is very low. Some pockets of gas are entrapped, the filler is more dispersed and it is more difficult to obtain the optimum mixture.
It will be understood that various changes in the details, materials, and arrangements of parts (and steps), which have been herein described and illustrated in order to explain the nature of the invention, may be made by those skilled in the art within the principle and scope of the invention as expressed in the appended claims.
I claim:
1. The method of making syntactic foam buoyancy material comprising illing a straight-sided container that is open at one end, and that has a central screened small opening in its end wall, with low density hollow spherical granular glass ller free of resin coating,
vibrating the container to compact the ller in the container,
then adding enough additional filler to ll the container,
stretching a cloth across the open end of the container and securing the stretched cloth in place, then supporting the container, open end downward, with the open end immersed in a uid epoxy resin system mlx,
coupling a vacuum pump to the screened opening of the container and wall and operating the vacuum pump to withdraw the atmosphere from the container and to ll the entire volume in the container not occupied by the filler with fluid epoxy resin system mix, and curing the resin.
2. The method of making syntactic foam buoyancy material comprising:
ctlling a straight-sided container that is open at one end, and that has a central screened small opening in its end wall, with hollow spherical granular glass liller that has average particle density not over 0.45 and that is free of resin coating.
vibrating the container to compact the filler in the container,
then adding enough additional filler to ll the container,
stretching a cloth across the open end of the container and securing the stretched cloth in place,
then supporting the container, open end downward, and
immersed in a lfluid epoxy resin system mix consisting of 100 parts by lweight uncured reaction product of epichlorohydrin with bis(4hydroxyphenyl)di methyl methane and 100104 parts by weight of methylbicyclo (2,2,1) heptene 2,3 dicarboxylic anhydride isomers and 1 part by weight of benzyldimethylamine (i3),
coupling a -vacuum pump to the screened opening of the container end wall and operating the vacuum pump to withdraw the atmosphere from the container and to ll the volume in the container not occupied by the filler with the uid epoxy resin system mix in an amount equal to to 70 percent by weight of the composition,
and then curing the fiuid epoxy resin system mix.
References Cited UNITED STATES PATENTS 2,495,640 l/1950 Muskat 264-102 2,774,108 12/19'56 Wyllie 264-102 2,903,389 9/1959 Fujita 264-128 3,166,615 1/1965 Farrell 264--128 FOREIGN PATENTS 681,424 3/ 1964 Canada.
ROBERT F. WHITE, Primary Examiner I. R. THURLOW, Assistant Examiner U.S. Cl. X.R.
US798823*A 1966-03-28 1968-10-15 Method for making syntactic foam Expired - Lifetime US3541194A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53892066A 1966-03-28 1966-03-28
US79882368A 1968-10-15 1968-10-15

Publications (1)

Publication Number Publication Date
US3541194A true US3541194A (en) 1970-11-17

Family

ID=27065966

Family Applications (1)

Application Number Title Priority Date Filing Date
US798823*A Expired - Lifetime US3541194A (en) 1966-03-28 1968-10-15 Method for making syntactic foam

Country Status (1)

Country Link
US (1) US3541194A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204975A (en) * 1977-04-20 1980-05-27 Kernforschungasanlage Julich Gesellschaft mit beschrankter Haftung Method and apparatus for encapsulating radioactively contaminated lumps or granular material in metal
EP0151461A2 (en) * 1984-02-08 1985-08-14 Siemens Aktiengesellschaft Method for making lightweight products
WO1985005069A1 (en) * 1984-05-09 1985-11-21 Hughes Aircraft Company Method of fabricating composite or encapsulated articles
US4605688A (en) * 1985-12-13 1986-08-12 Texaco Inc. Method for making syntactic foam with improved processing characteristics using a silane coupling agent in combination with an aminated alkylphenol alkoxylate
US4608403A (en) * 1985-12-13 1986-08-26 Texaco Inc. Method for making syntactic foam with improved processing characteristics using a silane coupling agent in combination with an alkylphenol alkoxylate
US4637907A (en) * 1985-04-05 1987-01-20 Mattel, Inc. Latex dip tooling and method for forming same
US4681718A (en) * 1984-05-09 1987-07-21 Hughes Aircraft Company Method of fabricating composite or encapsulated articles
US4919866A (en) * 1987-05-09 1990-04-24 Sto Aktiengesellschaft Manufacture of lightweight structural elements
US5154959A (en) * 1989-06-16 1992-10-13 Societa Italiana Vtro-Siv-S.P.A. Process for the manufacture of a decorative product formed of glass beads and/or chips bound together between a pair of transparent sheets
US20050042437A1 (en) * 2003-08-19 2005-02-24 Cryovac, Inc. Sound dampening foam
US7037865B1 (en) 2000-08-08 2006-05-02 Moldite, Inc. Composite materials
US20090202810A1 (en) * 2008-02-13 2009-08-13 Microposite, Inc. Process and Machine for Manufacturing Lap Siding and the Product Made Thereby
US20220384066A1 (en) * 2021-05-27 2022-12-01 Ocean University Of China Zero-Buoyancy Cable and Deep-Sea Equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2495640A (en) * 1946-05-31 1950-01-24 Method of molding
US2774108A (en) * 1951-10-08 1956-12-18 Gulf Research Development Co Method of making low-resistance ion-exchange membranes
US2903389A (en) * 1956-08-03 1959-09-08 Fujita Toshitsune Method of molding reinforced plastics
CA681424A (en) * 1964-03-03 G. Egbert Ervin Method of making low density epoxy resin composition
US3166615A (en) * 1960-12-30 1965-01-19 James A Farrell Method of forming porous rigid structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA681424A (en) * 1964-03-03 G. Egbert Ervin Method of making low density epoxy resin composition
US2495640A (en) * 1946-05-31 1950-01-24 Method of molding
US2774108A (en) * 1951-10-08 1956-12-18 Gulf Research Development Co Method of making low-resistance ion-exchange membranes
US2903389A (en) * 1956-08-03 1959-09-08 Fujita Toshitsune Method of molding reinforced plastics
US3166615A (en) * 1960-12-30 1965-01-19 James A Farrell Method of forming porous rigid structures

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204975A (en) * 1977-04-20 1980-05-27 Kernforschungasanlage Julich Gesellschaft mit beschrankter Haftung Method and apparatus for encapsulating radioactively contaminated lumps or granular material in metal
EP0151461A2 (en) * 1984-02-08 1985-08-14 Siemens Aktiengesellschaft Method for making lightweight products
EP0151461A3 (en) * 1984-02-08 1987-11-19 Siemens Aktiengesellschaft Method for making lightweight products
WO1985005069A1 (en) * 1984-05-09 1985-11-21 Hughes Aircraft Company Method of fabricating composite or encapsulated articles
US4681718A (en) * 1984-05-09 1987-07-21 Hughes Aircraft Company Method of fabricating composite or encapsulated articles
US4637907A (en) * 1985-04-05 1987-01-20 Mattel, Inc. Latex dip tooling and method for forming same
US4605688A (en) * 1985-12-13 1986-08-12 Texaco Inc. Method for making syntactic foam with improved processing characteristics using a silane coupling agent in combination with an aminated alkylphenol alkoxylate
US4608403A (en) * 1985-12-13 1986-08-26 Texaco Inc. Method for making syntactic foam with improved processing characteristics using a silane coupling agent in combination with an alkylphenol alkoxylate
US4919866A (en) * 1987-05-09 1990-04-24 Sto Aktiengesellschaft Manufacture of lightweight structural elements
US5154959A (en) * 1989-06-16 1992-10-13 Societa Italiana Vtro-Siv-S.P.A. Process for the manufacture of a decorative product formed of glass beads and/or chips bound together between a pair of transparent sheets
US7037865B1 (en) 2000-08-08 2006-05-02 Moldite, Inc. Composite materials
US20100009159A1 (en) * 2000-08-08 2010-01-14 Microposite, Inc. Composite materials
US20050042437A1 (en) * 2003-08-19 2005-02-24 Cryovac, Inc. Sound dampening foam
US20090202810A1 (en) * 2008-02-13 2009-08-13 Microposite, Inc. Process and Machine for Manufacturing Lap Siding and the Product Made Thereby
US8110132B2 (en) 2008-02-13 2012-02-07 James Hardie Technology Limited Process and machine for manufacturing lap siding and the product made thereby
US20220384066A1 (en) * 2021-05-27 2022-12-01 Ocean University Of China Zero-Buoyancy Cable and Deep-Sea Equipment

Similar Documents

Publication Publication Date Title
US3477967A (en) Syntactic foam
US3541194A (en) Method for making syntactic foam
CN109651764B (en) Microbead compounded solid buoyancy material and preparation method thereof
CA2803640C (en) Epoxy composite
Shutov Syntactic polymer foams
JPS6158493B2 (en)
CN100378166C (en) Workable solid buoyancy material for deep sea and method for preparing same
CN101824206B (en) Ultra-high-strength buoyancy material and preparation method thereof
US5691390A (en) Thermoplastic syntactic foams and their preparation
CN110628180B (en) Solid buoyancy material and preparation method thereof
US4393901A (en) Low-permeability hollow spheres and pipe filled with the spheres for temporary weight reduction
CN103085191B (en) Deep sea pressure-resistant workable buoyancy material and production method thereof
US3049454A (en) Low density cellular explosive foam
CN104530650A (en) Submersible vehicle encapsulation composite foam filling materials and preparation method thereof
US2845025A (en) Low density cellular explosive foam and products made therefrom
CN110698815B (en) High-strength solid buoyancy material and preparation method thereof
WO2016088007A1 (en) Syntactic foam, process of its preparation and buoyancy material comprising the same
CN1261479C (en) Solid buoyancy material prepared through chemical blowing process
US3669912A (en) Method of making deep ocean buoyant material
US5606329A (en) Buoyant cable antenna
CN110041707A (en) A kind of flexible pressure-resistant buoyant material and preparation method thereof
Hobaica et al. The characteristics of syntactic foams used for buoyancy
JPH04232034A (en) Hollow gigantic sphere and floating material containing said sphere
US20050124708A1 (en) Syntactic foam
US3733629A (en) Buoyant matrix materials