US3538797A - Apparatus for punching acoustical board - Google Patents

Apparatus for punching acoustical board Download PDF

Info

Publication number
US3538797A
US3538797A US3538797DA US3538797A US 3538797 A US3538797 A US 3538797A US 3538797D A US3538797D A US 3538797DA US 3538797 A US3538797 A US 3538797A
Authority
US
United States
Prior art keywords
board
pins
drum
openings
acoustical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Halvor Paul Wagtskjold
George H Sundin
Lorien A Carlson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conwed Corp
Original Assignee
Conwed Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conwed Corp filed Critical Conwed Corp
Application granted granted Critical
Publication of US3538797A publication Critical patent/US3538797A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/24Perforating by needles or pins
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/02Other than completely through work thickness
    • Y10T83/0237Pricking
    • Y10T83/0244Including use of orbiting tool carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2066By fluid current
    • Y10T83/207By suction means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2092Means to move, guide, or permit free fall or flight of product
    • Y10T83/2096Means to move product out of contact with tool
    • Y10T83/21Out of contact with a rotary tool
    • Y10T83/2103Mover surrounds axis of tool rotation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2092Means to move, guide, or permit free fall or flight of product
    • Y10T83/2096Means to move product out of contact with tool
    • Y10T83/21Out of contact with a rotary tool
    • Y10T83/2105Mover mounted on rotary tool
    • Y10T83/2107For radial movement of product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/242With means to clean work or tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/465Cutting motion of tool has component in direction of moving work
    • Y10T83/4766Orbital motion of cutting blade
    • Y10T83/4795Rotary tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/869Means to drive or to guide tool
    • Y10T83/8789With simple revolving motion only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/929Tool or tool with support
    • Y10T83/9314Pointed perforators

Definitions

  • a rotatable drum having a multiplicity of pins projecting radially therefrom is used to punch acoustical 83/2, 1 openings in a mineral fiber board.
  • the drum is equipped with a sponge rubber stripper for the pins and the acoustical openings produced in the board are ofa unique shape beneath the surface permitting shallower openings to achieve equivalent acoustical effect.
  • rollers or drums provided with pins could be utilized to punch acoustical openings into a board; however, to applicants knowledge such suggestions have never proved commercially successful.
  • One of the objects of applicants invention is to provide a punched acoustical board having equivalent acoustical value to commercially available acoustical board but with enhanced strength.
  • Another object of the invention is to provide for continuous and rapid punching of acoustical openings into mineral fiber board by means of a rotating drum without the attendant damage usually associated with the use of such rotating drums with pins.
  • FIG. 1 is a partly schematic showing of the rotating pin drum of this invention
  • FIG. 2 is a cross section through an acoustical opening of a piece of mineral fiber acoustical board taken along the lines 2-2 of FIG. 1 and enlarged,
  • FIG. 3 is a cross-sectional view taken along the lines 3-3 of FIG. 2,
  • FIG. 4 is a cross-sectional view similar to FIG. 3 showing an opening made too deep
  • FIG. 5 is a view of a modified pin that may be used with the drum of the invention.
  • FIG. 6 is a cross-sectional view taken along the lines 6-6 of FIG. 5,
  • FIG. 7 is an enlarged view of an acoustical opening looking down at the surface of a board which opening was produced by the pin of FIG. 5 utilized in the drum of FIG. 1 and showing only the surface of the board, and
  • FIG. 8 is another modified pin for use in the drum of the invention.
  • a rotatable drum l0 fixed to a shaft 12 and journaled in a suitable frame (not shown) is rotated about the axis of the shaft 12 by means of a sprocket 14, a chain 16 trained about the sprocket 14 and about a sprocket 18 on the end of a shaft 20 of a suitable prime mover such as the motor 22. It will be seen that upon operation of the motor 22 the chain 16 and the sprockets 14 and 18 will cause the rotation of the drum in the direction of the arrow 24.
  • the plates 26 are secured to the drum 10 by means of bolts or screws 28 passing through suitable openings in the plates 26 and into tapped openings inthe surface of the drum 10.
  • the screws 28 are suitably countersunk so that the tops of such screws are flush with the outer surface 30 of the plates 26.
  • Each of the plates 26 is provided with a multiplicity of openings 32 which openings 32 are provided with a tapered counter sink 34 at the inner side of the plate 26. Passing outarrangement of such pins 40 and the openings 32 for this common pattern are generally random in arrangement and mixed in sizes thus providing an irregular and nonlinear pattern in the punch pattern produced in the acoustical board.
  • the diameter sizes referred to, of course, refer to the shank and not to the larger diameter of the tapered heads 36.
  • the pins 40 may have any desired shape in cross section such as round,
  • pin cross section shapes may be used to further aid in diminishing or eliminating the elongation of the holes.
  • the pins 40 have tapered heads 36 thereon mating with and cooperating with the tapered counter sink 34 of each hole 32.
  • Each of the plates '26 may be, for example, approximately 1 square foot in area andhas its openings 32 so arranged therein as to be directed radially outward with respect to the axis of the shaft 12.
  • the holes 32 are quite numerous with from 1,000 to 2,000 holes per square foot, l,500- l ,600 being a common number.
  • the openings 32 are of various sizes for the reception of pins 40 of various sizes. In one common pattern being 0.078 inch, 0.062 inch, 0.047 inch, and0.035 inch.
  • the pins may extend 1 inch from the outersurface 30 of the plate 26 and the sponge rubber may be nine-eighths inch in thickness; however, because of its compressed state the ends of the pins 40 extend beyond the outer surface and the doming 44 of the sponge rubber 42. While, as specifically referred to throughout this application, a sponge rubber is preferred for use as the stripper means 42, any suitable elastomeric material may be used.
  • the life of the sponge rubber layer 42 may be .somewhat shortened.
  • certain high temperature resistant elastomers are available.
  • a vacuum slice 70 extending transversely of the conveyor 50 for the full width thereof utilized by the width of the board 60 being processed.
  • the vacuum slice 70 is connected by means of a conduit 72 to any suitable conventional vacuum pump such as indicated at 74.
  • both the vacuum slice 70 or the sponge rubber layer 42 serve as stripper means and either will suffice to properly hold the board 60 in position againstthe conveyor 50 and to remove the same from the pins 40; however, the sponge rubber layer 42 is preferred.
  • both the sponge rubber 42 and the vacuum slice 70 may be used to insure proper operation in the event of path by engagement with the pins 40 of the drum l0, and since the pins 40 follow a circular path intercepting the straight path of the surface 62 of the board 60, the openings formed in the board tend to be elongated at the surface 62 of the board in the direction of the passage of the board through the device.
  • This elongation of the openings 80 is, in many instances, considered aesthetically unsatisfactory since it gives the appearance of long black streaks to the surface of the board.
  • the elongation of the openings 80 can be somewhat reduced; however,
  • the openings 80 still tend to be anaesthetically elongated.
  • Applicants have found, however, that by minimizing the depth to which the pins 40 penetrate the board 60 the elongation of the openings 80 can be greatly reduced for any given diameter of drum 10. That is to say, that a difference in only oneor two-sixteenths of an inch in depth of penetration of the board 60 by the pins 40 has a much greater effect upon improvement of the elongation of the openings at the surface than would be accounted for by what is, in effect, an increase in diameter of oneor two-sixteenths of an inch of the drum.
  • the openings 80 beneath the surface have an increased volume in the area bounded by the walls 86 and 88 thus providing for enhanced acoustics and accordingly permitting the opening 80 to be penetrated into the board 60 to a reduced depth. It has been found, for example, that whereas previous practice had been to penetrate mineral fiber acoustical board to a depth of seven-sixteenths of an inch or more that with the enlarged opening represented by the walls 86 and 88 a depth of only five-sixteenths of an inch is sufficient to produce equivalent acoustical absorption. At the same time, since more of the back of the board is left undisturbed there is an increase in board strength.
  • FIG. shows a modified pin 40' which may be used with the drum of the invention which pin is, as shown in FIG. 6, oval in cross section.
  • This configuration permits the insertion of the pin 40' in place of the pins 40 with the longer axis of the oval cross section of the pin 40 substantially parallel to the axis of rotation of the drum 10.
  • the top surface of the board as indicated at 62 in FIG. 7 has an opening 80 therein which is a rounded square. That is to say that the opening is substantially square but has rounded corners.
  • the coating tends to further round the opening thus making it appear almost circular. This arrangement greatly reduces the elongation effect created by normally cylindrical pins 40.
  • a key 365 on the head 36* in line with the longer a 's of the oval which is mated with a companion hey notch own) in the plate 26.
  • Such ltey 38 also serves to prevent accic ntal rotation of the pin 43% thus insuring that the longer of the oval of the cross section of the pin dd remains parailel to the of rotation of the drum w.
  • FIG. 8 Another modified pin dd" shown in FIG. 8 may be used with the drum of this invention to further decrease or eliminate the hole eiongation above referred to.
  • the pin dil has a reduced shank, a tapered head 36", and an erdarged buiblike head 96.
  • the bulblike head creates an opening in the board that is substantially round at the surface and the shank, being smaller, will not elongate the opening M9 at the surface 62 due to the rocking" movement of the pin relative to the board as above described.
  • drum Ml is shown as being driven by the motor 22 and the conveyor Sfl is shown as being undriven, it is obvious that either or both of the drum W and the conveyor 50 may be driven.
  • a fan or blower NY? which has its outlet connected by means of conduit NZ to a manifold 2%. In this way jets of air We are impinged upon the outer surface of the rubber layer 32 to clear away any debris picked up by that surface or by the pins 4d.
  • An apparatus for punching acoustical openings in an acoustical board comprising a frame, a rotatable drum journaled in said frame, a multiplicity o.” pins extending radially outwardly from said drum, 2 board support positioned substantially parallel to the axis of said drum, said support including means for supporting an acoustical board for movement between said drum and said support with one face of said board within the path of said pins around said drum axis, means to rotate said drum, and combination hold down and stripper means to hold said board in contact with said support and to strip said board from said pins as said pins are rotated by said drum about said axis and enter and leave said board.
  • said hold down and stripper means includes a layer of an elastomeric material about the surface of said drum and in which said pins extend through said rubber layer.
  • said hold down and stripper means includes a vacuum slice in said support positioned to apply a vacuum to the surface of said board opposite to said one face.
  • said hold down and stripper means includes a vacuum slice in said support positioned to apply a vacuum to the surface of said board opposite I to said one face.
  • the apparatus of claim 1 including means to clean said pins of waste material from said board.

Description

United States Patent 7 Inventors llalvor Paul w g ki Appl. No, Filed Patented Assignee BOARD 11 Claims, 8 Drawing Figs.
U.S.Cl
Int. Cl
Division of Ser. No.
778,100, Nov. 22. 1968, now Pat. No.
Cloquet; 100,113,l14,1'16,l17,139,5 George H. Sundin. Duluth, and Lorien A.
Carlson, Cloquet, Minnesota 798,602 References Cited Feb. 12, 1969 UNlTED STATES PATENTS 3,470,978 3,159,236 12/1964 Akerson 1970 3,163,064 12/1964 Blackmon Conwed Corporation 3,202,025 8/1965 Carlson et a1. St. Paul, Minnesota 3,461 ,754 8/1969 Griffen a corporation of Delaware 60 42 -1 L v i I y A v- 'r ,1 i I wmmezawwfizzew Q Q Q Q Q Q Q Q Q Q Q Q Q [50] Field of Search 2,355,454 8/1944 Lucius 2,747,470 5/1956 Jones Primary Examiner- William S. Lawson Attorney-Gunnar A. Gustafson, Jr.
APPARATUS FOR PUNCHING ACOUSTICAL ABSTRACT: A rotatable drum having a multiplicity of pins projecting radially therefrom is used to punch acoustical 83/2, 1 openings in a mineral fiber board. The drum is equipped with a sponge rubber stripper for the pins and the acoustical openings produced in the board are ofa unique shape beneath the surface permitting shallower openings to achieve equivalent acoustical effect.
APPARATUS FOR PUNCHING ACOUSTICAL BOARD This application is a division of our copending application, Ser. No. 778,100, filed Nov. 22, 1968, now US. Pat. No.
3,470,978, issued Oct. 7, 1969.
The punching of acoustical openings into fiber board, particularly fiber board of the mineral fiber variety, has been commercially accomplished for a number of years by the use of flat press plates bearing pins which are pressed into the sur face of the board.
It has been suggested in the past that rollers or drums provided with pins could be utilized to punch acoustical openings into a board; however, to applicants knowledge such suggestions have never proved commercially successful.
One of the objects of applicants invention is to provide a punched acoustical board having equivalent acoustical value to commercially available acoustical board but with enhanced strength. Another object of the invention is to provide for continuous and rapid punching of acoustical openings into mineral fiber board by means of a rotating drum without the attendant damage usually associated with the use of such rotating drums with pins.
These and other advantages will become apparent to those skilled in the art from the following specification and drawings in which:
FIG. 1 is a partly schematic showing of the rotating pin drum of this invention,
FIG. 2 is a cross section through an acoustical opening of a piece of mineral fiber acoustical board taken along the lines 2-2 of FIG. 1 and enlarged,
FIG. 3 is a cross-sectional view taken along the lines 3-3 of FIG. 2,
FIG. 4 is a cross-sectional view similar to FIG. 3 showing an opening made too deep,
FIG. 5 is a view of a modified pin that may be used with the drum of the invention,
FIG. 6 is a cross-sectional view taken along the lines 6-6 of FIG. 5,
FIG. 7 is an enlarged view of an acoustical opening looking down at the surface of a board which opening was produced by the pin of FIG. 5 utilized in the drum of FIG. 1 and showing only the surface of the board, and
FIG. 8 is another modified pin for use in the drum of the invention.
In FIG. 1 a rotatable drum l0 fixed to a shaft 12 and journaled in a suitable frame (not shown) is rotated about the axis of the shaft 12 by means of a sprocket 14, a chain 16 trained about the sprocket 14 and about a sprocket 18 on the end of a shaft 20 of a suitable prime mover such as the motor 22. It will be seen that upon operation of the motor 22 the chain 16 and the sprockets 14 and 18 will cause the rotation of the drum in the direction of the arrow 24.
Secured to the outer surface of the drum 10 are a plurality of plates 26. The plates 26 are secured to the drum 10 by means of bolts or screws 28 passing through suitable openings in the plates 26 and into tapped openings inthe surface of the drum 10. The screws 28 are suitably countersunk so that the tops of such screws are flush with the outer surface 30 of the plates 26. Each of the plates 26 is provided with a multiplicity of openings 32 which openings 32 are provided with a tapered counter sink 34 at the inner side of the plate 26. Passing outarrangement of such pins 40 and the openings 32 for this common pattern are generally random in arrangement and mixed in sizes thus providing an irregular and nonlinear pattern in the punch pattern produced in the acoustical board. The diameter sizes referred to, of course, refer to the shank and not to the larger diameter of the tapered heads 36. The pins 40 may have any desired shape in cross section such as round,
square, triangular, crescent, and the like. As described in more detail hereinafter, certain pin cross section shapes may be used to further aid in diminishing or eliminating the elongation of the holes.
It will be seen that with such a multiplicity and density of pins (for example, 1,600 per square foot) there is great pressure applied to the acoustical board and a tendency for the board to lift from its roller conveyor support 50 and follow the pins about the path of the drum 10. Such, of course, cannot be permitted since it results in cracking and destruction of the board. In order to insure prompt release of the board from the pins a layer of compressed sponge rubber 42 is provided about the outer circumference of the drum 10. This sponge rubber layer 42 is actually, in its uncompressed state, thicker than the exposed length of the shaft of the pins 40; however, it is compressed when applied so that the ends of the pins 40 extend just beyond the surface of the sponge rubber layer 42. The layer 42 is held in place by friction against the-multiplicity of pins 40 and results in a slight doming of the sponge rubber in wardly through the openings 32 are a multiplicity of pins 40,
one for each opening 32. The pins 40 have tapered heads 36 thereon mating with and cooperating with the tapered counter sink 34 of each hole 32.
Each of the plates '26 may be, for example, approximately 1 square foot in area andhas its openings 32 so arranged therein as to be directed radially outward with respect to the axis of the shaft 12. The holes 32 are quite numerous with from 1,000 to 2,000 holes per square foot, l,500- l ,600 being a common number. Depending upon the pattern to be produced in the acoustical board the openings 32 are of various sizes for the reception of pins 40 of various sizes. In one common pattern being 0.078 inch, 0.062 inch, 0.047 inch, and0.035 inch. The
the area 44 between the pins. For example, the pins may extend 1 inch from the outersurface 30 of the plate 26 and the sponge rubber may be nine-eighths inch in thickness; however, because of its compressed state the ends of the pins 40 extend beyond the outer surface and the doming 44 of the sponge rubber 42. While, as specifically referred to throughout this application, a sponge rubber is preferred for use as the stripper means 42, any suitable elastomeric material may be used.
In operation, as the pins 40 penetrate into the board 60 the sponge rubber 42 begins to become further compressed in the area indicated generally by the arrow 16 and becomes still further compressed in the area indicated generally by the arrow 48. As the board passes beneath the drum 10 the board 60 is pushed away from the ends of the pins by the expansion of the sponge rubber layer 42 generally in the area indicated by the arrow 52.
Since the board may be warm from the forming dryer and the plant is generally at an elevated temperature the life of the sponge rubber layer 42 may be .somewhat shortened. Of course, certain high temperature resistant elastomers are available. To insure that there is adequate removal of the board 60 from the pins 40 and further to insure that the board 60 is held down in contact with the conveyor 50, there is additionally provided a vacuum slice 70 extending transversely of the conveyor 50 for the full width thereof utilized by the width of the board 60 being processed. The vacuum slice 70 is connected by means of a conduit 72 to any suitable conventional vacuum pump such as indicated at 74. Either the vacuum slice 70 or the sponge rubber layer 42 serve as stripper means and either will suffice to properly hold the board 60 in position againstthe conveyor 50 and to remove the same from the pins 40; however, the sponge rubber layer 42 is preferred. As an added precaution both the sponge rubber 42 and the vacuum slice 70 may be used to insure proper operation in the event of path by engagement with the pins 40 of the drum l0, and since the pins 40 follow a circular path intercepting the straight path of the surface 62 of the board 60, the openings formed in the board tend to be elongated at the surface 62 of the board in the direction of the passage of the board through the device. This elongation of the openings 80 is, in many instances, considered aesthetically unsatisfactory since it gives the appearance of long black streaks to the surface of the board. Of course, by increasing the diameter of the drum 10 the elongation of the openings 80 can be somewhat reduced; however,
even with extremely large diameter drums such as 3 feet, 4 feet, or even larger, the openings 80 still tend to be anaesthetically elongated. Applicants have found, however, that by minimizing the depth to which the pins 40 penetrate the board 60 the elongation of the openings 80 can be greatly reduced for any given diameter of drum 10. That is to say, that a difference in only oneor two-sixteenths of an inch in depth of penetration of the board 60 by the pins 40 has a much greater effect upon improvement of the elongation of the openings at the surface than would be accounted for by what is, in effect, an increase in diameter of oneor two-sixteenths of an inch of the drum. It is theorized, but not known, that when the pins 45) are pressed into the board 60 to an excessive depth the pins tend to flex and bend, particularly the smaller ones, thus elongating the opening 80 beyond the length that would be accounted for due to the divergence in the path being traversed by the board 60 and the pins 40. This theory would seem to be borne out in part, at least, by the fact that the cross section of the openings 80 in the direction of the travel of the board 6*!) is unique as shown in FIG. 3. As shown in FIG. 3 the opening 80 has a slight elongation at the surface 82 and then is smaller or necked down in the area indicated at 84. Below this the walls 86 and 88 of the opening diverge away from each other toward the bottom 90 of the opening. It will be seen that the pins 40 have rocked or swung about a point creating an enlarged fan-shaped area beneath the restriction 84 and bounded on two sides by the walls 86 and 88 and on the opposite two sides by the substantially parallel walls 92 and M, see also FIG. 2.
It will be seen that the openings 80 beneath the surface have an increased volume in the area bounded by the walls 86 and 88 thus providing for enhanced acoustics and accordingly permitting the opening 80 to be penetrated into the board 60 to a reduced depth. It has been found, for example, that whereas previous practice had been to penetrate mineral fiber acoustical board to a depth of seven-sixteenths of an inch or more that with the enlarged opening represented by the walls 86 and 88 a depth of only five-sixteenths of an inch is sufficient to produce equivalent acoustical absorption. At the same time, since more of the back of the board is left undisturbed there is an increase in board strength. While there is some elongation as represented at 82 at the surface of the board due to the rocking movement of the pins relative to the board, it has been found the pins because the pins can move readily beneath the surface such elongation is reduced. When the pins are penetrated to excessive depths the walls 86 and 88 do not diverge but rather converge. As indicated above, it is believed that the tips of the pins become in effect lodged at a given point in the board and the pin flexes creating a crater or coneshaped opening into the board with an attendant greatly increased elongation of the opening 80 and a reduction in the sound absorption efficiency of the board. Such an opening, indicated by the numeral 80' in the board 60, is shown in FIG. 4 wherein the opening was produced by inserting a pin 40 to the normal depth of seven-sixteenths of an inch. It will be seen that while the pin extended to such depth the actual opening is much shallower and the area at the top of the opening at the board surface 62 is greatly elongated.
FIG. shows a modified pin 40' which may be used with the drum of the invention which pin is, as shown in FIG. 6, oval in cross section. This configuration permits the insertion of the pin 40' in place of the pins 40 with the longer axis of the oval cross section of the pin 40 substantially parallel to the axis of rotation of the drum 10. When pins of the type shown in P16. 5 are used the top surface of the board as indicated at 62 in FIG. 7 has an opening 80 therein which is a rounded square. That is to say that the opening is substantially square but has rounded corners. When a board having openings like 80" is coated, the coating tends to further round the opening thus making it appear almost circular. This arrangement greatly reduces the elongation effect created by normally cylindrical pins 40. In order to assist in inserting the pins 40 with the longer axis of its cross section parallel to the axis of rotation of the drum it! it is preferred to use a key 365 on the head 36* in line with the longer a 's of the oval which is mated with a companion hey notch own) in the plate 26. Such ltey 38 also serves to prevent accic ntal rotation of the pin 43% thus insuring that the longer of the oval of the cross section of the pin dd remains parailel to the of rotation of the drum w.
Another modified pin dd" shown in FIG. 8 may be used with the drum of this invention to further decrease or eliminate the hole eiongation above referred to. The pin dil has a reduced shank, a tapered head 36", and an erdarged buiblike head 96. By use of a pin of the shape of pin dill" the bulblike head creates an opening in the board that is substantially round at the surface and the shank, being smaller, will not elongate the opening M9 at the surface 62 due to the rocking" movement of the pin relative to the board as above described.
While the drum Ml is shown as being driven by the motor 22 and the conveyor Sfl is shown as being undriven, it is obvious that either or both of the drum W and the conveyor 50 may be driven.
As the drum is operated, broken fibers, bits of board and like debris tend to accumulate on the outer surface of the rubber layer 12 and around the pins. Such debris, if left in place, tends to scratch the board on the next revolution. Accordingly, a fan or blower NY? is provided which has its outlet connected by means of conduit NZ to a manifold 2%. In this way jets of air We are impinged upon the outer surface of the rubber layer 32 to clear away any debris picked up by that surface or by the pins 4d.
It is to be understood that while the pim 4 13 in FIG. 1 are generally shown in a straight line around the drum this was for ease of illustration only. In actuality the pins may be located in any of almost an infinite number of patterns one common one being a dense (say 1,500 pins per square foot) random pattern.
We claim:
ll. An apparatus for punching acoustical openings in an acoustical board comprising a frame, a rotatable drum journaled in said frame, a multiplicity o." pins extending radially outwardly from said drum, 2 board support positioned substantially parallel to the axis of said drum, said support including means for supporting an acoustical board for movement between said drum and said support with one face of said board within the path of said pins around said drum axis, means to rotate said drum, and combination hold down and stripper means to hold said board in contact with said support and to strip said board from said pins as said pins are rotated by said drum about said axis and enter and leave said board.
2. The apparatus of claim I in which said hold down and stripper means includes a layer of an elastomeric material about the surface of said drum and in which said pins extend through said rubber layer.
3. The apparatus of claim 2 in which said elastomeric material is compressed and is held in its compressed state by said multiplicity of pins.
4. The apparatus of claim 1 in which said hold down and stripper means includes a vacuum slice in said support positioned to apply a vacuum to the surface of said board opposite to said one face.
5. The apparatus of claim 3 in which said hold down and stripper means includes a vacuum slice in said support positioned to apply a vacuum to the surface of said board opposite I to said one face.
6. The apparatus of claim 1 including means to clean said pins of waste material from said board.
7. The apparatus of claim a in which said cleaning means comprises means to impinge a jet of air against said pins.
8. The apparatus of claim 3 including means to clean said pins of waste material from said board.
9. The apparatus of claim 3 in which said cleaning means comprises means to impinge a jet of air against said phat.
10. The apparatus of claim l in which a piurality of said pins are oval in cross section and in which the long axis of said oval is substantially parallel to the axis of said drum.
pins extending through one of said openings, a head on each of said pins mating with the Counter sink in Said openings, said plates being secured to said outer drum surface with the heads of said pins bearing against said outer drum surface.
US3538797D 1968-11-22 1969-02-12 Apparatus for punching acoustical board Expired - Lifetime US3538797A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77810068A 1968-11-22 1968-11-22
US79860269A 1969-02-12 1969-02-12

Publications (1)

Publication Number Publication Date
US3538797A true US3538797A (en) 1970-11-10

Family

ID=27119409

Family Applications (1)

Application Number Title Priority Date Filing Date
US3538797D Expired - Lifetime US3538797A (en) 1968-11-22 1969-02-12 Apparatus for punching acoustical board

Country Status (1)

Country Link
US (1) US3538797A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3682028A (en) * 1970-06-18 1972-08-08 Mobil Oil Corp Highly permeable thermoplastic film perforating
US3742110A (en) * 1970-05-15 1973-06-26 Sentralinst For Ind Forskning Method of shaping brittle foamed clay by crushing with a blunt roller
US4216690A (en) * 1979-01-26 1980-08-12 Bullock Robert F Apparatus for perforating slices of food product
US4583439A (en) * 1984-04-27 1986-04-22 Weston Bakeries Limited Apparatus for tining foodstuffs
WO1987000116A1 (en) * 1985-07-01 1987-01-15 Gyproc A/S Method and tool for punching plaster plates
US5388489A (en) * 1993-01-21 1995-02-14 Miles J. Willard Dough sheet rotary cutter
US5560881A (en) * 1994-06-08 1996-10-01 Usg Interiors, Inc. Apparatus for producing a fissured, acoustical ceiling panel and method for manufacturing said apparatus
NL1020305C2 (en) * 2002-04-04 2003-10-07 Recticel Nederland Bv Hole forming device for foam blocks, e.g. mattress cores, comprises roll for compressing and punching holes in blocks

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3742110A (en) * 1970-05-15 1973-06-26 Sentralinst For Ind Forskning Method of shaping brittle foamed clay by crushing with a blunt roller
US3682028A (en) * 1970-06-18 1972-08-08 Mobil Oil Corp Highly permeable thermoplastic film perforating
US4216690A (en) * 1979-01-26 1980-08-12 Bullock Robert F Apparatus for perforating slices of food product
US4583439A (en) * 1984-04-27 1986-04-22 Weston Bakeries Limited Apparatus for tining foodstuffs
WO1987000116A1 (en) * 1985-07-01 1987-01-15 Gyproc A/S Method and tool for punching plaster plates
US5388489A (en) * 1993-01-21 1995-02-14 Miles J. Willard Dough sheet rotary cutter
US5560881A (en) * 1994-06-08 1996-10-01 Usg Interiors, Inc. Apparatus for producing a fissured, acoustical ceiling panel and method for manufacturing said apparatus
NL1020305C2 (en) * 2002-04-04 2003-10-07 Recticel Nederland Bv Hole forming device for foam blocks, e.g. mattress cores, comprises roll for compressing and punching holes in blocks

Similar Documents

Publication Publication Date Title
US3538797A (en) Apparatus for punching acoustical board
US2791289A (en) Process of forming fissured fiber acoustical tile and product thereof
ES2112080T3 (en) PROCEDURE FOR THE MANUFACTURE OF A TEXTILE NONWOVEN TEXTILE WITHOUT DRAWING BY JETS OF PRESSURE WATER AND INSTALLATION FOR THE PERFORMANCE OF THIS PROCEDURE.
US3946658A (en) Peeling apparatus for fruit and vegetable articles
US3470978A (en) Punched acoustical board
US3147658A (en) Apparatus for perforating sheets
US1384515A (en) Paper towel
EA200700409A1 (en) METHOD OF FASTENING PLASTIC CHAINS IN WASHING DRUMS
DE69511082T2 (en) DEVICE FOR FIBER PANEL PRODUCTION
CA1230803A (en) Incisor cleaning system
US1087959A (en) Device for removing bark from logs, limbs of trees, and slabs.
US3461754A (en) Rotary drum for fissuring acoustical material
DE59700543D1 (en) Method of placing a wall in a floor
DK0530281T3 (en) Process for producing rolls for surface treatment, as well as a roller produced thereby
US998511A (en) Caster.
JPS6325284A (en) Dressing alc board
FI852752A0 (en) BARKTRUMMA.
FR2137234A1 (en) Felt for papermaking machine
KR200166622Y1 (en) Wood mat
US1449728A (en) Plaster-board construction
US2075246A (en) Defiberizing device
JPS58214600A (en) Production of fiberboard having embossed pattern
JPS5922160Y2 (en) Fiberboard patterning device
JPH0319402Y2 (en)
SU414085A1 (en) SECTIONAL SHAFT OF THE MECHANISM OF LONGITUDINAL NODACHI OF LONG-DIMENSIONAL CARGOES