US3537743A - Core drilling system - Google Patents

Core drilling system Download PDF

Info

Publication number
US3537743A
US3537743A US778879*A US3537743DA US3537743A US 3537743 A US3537743 A US 3537743A US 3537743D A US3537743D A US 3537743DA US 3537743 A US3537743 A US 3537743A
Authority
US
United States
Prior art keywords
overshot
core barrel
barrel assembly
core
plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US778879*A
Inventor
Lyle J Martinsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boyles Bros Drilling Co
Original Assignee
Boyles Bros Drilling Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boyles Bros Drilling Co filed Critical Boyles Bros Drilling Co
Application granted granted Critical
Publication of US3537743A publication Critical patent/US3537743A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
    • E21B25/02Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors the core receiver being insertable into, or removable from, the borehole without withdrawing the drilling pipe

Definitions

  • FIG. I FIG. I.
  • a core drilling system comprising a novel overshot which provides a new release feature to accommodate selective or controlled release of its coupling relation with spearhead or latch structure of a core barrel assembly within the drill hole when an operator pumps the wire line, to which the overshot is attached, up and down a prescribed number of times.
  • the overshot is advantageously adapted, during its motion toward the bit, to first uncouple the core barrel assembly from the outer tube and then latch to the spearhead portion of the core barrel assembly.
  • the latched condition between the overshot and the core barrel assembly is sure and the core barrel assembly cannot inadvertently be thereafter separated from the overshot.
  • the preferred overshot comprises a bell, an interior plunger, and plunger release mechanism including a release housing which in combination can be situated in a latched posture or a released posture according to the desire of the operator.
  • the present invention relates generally to a novel core drilling system, including method and apparatus, and more particularly to a unique novel overshot and method for retrieving a core barrel assembly from within the outer tube of a drill string within a drill hole.
  • the core barrel assembly comprising spearhead latching-outer tube coupling structure, is uncoupled from the outer tube as a result of advancing the overshot toward the bit at a point in time before latching of the overshot onto the core barrel assembly takes place, rather than after overshot latching and during retracting of the overshot, as has been the practice in the art until this invention.
  • the overshot of this invention provides a new release feature to, under precise control of the operator, selectively accommodate unlatching and/or prevent subsequent latching to the core barrel assembly.
  • an annular drilling bit which is disposed at the distal end of an outer tube carried at the distal end of a drill string and which progressively cuts through rock, responsive to rotation of the drill string, leaving an uncut, upwardly projecting rock core central of the bit.
  • the core incrementally becomes disposed within a corereceiving barrel or inner tube of the core barrel assembly, which has been positioned in the drill string and releasably coupled with the outer tube by a latch assembly of the core barrel assembly.
  • a swivel mechanism is interposed between the core-receiving barrel and the core barrel latch assembly so that the latch assembly normally rotates with the drill string and the core-receiving barrel normally is stationary during drilling.
  • the drill string and/ or the core barrel is displaced a short distance away from the leading end of the hole adequate to break the core from the rock formation.
  • the overshot carried at the end of the wire line (cable)
  • the core barrel assembly is un coupled from the outer tube by movement of the core barrel assembly away from the bit and the overshot and latched core barrel assembly are withdrawn, along with a broken core, from the drill string.
  • Prior commercially utilized core barrel latch assemblies have conventionally contained a number of mechanical parts which have been required to mechanically move relative to each other when coupling and uncoupling the core barrel assembly from the outer tube.
  • Such latch assemblies under certain drilling conditions, will become sanded up so that it is difficult, if not impossible, to cause the parts to mehcanically move a sufficient distance relative to each other to uncouple the core barrel assembly from the outer tube.
  • To release a sanded up latch assembly from the outer tube significantly high forces are exerted on the latch assembly through the wire line and latched overshot, often resulting in shear failure of the spearhead at the distal end of the core barrel assembly. Thereafter, expensive and time-consuming techniques must be used to remove the broken core barrel assembly from the hole or to remove the entire drill string.
  • a core barrel assembly is uncoupled from the outer tube as a result of advancing a novel overshot toward the bit at a point in time before latching .of the overshot onto the core barrel assembly takes place, rather than after the overshot latching and during retraction of the overshot.
  • the latched condition between the overshot and core barrel assembly cannot be destroyed inadvertently, but is possible only when the operator elects to sever the rela- 1 tion.
  • the overshot of this invention thus provides a new release feature to, under precise control of the operator, selectively accommodate unlatching and/or prevent subsequent latching of the core barrel assembly.
  • the present invention is a worthwhile contribution to the core drilling art because it provides a system which substantially overcomes the above-mentioned problem of the prior art.
  • Another principal object of this invention is the provision of a unique overshot system, including method and apparatus, for placing or removing a core barrel assembly in or from operating position within a drill string, such that the core barrel assembly can be detached from the overshot under close control of the operator.
  • a further significant object is the provision of a unique overshot system for retrieving a core barrel assembly from a drill hole which, on the advance stroke of the overshot, first uncouples the core barrel assembly from the outer tube and then latches to spearhead hook means for such retrieval.
  • FIG. 1 is a fragmentary elevation shown partly in cross section of a presently preferred novel core barrel assembly embodiment of this invention comprising the claimed subject matter of copending U.S. patent application Ser. No. 571,521, operatively coupled to the outer tube of a drill string disposed in a hole;
  • FIG. 2 is an elevational view similar to FIG. 1 showing the core barrel assembly uncoupled from the outer tube and being removed from the hole, along with the broken core, using one presently preferred overshot novel embodiment of this invention;
  • FIG. 3 is a fragmentary cross-section shown in elevation of a centrally disposed swivel mechanism of the core barrel assembly of FIG. 1;
  • FIG. 4 is a fragmentary cross-section elevation of the outer tube coupling-spearhead latching assembly of the core barrel assembly of FIG. 1;
  • FIG. 5 is a cross-section in plan taken along line 5--5 of FIG. 4;
  • FIG. 6 is an elevation of the novel overshot of FIG. 2;
  • FIG. 7 is an elevational cross-section of the overshot of FIG. 2 taken along line 77 of FIG. 6;
  • FIG. 8 is a fragmentary cross-section shown in elevation of the overshot of FIG. 6 shown with the plunger thereof in the retracted position and the spearhead or prong hooks, disposed at the distal end of each prong, latched to the overshot;
  • FIG. 9 is a fragmentary cross-section similar to FIG. 8 illustrating the plunger in the extended position which (a) detaches the spearhead or prong hooks from the overshot when previously latched and (b) prevents subsequent latching of the spearhead hooks with the overshot;
  • FIG. 10 is a fragmentary elevation shown partly in cross-section illustrating the easy mode of manual surface detachment of the overshot of FIG. 2 from the core barrel assembly of FIG. 2;
  • FIG. 11 is a fragmentary elevation shown partly in cross-section of a second presently preferred overshot embodiment of this invention shown with a plunger retracted and the overshot latched to a conventional spearhead;
  • FIG. 12 is a cross-section in plan taken along line 12 12 of FIG. 11;
  • FIG. 13 is a fragmentary elevation of the overshot of FIG. 11 with the plunger extended and the conventional spearhead unlatched;
  • FIG. 14 is a fragmentary side elevation illustrating another presently preferred overshot embodiment having modified teeth construction at the release housing.
  • FIGS. 1 and 2 depict a core drilling system manufactured according to the present invention and generally designated 20.
  • the core drilling system 20 comprises an outer tube 22, a bit 24, and a string of drill pipe (not shown) positioned in a downwardly extending hole 26 in the earth, all of which is conventional.
  • the sections of the drill string are normally threadedly coupled one to another and the last section is threadedly coupled to the outer tube 22.
  • the outer tube 22 is threadedly connected at 28 to the hollow bit 24.
  • the bit 24 may be of any suitable type capable of drilling through rock formations, diamond bits being commonly used for this purpose.
  • the outer tube 22 is provided with an upper two-way coupling annular recess 30 and a closely spaced somewhat larger lower annular recess 32.
  • the drill string along with the outer tube 22 and the bit 24 are rotated by conventional apparatus (not shown) causing the bit to progressively cut an annular hole in the rock leaving an uncut rock core 36 within the hollow of the bit, which core incrementally increases in length as drilling proceeds.
  • the outer tube 22 along with the core barrel assembly 42 is elevated slightly to break the core as at (FIG. 2).
  • the core is particularly soft, it may only be necessary to elevate the core barrel assembly to break the core.
  • the core barrel assembly is uncoupled from the outer tube and elevated to the surface, using an overshot, in the case of this invention the novel overshot generally designated 52 (FIG. 2) is used.
  • the core spring 46 which rests along the inner tapered angular surface 54 of the shoe 44, is contiguous at its outer surface with the core 36.
  • the weight of the core will cause the core spring 46 to slide downward a short distance along the tapered surface 54 to be compressively wedged against the core 36 to hold the core within the barrel 40 as the core barrel assembmly is elevated to the surface.
  • the core barrel assembly 42 also comprises a swivel mechanism, generally designated 60, which is conventional in all respects except one.
  • the swivel mechanism functions to accommodate rotation of the upper portion of the core barrel assembly with the drilling string while maintaining the lower portion of the core barrel assembly, as at the inner tube, in a stationary position to receive the core and to accommodate water circulation.
  • the swivel mechanism 60 which is threadedly connected at 62 (FIG. 1) to the inner tube 38, exteriorly comprises a bearing retainer 64 with top aperture 66 through which a bearing shaft 68 rotatably passes.
  • the shaft 68 terminates at planer surface 70 and is retained in position by a base plate 72 held in position by a cap screw 74 threaded into a bore (not shown) axially disposed and opening at the shaft surface 70.
  • the retaining plate 72 confines a lower bearing assembly 76 in the illustrated operational position against a spacer 78 concentric of the shaft 68 while an upper bearing assembly 80 is interposed concentric about the shaft 68 between the spacer 78 and one or more resilient washers 82 made of a suitable wear resistant material such as neoprene.
  • the neoprene washers 82 rest between the upper bearing assembly 80 and an abutment face 84 of the bearing retainer 64.
  • the swivel is conventional except for the resilient washers.
  • the upper portion of swivel mechanism 60 comprises a body 90, a plurality of radially yieldable prongs, or resilient fingers, generally designated 92, preferably fabricated of tool steel, and leaf spring 94, interposed between each prong 92 and the body 90 as seen in FIGS. 1, 2, 4, and 5. While four prongs 92 are shown, it is to be appreciated that any suitable plural number could be utilized, if desired.
  • the body 90 illustrated in detail in FIGS. 4 and 5, is preferably of tool steel and, in the configuration illustrated in FIG. 4, comprises a solid piece, which adds weight to the core barrel assembly and provides the solid support base for the prongs 92.
  • the bearing shaft 68 is threaded into a threaded bore (not shown) axially disposed in the body 90 and opening at the bottom surface 99 (FIG. 1).
  • a lock nut 101 secures that shaft 68 in such threadedly connection relation with the body 90.
  • An open notch 100 is provided along each of the four side positions of the body at 90 spacings;
  • One leaf spring 94 is securely mounted at each open notch 100 against axial and circumferential movement by use of a pair of bolts 102 which are securely threaded into threaded bores 104.
  • Lock'wires 106 are used to prevent inadvertent loosing of the bolts 102 during use of the core barrel assembly.
  • the mentioned bolt mounting of each resilient leaf spring 94 to the body 90 enables essentially radial movement in ward in a fish tail motion accommodated by tapered fiat walls 108, one disposed immediately adjacent each leaf spring 94.
  • the top of the body 90 has an essentially traversely-fiat centrally-located top surface 110 and four inwardly tapered open grooves 112, each accommodating the mentioned radial inward yielding of the prongs 92, when the core barrel assembly is being uncoupled from the outer tube and latched to the overshot.
  • a very close tolerance space is provided between each open groove 112 and the adjacent base surface 114 of each prong 92.
  • the base surface 114 will bottom out at the adjacent groove 112 before the stress on the adjacent leaf spring 94 exceeds the elastic limit.
  • the open groove 112 could conveniently comprise a curvilinear rather than a linear tapered surface.
  • a number of weldments 115 of suitable radially projecting length are intergally disposed upon the cylindrical surfaces of the body 90 so that they will have an arcuate surface adjacent the inside'wall'of the outertube 22 which arcuate surface will be radially spaced very closely from the inside wall of the outer tube 22 during drilling. In this way, any wobbling of the body will not be excessive.
  • the spearhead latching-outer tube coupling prongs 92 are preferably fabricated from tool steel and, the illustrated embodiment, are all of identical construction material and dimensions. Importantly, the prongs are constructed and arranged in an array such that a hollow space is provided between to obviate sanding up problems of the the type experienced by prior art core barrel assemblies when in coupled position with the outer tube. Significantly, it should be noted that the prongs use no mechanical parts which must move relative to each other during a coupling and uncoupling of the core barrel assembly.
  • prongs 92 serve a two-fold purpose; namely, to selectively accommodate coupling of the core barrel assembly with the outer tube and to accommodate spearhead latching to an overshot and outer tube uncoupling for retrieval of the core barrel assembly from the hole. Inadvertent unlatching or mislatching of one prong does not affect the outer tube coupling or the spearhead latching characteristics of this invention.
  • each prong 92 is wedge shaped with an arcuate surface disposed at the exterior.
  • each prong comprises a ski or cam 130, the purpose of each cam being to prevent hanging up of the core barrel assembly within the drill string, such as on a poor tolerance lip at a threaded drill string coupling.
  • the prongs and leaf springs normally cambered or biased radially outward, are flexed radially inward by contact with the inside wall of the outer tube 22 counter to the outward camber bias of the leaf springs.
  • Each cam 130 may be provided with one or more surface exposed tungsten carbide buttons (not shown) or the like to prevent excessive wear.
  • each cam 130 A second basic purpose of each cam 130 is to prevent wear on the adjacent coupling ridge 132, which is separated from the cam 130 in the embodiment of FIG. 4 by an arcuate groove 134, each disposed at the exterior surface of the prong 92.
  • each cam 130, of the four illustrated prongs 92 In the drilling position, each cam 130, of the four illustrated prongs 92, is disposed Within the annular recess 32 previously mentioned. This disposition, accommodates close coupling of the ridge 132 within the upper two-way coupling annular recess 30.
  • the coupling ridge 132 couples directly with the outer tube, not necessitating a third piece suspension device, and comprises an arcuate mating surface 136, an upper coupling surface 138 and a lower coupling surface 140.
  • the upper coupling surface 138 achieves fail-safe coupling with the upper surface of the recess 30 against rearward release during drilling regardless of whether the drilling is with or counter to gravity. This makes the weight of the core barrel assembly an uninfluential factor in uncoupling the core barrel assembly from the outer tube, contrary to the prior art.
  • the lower coupling surface 140 of the ridge 132 provides fail-safe coupling against forward release of the core barrel assembly in the direction of the bit.
  • damage to the rotating bit and wear to the normally stationary shoe 44 are essentially obviated because the bit and shoe are not brought together by pressure force of the downward circulating water, which water is conventionally used to cool the bit during drilling. It should be appreciated that approximately 800 percent greater outer tube coupling surface area is provided using the described features of this invention as compared with present commercially accepted core barrel assemblies.
  • each prong 92 comprises a spearhead hook 146 having an exterior tapered surface 148 and an overshot latching shoulder 150.
  • the shoulder 150 is separated from the adjacent coupling ridge 132 by an arcuate groove 152 disposed in each prong. Inspection of FIG. 4 shows that, during drilling, the transverse position of each spearhead hook 146 is spaced from the inner wall of the outer tube 22.
  • each prong 92 accommodates inward radial gathering or clustering of the prongs when the overshot 52 is advanced toward the end of the hole 26 and brought in contact with the tapered surface 148 of each prong during such advance.
  • the inward gathering of the prongs toward the radial center line of the core barrel assembly thereafter accommodates further displacement of the overshot along the tapered surface 148 of each prong thereby first radially uncoupling the coupling ridge 132 from the annular recess and thereafter latching the overshot upon the shoulder of each prong.
  • the advance of the overshot is then discontinued and the overshot and the core barrel assembly (with the trapped core) are retrieved from the hole.
  • the overshit 52 of FIGS. 6-10 is useful not only for removing novel core barrel assemblies of the type previously described from coupling relation with the drill string but also for overshot placing the core barrel assembly in a dry hole without risk of inadvertent release of the core barrel assembly and damage to the bit.
  • the overshot is also useful, when disabled, as an accelerated weight to place a core barrel assembly in coupled relation with a downwardly extending outer tube of a drill string, when the drill string is filled with water.
  • the overshot 52 comprises a shoe having a bellshaped recess 162 disposed near the bottom opening 164.
  • a short distance above the opening 164 exists an annular core barrel assembly latching shoulder 166 which extends in the illustrated embodiment through the entire 360 of the inside circumference of the recess 162.
  • the central interior of the shoe 160 comprises a cylindrically hollow counterbore 168 terminating in an abutment surface 170 and opening not only into recess 162 but also into an elongated bore 172 Which extends upwardly.
  • the bore 172 comprises the inside surface of an upper telescopic, reduced diameter portion 174 of shoe 160.
  • the cylindrical telescopic portion -174 contains an L-shaped slot having a downwardly extending leg 176 and a circumferentially extending leg 175.
  • the upper end of the reduced diameter cylindrical portion 174 is solid at 178 and contains a diametrical bore 180 through which a pin 182, having enlarged ends 184, passes.
  • a plunger is concentrically disposed inside the shoe 160.
  • the plunger 190 comprises a spool head 192 having a frusto-conical recess 194 and a reload slot 196 disposed at the top wall 198 of the recess 194.
  • a cylindrically shaped integral stern 200 extends upwardly from and concentric to the spool head 192 and is slidably and rotationally disposed within the bore 172 of shoe 160.
  • a release spring 202 functions as a combined torsion and compression spring between the shoe abutment surface 170 and the top spool surface 204.
  • the ends 206 and 208 are respectively anchored in anchor recesses 210 8 and 212 at surfaces 170 and 204.
  • a two-way bias is provided, i.e., (a) bias of the plunger axially toward the shoe latching shoulder 166 and (b) bias of the plunger rotationally right to left, as viewed in the figures.
  • the plunger 190 is normally retained in the retracted (enabling) position illustrated in FIGS. 7 and 8 counter to the mentioned axial bias. Provision is made for release of the plunger 190 to an extended (disabling) position (FIG. 9) due to the bias of the spring 202 in a manner subsequently to be described.
  • An open groove 220 is provided in the top of stem 200, which groove extends essentially diametrically and is provided with a threaded bore (not shown) in which a bolt 222 is securely fastened.
  • the bolt 222 passes through an aperture (not shown) in a locking plate 224 and through an aperture (not shown) in a release dog or release pawl 226 to integrally unite the pawl 226 with the stem 200 and thereby insure joint movement of the plunger 190 and the pawl 226.
  • the pawl 226 passes through the previously mentioned L-shaped slot in the upper end 174 of the shoe 160, the pawl being disposed in the circumferentially extending portion of the slot 175 when the plunger 190 is in the retracted position (FIGS. 7 and 8) and in the downwardly extending leg 176 (FIG. 7) of the L-shaped slot when the plunger 190 is disposed in its extended position (FIG. 9).
  • the disposition of the pawl in the L-shaped slot in telescopic cylindrical portion 174 accommodates both plunger rotation in the circumferentially extending slot leg 175 and axial displacement of the plunger in the downwardly extending slot leg 176.
  • the overshoe 52 also comprises a release housing, generally designated 230.
  • the release housing 230 has a threaded axial bore 232 adapted to threadedly couple with with a wire line coupling member 233 (FIG. 2) to which a wire line or cable is conventionally secured.
  • the release housing 230 has a stop shoulder 234 near which the solid end 178 of the shoe 160 is disposed when the release housing 230 is in its downwardmost relative position as viewed in the figures.
  • Oppositely disposed pin slots 236 are fabricated in the walls of the release housing 230- near the top of the bore 238 and each slot receives one of the two enlarged pin ends 184 so as to accommodate a limited amount of up and down movement of the release housing corresponding to the length of the slot 236 for purposes which will become more fully apparent subsequently.
  • the array of teeth 240 and 242 terminates in a downwardly extending release slot 246.
  • the circumferential portion of the release housing occupied by the teeth 240 and 242 is co-extensive with and concentric to the circumferential leg 175 of the mentioned L-shaped slot in the upper telescopic portion 174 of the shoe 160.
  • the release slot 246 is co-extensive and radially aligned with the downwardly extending leg 176 of the mentioned L-shaped slot.
  • the pin 182 will be oriented so that the enlarged ends 184 will be disposed in the bottom of the adjacent slot 236 due to the weight force of the plunger and shoe.
  • up and down pumping of the wire line by the operator will shift the release housing up and down through the distance permitted by the pin slots 236. This will first shift the pawl, which is biased left to right by the spring 202, to the right surface of the next top tooth 240 (on the down stroke of the release housing) and then to the right surface of the next bottom tooth 242 (on the up stroke of the release housing).
  • the up and down pumping may be continued to successively move the pawl right to left across the requisite number of teeth, top and bottom, so that the pawl thereafter becomes disposed in the release slot 246 accommodating movement of the plunger 190 from the retracted position (FIGS. 7 and 8) to the extended position (FIG. 9) under force of the spring 202.
  • the spool 192 shields the shoe latching shoulder 166 against prong latching.
  • the effects of so extending the plunger 190 are, therefore, (a) to release the prongs 92 from the overshot in the hoe at the operators will, such as when the core barrel assembly is being placed in coupled relation with the outer tube and the hole is dry, and/or (b) to prevent subsequent latching between the overshot at shoulder 166 and the prong spearhead latching shoulders 150.
  • the overshot may be utilized as an accelerating weight when downwardly placing the core barrel assembly in coupled relation with the outer tube when the hole is substantially filled with water.
  • the overshot may easily be manually separated from the prongs simply by angularly rotating the overshot relative to the prongs so that the center-lines of the two components are obliquely related.
  • the prongs are thus gathered toward the longitudinal center line of the core barrel assembly and the shoulders 150 are displaced out of latching engagement with the annular shoulder 166 of the overshot. Thereafter the overshot and prongs are parted.
  • the release pawl 226 will be displaced sinuously through the array of top and bottom teeth 240 and 242 left to right until the pawl 226 is disposed at the right side of whichever tooth is desired, at which time the axial and rotational force exerted by the tool will be withdrawn
  • the torque force of the spring will hold the pawl 226 in such position against the right side of the next left tooth so long as the release housing 230 is not pumped up and down.
  • the operator may select to position the pawl against any desired tooth depending on how many up and down pumping motions in the hole may subsequently be deemed sufficient for later displacement of the plunger 190 into the extended position of FIG. 9, as previously explained.
  • FIGS. 11-13 depict a second presently preferred overshot, generally designated 310, utilized for coupling with and uncoupling from a conventional core barrel assembly spearhead 312 having a latching shoulder 314.
  • Certain portions of the overshot 310 are substantially identical to components of the previously described overshot 52 and are correspondingly numbered. These include the release housing 230, the cylindrical telescopic portion 174, the plunger stem 200 and the torsion-compression spring 202.
  • the appreciable differences between the overshot 310 and the overshot 52 include the plunger head 316 which has a conical tapered surface at distal end 318 and a re load slot 320, fashioned at the tip of the conical end 318.
  • the cylindrical portion 174 is preferably threadedly coupled at 322 to a spearhead latching mechanism, generally designated as 324.
  • the latch mechanism 324 comprises a plurality of radially yieldable depending fingers 216, preferably formed of spring steel. Each finger has a tapered conical surface 328 closely spaced from the surface of the conical end 318 of the plunger head 316 when the plunger is retracted. Each finger 326 also comprises a spearhead receiving recess 330 which terminates in a latching shoulder 332. Each latching shoulder 332 constitutes part of a spearhead hook 334 which also includes a tapered surface 336. The surface 336 accommodates spreading of the radially yieldable fingers 326 when the overshot 310 is advanced against the upper tapered cone of the spearhead 312 to latch the shoulders 3-32 of the overshot 310 under the annular shoulder 314 of the conventional spearhead 312 (FIG. 11).
  • the operation of the overshot 310 is essentially the same as the previously described operation of the overshot 52 except the standard core barrel assembly, of which spearhead 312 is a part, will be uncoupled from the outer tube on the up stroke of the overshot after latching between the spearhead 312 and the overshot 310.
  • the release housing 230 a sufficient number of times to dispose the release pawl 226 in the release slot 246 (FIGS. 6 and 7) the plunger will move from the retracted position of FIG. 13 to the extended position of FIG.
  • a suitable tool such as a screw driver, is placed in the reload slot 320 and an axial force is exerted through the tool sufiicient to overcome the axial bias of spring 202 and displace the release pawl 226 to the top of the release slot 246.
  • a rotational force is exerted left to right upon the plunger as the release housing is moved to and fro until the release dog is positioned at the right side of whichever tooth is desired, at which time the tool is removed.
  • the overshot of FIG. 14 may be effectively employed.
  • the overshot of FIG. 14 may be identical in structure and operation to either of the two previously described overshots 52 and 310 except for the toothed construction of release housing 350 (FIG. 14).
  • Release housing 350 comprises an array of spaced upper teeth 352 and an array spaced lower teeth 354, each upper tooth being located intermediate spaced bottom teeth in ofiset relation, and vice versa.
  • the right surface 360 (as viewed in FIG. 14) of each top tooth 352 extends linearly in a generally vertical direction, as does the right surface 362 of each bottom tooth 354.
  • the pawl 226 may flatly and forcibly abut such right tooth surfaces 360' and 362 sequentially responsive to the torsional bias of the overshot spring as the release housing 350 is displaced down and up by the wire line.
  • each top tooth 352 extends curvilinearly from the distal end of one top tooth to the proximal attachment of the next left top tooth at the right surface 360 thereof.
  • the left ramp surface 358 of each bottom tooth 354 extends curvilin early from the distal end of one bottom tooth to the proximal attachment of the next left bottom tooth at the right surface 362.
  • the pawl 226 will be relatively displaced by the torsion spring from the right side 362 of one bottom tooth to the right side 360 of the next left adjacent top tooth traversing the opposite ramp surface 356 with a minimum of friction where resistance to such pawl movement is substantial, as when a fluid other than water, having a'relatively heavy viscosity, is used as a cooling fluid and/or where there is an appreciable amount of sand or the like in the fluid near the bottom of the hole.
  • plunger means selectively positionable either in a retracted disposition to enable said latching or in an extended disposition to disable said latching
  • selectively positionable pawl means normally restraining the plunger means in its retracted disposition but selectively accommodating placement of the plunger means in said extended disposition
  • selectively operable means for serially disposing the powl means in a plurality of enabling positions and thereafter, if desired, in a disabling position.
  • An apparatus as defined in claim 1 further comprising means for selectively returning said pawl means from said disabling to one of said enabling positions.
  • said selectively operable means comprise an axially shiftable housing means having a series of transversely spaced axially extending teeth offset top and bottom, and an axial slot, and bias means for rotationally urging said pawl means toward said axial slot whereby each fore and aft axial displacement of said housing means will serially move said pawl means toward the axial slot from one enabling position to another and a predetermined number of fore and aft axial displacements will dispose the pawl means in the axial slot to render said overshot incapable of retaining or achieving a latching relation with said spearhead means.
  • leading end means of the overshot comprise a rigid bellshaped housing having an annular tapered shoulder adapted to first cluster and then latch with a plurality of yieldable spearhead means of the core barrel assembly.
  • leading end means comprise a plurality of integral depending, essentially radially yieldable fingers each having a shoulder adapted to latch with spearhead means of the core barrel assembly.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Description

Nov. 3, 1970 Original Filec} Aug. 10. :1966
: FIG. I.
L.J. MARTINSEN CORE DRILLING SYSTEM 4 Sheets-Sheet '1 I I I32 5m? [PIC-3.2
INVENTOR. LYLE J. MARTI NSEN BY wgtffmzf HIS ATTORNEY Nov. "3, 1970 Original Filed Aug. 10, 1966 L. J. MARTIN SEN CORE DRILLING SYSTEM 4 Sheets-Sheet 2 ISO IOS
PIC-3.4
INVENTOR. LYLE J. MARTINSEN wzyfa HIS ATTORNEY Nov. 3, 1970 Original Filed Aug. 10, 1966 FIG. l3
L. J. MKRTINSEN CORE DRILLING SYSTEM 4 Sheets-Sheet 4.
356 mm 336 F IG. ll
INVENTOR.
LYLE J. MARTINSEN H I ATTORNEY United States Patent 3,537,743 CORE DRILLING SYSTEM Lyle J. Martinsen, Murray, Utah, assignor to Boyles Bros. Drilling Co., Salt Lake City, Utah Original application Aug. 10, 1966, Ser. No. 571,521, now Patent No. 3,441,098, dated Apr. 29, 1969. Divided and this application Aug. 27, 1968, Ser. No. 778,879
Int. Cl. E21b 31/00 US. Cl. 294--86.17 9 Claims ABSTRACT OF THE DISCLOSURE A core drilling system comprising a novel overshot which provides a new release feature to accommodate selective or controlled release of its coupling relation with spearhead or latch structure of a core barrel assembly within the drill hole when an operator pumps the wire line, to which the overshot is attached, up and down a prescribed number of times. The overshot is advantageously adapted, during its motion toward the bit, to first uncouple the core barrel assembly from the outer tube and then latch to the spearhead portion of the core barrel assembly. The latched condition between the overshot and the core barrel assembly is sure and the core barrel assembly cannot inadvertently be thereafter separated from the overshot. Structurally, the preferred overshot comprises a bell, an interior plunger, and plunger release mechanism including a release housing which in combination can be situated in a latched posture or a released posture according to the desire of the operator.
This is a division of US. patent application Ser. No. 571,521 filed Aug. 10, 1966, now Pat. No. 3,441,098, issued Apr. 29, 1969.
The present invention relates generally to a novel core drilling system, including method and apparatus, and more particularly to a unique novel overshot and method for retrieving a core barrel assembly from within the outer tube of a drill string within a drill hole. The core barrel assembly, comprising spearhead latching-outer tube coupling structure, is uncoupled from the outer tube as a result of advancing the overshot toward the bit at a point in time before latching of the overshot onto the core barrel assembly takes place, rather than after overshot latching and during retracting of the overshot, as has been the practice in the art until this invention. Hence, it is not possible to latch the overshot onto the core barrel assembly only to find out that the latch assembly is sanded up or otherwise frozen in coupled position with the outer tube. Moreover, the overshot of this invention provides a new release feature to, under precise control of the operator, selectively accommodate unlatching and/or prevent subsequent latching to the core barrel assembly. I
In core drilling, it has been customary to employ an annular drilling bit which is disposed at the distal end of an outer tube carried at the distal end of a drill string and which progressively cuts through rock, responsive to rotation of the drill string, leaving an uncut, upwardly projecting rock core central of the bit. As drilling proceeds the core incrementally becomes disposed within a corereceiving barrel or inner tube of the core barrel assembly, which has been positioned in the drill string and releasably coupled with the outer tube by a latch assembly of the core barrel assembly. A swivel mechanism is interposed between the core-receiving barrel and the core barrel latch assembly so that the latch assembly normally rotates with the drill string and the core-receiving barrel normally is stationary during drilling.
When. the length of core has become disposed in the ice core-receiving barrel sufficient to fill the barrel (usually several feet long), the drill string and/ or the core barrel is displaced a short distance away from the leading end of the hole adequate to break the core from the rock formation. Afterward, the overshot, carried at the end of the wire line (cable), is latched to the spearhead of the core barrel assembly, the core barrel assembly is un coupled from the outer tube by movement of the core barrel assembly away from the bit and the overshot and latched core barrel assembly are withdrawn, along with a broken core, from the drill string.
Use of such prior art systems has presented several significant problems, one of which is mentioned below.
Prior commercially utilized core barrel latch assemblies have conventionally contained a number of mechanical parts which have been required to mechanically move relative to each other when coupling and uncoupling the core barrel assembly from the outer tube. Such latch assemblies, under certain drilling conditions, will become sanded up so that it is difficult, if not impossible, to cause the parts to mehcanically move a sufficient distance relative to each other to uncouple the core barrel assembly from the outer tube. To release a sanded up latch assembly from the outer tube, significantly high forces are exerted on the latch assembly through the wire line and latched overshot, often resulting in shear failure of the spearhead at the distal end of the core barrel assembly. Thereafter, expensive and time-consuming techniques must be used to remove the broken core barrel assembly from the hole or to remove the entire drill string.
Moreover, the existence of the mentioned sanded up condition cannot be ascertained, using prior art equipment, until after the overshot has been securely latched to the spearhead and a retraction force applied. Thereafter, unlatching of the overshot from the spearhead, when necessary, is awkward, time consuming, and unreliable. The most common way of unlatching the overshot from the sperhead of the core barrel assembly is to use a split sleeve which, under certain conditions, slides over the back ends of conventional lifting dogs, which function as jaws, to thereby counter-bias the dogs into an open, unlatched position. The same problem holds true when endeavoring to release the core barrel assembly for coupling with the outer tube after the core barrel assembly has been lowered into the drill string using an overshot carried at the end of a wire line. In either case, close control by the wire line operator over the placement of the split sleeve over the back ends of the lifting dogs to release the core barrel assembly from the overshot is not possible. Inadvertent unlatching of the core barrel assembly from the overshot is common place.
When the split sleeve is inadvertently actuated to bias the lifting dogs in open position and release the core barrel assembly, as when the overshot and latched core barrel assembly are being placed in a downwardly extending dry hole or removed from a hole which deviates from being straight as is often the case, the core barrel assembly will fall with great force against and frequently break the expensive bit.
In summary, according to the present invention, a core barrel assembly is uncoupled from the outer tube as a result of advancing a novel overshot toward the bit at a point in time before latching .of the overshot onto the core barrel assembly takes place, rather than after the overshot latching and during retraction of the overshot. The latched condition between the overshot and core barrel assembly cannot be destroyed inadvertently, but is possible only when the operator elects to sever the rela- 1 tion. The overshot of this invention thus provides a new release feature to, under precise control of the operator, selectively accommodate unlatching and/or prevent subsequent latching of the core barrel assembly. When a wire line operator desires to release the overshot, the operator merely pumps up and down on the wire line, which is attached to the overshot, a preset number of times until the overshot becomes disposed in a disabled position and is released from the overshot.
Accordingly, the present invention is a worthwhile contribution to the core drilling art because it provides a system which substantially overcomes the above-mentioned problem of the prior art. Though not anticipatory of the present invention, the most structurally comparable known prior art US. Pat. 2,508,285.
In view of the foregoing, it is a primary object of this invention to provide an improved, inherently safe wire line core drilling system, including method and apparatus, possessing novel features for easily uncoupling from an outer tube of a drill string.
Another principal object of this invention is the provision of a unique overshot system, including method and apparatus, for placing or removing a core barrel assembly in or from operating position within a drill string, such that the core barrel assembly can be detached from the overshot under close control of the operator.
A further significant object is the provision of a unique overshot system for retrieving a core barrel assembly from a drill hole which, on the advance stroke of the overshot, first uncouples the core barrel assembly from the outer tube and then latches to spearhead hook means for such retrieval.
Other significant objects are: (l) provision of a core barrel assembly-overshot combination which reduces the likelihood of spearhead shear failure by manifoldly increasing the spearhead latching surface area; and (2) provision of a combination overshot-core barrel assembly which accommodates easy manual separation of the overshot from the core barrel assembly at the drilling surface.
These and other objects and features of the present invention will become more fully apparent from the following description and appended claims taken in conjunction with the accompanying drawings wherein:
FIG. 1 is a fragmentary elevation shown partly in cross section of a presently preferred novel core barrel assembly embodiment of this invention comprising the claimed subject matter of copending U.S. patent application Ser. No. 571,521, operatively coupled to the outer tube of a drill string disposed in a hole;
FIG. 2 is an elevational view similar to FIG. 1 showing the core barrel assembly uncoupled from the outer tube and being removed from the hole, along with the broken core, using one presently preferred overshot novel embodiment of this invention;
FIG. 3 is a fragmentary cross-section shown in elevation of a centrally disposed swivel mechanism of the core barrel assembly of FIG. 1;
FIG. 4 is a fragmentary cross-section elevation of the outer tube coupling-spearhead latching assembly of the core barrel assembly of FIG. 1;
FIG. 5 is a cross-section in plan taken along line 5--5 of FIG. 4;
FIG. 6 is an elevation of the novel overshot of FIG. 2;
FIG. 7 is an elevational cross-section of the overshot of FIG. 2 taken along line 77 of FIG. 6;
FIG. 8 is a fragmentary cross-section shown in elevation of the overshot of FIG. 6 shown with the plunger thereof in the retracted position and the spearhead or prong hooks, disposed at the distal end of each prong, latched to the overshot;
FIG. 9 is a fragmentary cross-section similar to FIG. 8 illustrating the plunger in the extended position which (a) detaches the spearhead or prong hooks from the overshot when previously latched and (b) prevents subsequent latching of the spearhead hooks with the overshot;
FIG. 10 is a fragmentary elevation shown partly in cross-section illustrating the easy mode of manual surface detachment of the overshot of FIG. 2 from the core barrel assembly of FIG. 2;
FIG. 11 is a fragmentary elevation shown partly in cross-section of a second presently preferred overshot embodiment of this invention shown with a plunger retracted and the overshot latched to a conventional spearhead;
FIG. 12 is a cross-section in plan taken along line 12 12 of FIG. 11;
FIG. 13 is a fragmentary elevation of the overshot of FIG. 11 with the plunger extended and the conventional spearhead unlatched; and
FIG. 14 is a fragmentary side elevation illustrating another presently preferred overshot embodiment having modified teeth construction at the release housing.
GENERAL Reference is now made to the drawings wherein like numerals are used to identify like parts throughout. FIGS. 1 and 2 depict a core drilling system manufactured according to the present invention and generally designated 20. Some parts of the core drilling system 20 are conventional and some are decidedly novel. More particularly, the core drilling system 20 comprises an outer tube 22, a bit 24, and a string of drill pipe (not shown) positioned in a downwardly extending hole 26 in the earth, all of which is conventional. The sections of the drill string are normally threadedly coupled one to another and the last section is threadedly coupled to the outer tube 22. In turn, the outer tube 22 is threadedly connected at 28 to the hollow bit 24. The bit 24 may be of any suitable type capable of drilling through rock formations, diamond bits being commonly used for this purpose.
For purposes which will subsequently become more fully understood, the outer tube 22 is provided with an upper two-way coupling annular recess 30 and a closely spaced somewhat larger lower annular recess 32.
During the drilling, as is conventional, the drill string along with the outer tube 22 and the bit 24 are rotated by conventional apparatus (not shown) causing the bit to progressively cut an annular hole in the rock leaving an uncut rock core 36 within the hollow of the bit, which core incrementally increases in length as drilling proceeds.
As the core 36 lengthens beyond the bit 24, it is accepted within a core receiving hollow 40 of an inner tube 38 of a core barrel assembly, generally designated 42, through the inner tube shoe 44 and a core spring 46. This also is conventional.
Once the core 36 has grown to substantially fill the inner tube 38, the outer tube 22 along with the core barrel assembly 42, is elevated slightly to break the core as at (FIG. 2). When the core is particularly soft, it may only be necessary to elevate the core barrel assembly to break the core. Thereafter, the core barrel assembly is uncoupled from the outer tube and elevated to the surface, using an overshot, in the case of this invention the novel overshot generally designated 52 (FIG. 2) is used.
The core spring 46, which rests along the inner tapered angular surface 54 of the shoe 44, is contiguous at its outer surface with the core 36. Thus, as the core barrel assembly 42 is elevated, as mentioned, the weight of the core will cause the core spring 46 to slide downward a short distance along the tapered surface 54 to be compressively wedged against the core 36 to hold the core within the barrel 40 as the core barrel assembmly is elevated to the surface.
The core barrel assembly 42 also comprises a swivel mechanism, generally designated 60, which is conventional in all respects except one. The swivel mechanism functions to accommodate rotation of the upper portion of the core barrel assembly with the drilling string while maintaining the lower portion of the core barrel assembly, as at the inner tube, in a stationary position to receive the core and to accommodate water circulation. More particularly, as best shown in FIG. 3, the swivel mechanism 60, which is threadedly connected at 62 (FIG. 1) to the inner tube 38, exteriorly comprises a bearing retainer 64 with top aperture 66 through which a bearing shaft 68 rotatably passes. The shaft 68 terminates at planer surface 70 and is retained in position by a base plate 72 held in position by a cap screw 74 threaded into a bore (not shown) axially disposed and opening at the shaft surface 70. The retaining plate 72 confines a lower bearing assembly 76 in the illustrated operational position against a spacer 78 concentric of the shaft 68 while an upper bearing assembly 80 is interposed concentric about the shaft 68 between the spacer 78 and one or more resilient washers 82 made of a suitable wear resistant material such as neoprene. The neoprene washers 82 rest between the upper bearing assembly 80 and an abutment face 84 of the bearing retainer 64. The swivel is conventional except for the resilient washers.
When the core is hard to break, normally the operator will pull the entire drill string a slight distance to break the core. When this happens the neoprene washers compress sufficiently to allow the shoe 44 (FIGS. 1 and 2) to contact the bit 24 so that the principal portion of the breaking load is transferred through the outer tube 22 rather than through the core barrel assembly 42.
COUPLING-SPEARHEAD ASSEMBLY OF FIGS. 1-5
The upper portion of swivel mechanism 60 comprises a body 90, a plurality of radially yieldable prongs, or resilient fingers, generally designated 92, preferably fabricated of tool steel, and leaf spring 94, interposed between each prong 92 and the body 90 as seen in FIGS. 1, 2, 4, and 5. While four prongs 92 are shown, it is to be appreciated that any suitable plural number could be utilized, if desired.
The body 90, illustrated in detail in FIGS. 4 and 5, is preferably of tool steel and, in the configuration illustrated in FIG. 4, comprises a solid piece, which adds weight to the core barrel assembly and provides the solid support base for the prongs 92.
The bearing shaft 68 is threaded into a threaded bore (not shown) axially disposed in the body 90 and opening at the bottom surface 99 (FIG. 1). A lock nut 101 secures that shaft 68 in such threadedly connection relation with the body 90. An open notch 100 is provided along each of the four side positions of the body at 90 spacings; One leaf spring 94 is securely mounted at each open notch 100 against axial and circumferential movement by use of a pair of bolts 102 which are securely threaded into threaded bores 104. Lock'wires 106 are used to prevent inadvertent loosing of the bolts 102 during use of the core barrel assembly. At the same time, the mentioned bolt mounting of each resilient leaf spring 94 to the body 90 enables essentially radial movement in ward in a fish tail motion accommodated by tapered fiat walls 108, one disposed immediately adjacent each leaf spring 94.
The top of the body 90 has an essentially traversely-fiat centrally-located top surface 110 and four inwardly tapered open grooves 112, each accommodating the mentioned radial inward yielding of the prongs 92, when the core barrel assembly is being uncoupled from the outer tube and latched to the overshot. A very close tolerance space is provided between each open groove 112 and the adjacent base surface 114 of each prong 92. Thus, when and if the prongs 92 are subjected to a downward axial force which slightly buckles the spring 94, the base surface 114 will bottom out at the adjacent groove 112 before the stress on the adjacent leaf spring 94 exceeds the elastic limit. Of course, it is to be appreciated that, since the inward radial yielding of the prongs 92 approximately traverses an arcuate path, the open groove 112 could conveniently comprise a curvilinear rather than a linear tapered surface.
A number of weldments 115 of suitable radially projecting length are intergally disposed upon the cylindrical surfaces of the body 90 so that they will have an arcuate surface adjacent the inside'wall'of the outertube 22 which arcuate surface will be radially spaced very closely from the inside wall of the outer tube 22 during drilling. In this way, any wobbling of the body will not be excessive.
The spearhead latching-outer tube coupling prongs 92 are preferably fabricated from tool steel and, the illustrated embodiment, are all of identical construction material and dimensions. Importantly, the prongs are constructed and arranged in an array such that a hollow space is provided between to obviate sanding up problems of the the type experienced by prior art core barrel assemblies when in coupled position with the outer tube. Significantly, it should be noted that the prongs use no mechanical parts which must move relative to each other during a coupling and uncoupling of the core barrel assembly. It should be kept in mind that the prongs 92 serve a two-fold purpose; namely, to selectively accommodate coupling of the core barrel assembly with the outer tube and to accommodate spearhead latching to an overshot and outer tube uncoupling for retrieval of the core barrel assembly from the hole. Inadvertent unlatching or mislatching of one prong does not affect the outer tube coupling or the spearhead latching characteristics of this invention.
structurally, in transverse cross-section, each prong 92, as shown on the right of FIG. 5, is wedge shaped with an arcuate surface disposed at the exterior. As shown in FIG. 4, each prong comprises a ski or cam 130, the purpose of each cam being to prevent hanging up of the core barrel assembly within the drill string, such as on a poor tolerance lip at a threaded drill string coupling.
During the process of placing the core barrel assembly in the downward, water-filled hole by force of gravity, the prongs and leaf springs, normally cambered or biased radially outward, are flexed radially inward by contact with the inside wall of the outer tube 22 counter to the outward camber bias of the leaf springs. Thus, the only part of the prongs and the springs that touches the inside surface of the drill string, as the core barrel assembly is gravity displaced relative to the drill string, are the curved exterior surfaces of the cams 130. Each cam 130 may be provided with one or more surface exposed tungsten carbide buttons (not shown) or the like to prevent excessive wear.
A second basic purpose of each cam 130 is to prevent wear on the adjacent coupling ridge 132, which is separated from the cam 130 in the embodiment of FIG. 4 by an arcuate groove 134, each disposed at the exterior surface of the prong 92. In the drilling position, each cam 130, of the four illustrated prongs 92, is disposed Within the annular recess 32 previously mentioned. This disposition, accommodates close coupling of the ridge 132 within the upper two-way coupling annular recess 30.
The coupling ridge 132 couples directly with the outer tube, not necessitating a third piece suspension device, and comprises an arcuate mating surface 136, an upper coupling surface 138 and a lower coupling surface 140. The upper coupling surface 138 achieves fail-safe coupling with the upper surface of the recess 30 against rearward release during drilling regardless of whether the drilling is with or counter to gravity. This makes the weight of the core barrel assembly an uninfluential factor in uncoupling the core barrel assembly from the outer tube, contrary to the prior art.
The lower coupling surface 140 of the ridge 132 provides fail-safe coupling against forward release of the core barrel assembly in the direction of the bit. Thus, damage to the rotating bit and wear to the normally stationary shoe 44 are essentially obviated because the bit and shoe are not brought together by pressure force of the downward circulating water, which water is conventionally used to cool the bit during drilling. It should be appreciated that approximately 800 percent greater outer tube coupling surface area is provided using the described features of this invention as compared with present commercially accepted core barrel assemblies.
The distal end of each prong 92 comprises a spearhead hook 146 having an exterior tapered surface 148 and an overshot latching shoulder 150. The shoulder 150 is separated from the adjacent coupling ridge 132 by an arcuate groove 152 disposed in each prong. Inspection of FIG. 4 shows that, during drilling, the transverse position of each spearhead hook 146 is spaced from the inner wall of the outer tube 22.
The tapered surface 148 of each prong 92 accommodates inward radial gathering or clustering of the prongs when the overshot 52 is advanced toward the end of the hole 26 and brought in contact with the tapered surface 148 of each prong during such advance. The inward gathering of the prongs toward the radial center line of the core barrel assembly thereafter accommodates further displacement of the overshot along the tapered surface 148 of each prong thereby first radially uncoupling the coupling ridge 132 from the annular recess and thereafter latching the overshot upon the shoulder of each prong. The advance of the overshot is then discontinued and the overshot and the core barrel assembly (with the trapped core) are retrieved from the hole. In this way, it is not necessary or possible to first latch the overshot to the core barrel assembly before ascertaining whether or not the core barrel assembly can in fact be uncoupled from the outer tube. Also, by utilization of a plurality of prongs with overshot latching hooks 150, approximately 300 percent greater overshot latching surface area is provided than with commercial prior art spearhead configurations. Hence, the probability of shear failure of the spearhead during overshot retrieval of a core barrel assembly is significantly diminished, if not prohibited.
THE OVERSHOT OF FIGS. 6-10 The overshit 52 of FIGS. 6-10 is useful not only for removing novel core barrel assemblies of the type previously described from coupling relation with the drill string but also for overshot placing the core barrel assembly in a dry hole without risk of inadvertent release of the core barrel assembly and damage to the bit. The overshot is also useful, when disabled, as an accelerated weight to place a core barrel assembly in coupled relation with a downwardly extending outer tube of a drill string, when the drill string is filled with water.
Structurally, with special reference to FIGS. 6 and 7, the overshot 52 comprises a shoe having a bellshaped recess 162 disposed near the bottom opening 164. A short distance above the opening 164 exists an annular core barrel assembly latching shoulder 166 which extends in the illustrated embodiment through the entire 360 of the inside circumference of the recess 162. The central interior of the shoe 160 comprises a cylindrically hollow counterbore 168 terminating in an abutment surface 170 and opening not only into recess 162 but also into an elongated bore 172 Which extends upwardly. The bore 172 comprises the inside surface of an upper telescopic, reduced diameter portion 174 of shoe 160. The cylindrical telescopic portion -174 contains an L-shaped slot having a downwardly extending leg 176 and a circumferentially extending leg 175.
The upper end of the reduced diameter cylindrical portion 174 is solid at 178 and contains a diametrical bore 180 through which a pin 182, having enlarged ends 184, passes.
A plunger is concentrically disposed inside the shoe 160. The plunger 190 comprises a spool head 192 having a frusto-conical recess 194 and a reload slot 196 disposed at the top wall 198 of the recess 194. A cylindrically shaped integral stern 200 extends upwardly from and concentric to the spool head 192 and is slidably and rotationally disposed within the bore 172 of shoe 160.
A release spring 202 functions as a combined torsion and compression spring between the shoe abutment surface 170 and the top spool surface 204. The ends 206 and 208 are respectively anchored in anchor recesses 210 8 and 212 at surfaces 170 and 204. Thus, a two-way bias is provided, i.e., (a) bias of the plunger axially toward the shoe latching shoulder 166 and (b) bias of the plunger rotationally right to left, as viewed in the figures.
The plunger 190 is normally retained in the retracted (enabling) position illustrated in FIGS. 7 and 8 counter to the mentioned axial bias. Provision is made for release of the plunger 190 to an extended (disabling) position (FIG. 9) due to the bias of the spring 202 in a manner subsequently to be described.
An open groove 220 is provided in the top of stem 200, which groove extends essentially diametrically and is provided with a threaded bore (not shown) in which a bolt 222 is securely fastened. The bolt 222 passes through an aperture (not shown) in a locking plate 224 and through an aperture (not shown) in a release dog or release pawl 226 to integrally unite the pawl 226 with the stem 200 and thereby insure joint movement of the plunger 190 and the pawl 226.
The pawl 226 passes through the previously mentioned L-shaped slot in the upper end 174 of the shoe 160, the pawl being disposed in the circumferentially extending portion of the slot 175 when the plunger 190 is in the retracted position (FIGS. 7 and 8) and in the downwardly extending leg 176 (FIG. 7) of the L-shaped slot when the plunger 190 is disposed in its extended position (FIG. 9). Thus, the disposition of the pawl in the L-shaped slot in telescopic cylindrical portion 174 accommodates both plunger rotation in the circumferentially extending slot leg 175 and axial displacement of the plunger in the downwardly extending slot leg 176.
The overshoe 52 also comprises a release housing, generally designated 230. The release housing 230 has a threaded axial bore 232 adapted to threadedly couple with with a wire line coupling member 233 (FIG. 2) to which a wire line or cable is conventionally secured. The release housing 230 has a stop shoulder 234 near which the solid end 178 of the shoe 160 is disposed when the release housing 230 is in its downwardmost relative position as viewed in the figures. Oppositely disposed pin slots 236 are fabricated in the walls of the release housing 230- near the top of the bore 238 and each slot receives one of the two enlarged pin ends 184 so as to accommodate a limited amount of up and down movement of the release housing corresponding to the length of the slot 236 for purposes which will become more fully apparent subsequently.
A plurality of top and bottom teeth, 240 and 242 respectively, exist along a circumferentially extended portion of the release housing slightly below the pin slots 236. Each top tooth is offset relative to the adjacent bottom teeth and vice versa. The top teeth are spaced from each other by a predetermined distance represented by a recess 244, as are the bottom teeth. The array of teeth 240 and 242 terminates in a downwardly extending release slot 246. The circumferential portion of the release housing occupied by the teeth 240 and 242 is co-extensive with and concentric to the circumferential leg 175 of the mentioned L-shaped slot in the upper telescopic portion 174 of the shoe 160. Likewise, the release slot 246 is co-extensive and radially aligned with the downwardly extending leg 176 of the mentioned L-shaped slot.
With the foregoing in mind and assuming an orientation wherein the plunger 190 is disposed in its retracted position as shown in FIGS. 7 and 8 and with the overshot 52 suspended from a wire line, the pin 182 will be oriented so that the enlarged ends 184 will be disposed in the bottom of the adjacent slot 236 due to the weight force of the plunger and shoe. In this position, up and down pumping of the wire line by the operator will shift the release housing up and down through the distance permitted by the pin slots 236. This will first shift the pawl, which is biased left to right by the spring 202, to the right surface of the next top tooth 240 (on the down stroke of the release housing) and then to the right surface of the next bottom tooth 242 (on the up stroke of the release housing). Hence, when and if the operator desires, the up and down pumping may be continued to successively move the pawl right to left across the requisite number of teeth, top and bottom, so that the pawl thereafter becomes disposed in the release slot 246 accommodating movement of the plunger 190 from the retracted position (FIGS. 7 and 8) to the extended position (FIG. 9) under force of the spring 202. In the extended position, the spool 192 shields the shoe latching shoulder 166 against prong latching. The effects of so extending the plunger 190 are, therefore, (a) to release the prongs 92 from the overshot in the hoe at the operators will, such as when the core barrel assembly is being placed in coupled relation with the outer tube and the hole is dry, and/or (b) to prevent subsequent latching between the overshot at shoulder 166 and the prong spearhead latching shoulders 150. Also, with the plunger extended in a disabling position, the overshot may be utilized as an accelerating weight when downwardly placing the core barrel assembly in coupled relation with the outer tube when the hole is substantially filled with water.
As illustrated in FIG. 10, once the overshot and the latched core barrel assembly have been retrieved from the hole to the surface, the overshot may easily be manually separated from the prongs simply by angularly rotating the overshot relative to the prongs so that the center-lines of the two components are obliquely related. The prongs are thus gathered toward the longitudinal center line of the core barrel assembly and the shoulders 150 are displaced out of latching engagement with the annular shoulder 166 of the overshot. Thereafter the overshot and prongs are parted.
To return the plunger 190 from the extended position of FIG. 9 to the retracted position illustrated in FIGS. 7 and 8, once the overshot has been returned to the surface, it is merely necessary for the operator to place a suitable tool, such as a screw driver, in the reload slot 196 and thereafter exert an axial force sufiicient to overcome the axial bias of the spring 202 and shift the pawl 226 to the top of release slot 246. Thereafter, while maintaining such axial force, a rotational force sufficient to overcome the torque exerted by spring 202 is exerted by the tool upon the plunger 190 as the release housing 230 is shifted to and fro, a suitable number of times, through the distance allowed by pin slot 236. In this way, the release pawl 226 will be displaced sinuously through the array of top and bottom teeth 240 and 242 left to right until the pawl 226 is disposed at the right side of whichever tooth is desired, at which time the axial and rotational force exerted by the tool will be withdrawn The torque force of the spring will hold the pawl 226 in such position against the right side of the next left tooth so long as the release housing 230 is not pumped up and down. The operator may select to position the pawl against any desired tooth depending on how many up and down pumping motions in the hole may subsequently be deemed sufficient for later displacement of the plunger 190 into the extended position of FIG. 9, as previously explained.
OVERSHOT EMBODIMENT OF FIGS. 11-13 Reference is now made to FIGS. 11-13 which depict a second presently preferred overshot, generally designated 310, utilized for coupling with and uncoupling from a conventional core barrel assembly spearhead 312 having a latching shoulder 314. Certain portions of the overshot 310 are substantially identical to components of the previously described overshot 52 and are correspondingly numbered. These include the release housing 230, the cylindrical telescopic portion 174, the plunger stem 200 and the torsion-compression spring 202.
The appreciable differences between the overshot 310 and the overshot 52 include the plunger head 316 which has a conical tapered surface at distal end 318 and a re load slot 320, fashioned at the tip of the conical end 318. The cylindrical portion 174 is preferably threadedly coupled at 322 to a spearhead latching mechanism, generally designated as 324.
The latch mechanism 324 comprises a plurality of radially yieldable depending fingers 216, preferably formed of spring steel. Each finger has a tapered conical surface 328 closely spaced from the surface of the conical end 318 of the plunger head 316 when the plunger is retracted. Each finger 326 also comprises a spearhead receiving recess 330 which terminates in a latching shoulder 332. Each latching shoulder 332 constitutes part of a spearhead hook 334 which also includes a tapered surface 336. The surface 336 accommodates spreading of the radially yieldable fingers 326 when the overshot 310 is advanced against the upper tapered cone of the spearhead 312 to latch the shoulders 3-32 of the overshot 310 under the annular shoulder 314 of the conventional spearhead 312 (FIG. 11).
The operation of the overshot 310 is essentially the same as the previously described operation of the overshot 52 except the standard core barrel assembly, of which spearhead 312 is a part, will be uncoupled from the outer tube on the up stroke of the overshot after latching between the spearhead 312 and the overshot 310. Thus, when the wire line operator pumps the release housing 230 a sufficient number of times to dispose the release pawl 226 in the release slot 246 (FIGS. 6 and 7) the plunger will move from the retracted position of FIG. 13 to the extended position of FIG. 15 bringing the surface of the conical end 318 into forcible contact With the tapered conical surfaces 328 of the radially yieldable fingers 326 spreading the fingers to create a space between the two hooks 334 which is greater than the diametrical distance across the shoulder 314. Hence, the conventional spearhead can be released in this way at the will of the wire line operator.
To reload the plunger 316 from the extended position of FIG. 13 to the retracted position of FIG. 11, a suitable tool, such as a screw driver, is placed in the reload slot 320 and an axial force is exerted through the tool sufiicient to overcome the axial bias of spring 202 and displace the release pawl 226 to the top of the release slot 246. Thereafter, while maintaining the axial force of the tool a rotational force is exerted left to right upon the plunger as the release housing is moved to and fro until the release dog is positioned at the right side of whichever tooth is desired, at which time the tool is removed.
OVERSHOT EMBODIMENT OF FIG. 14
Where it is important to reduce frictional resistance of the overshot components to rotational displacement of the pawl 226 from tooth to tooth responsive to down and up displacement of the Wire line, the overshot of FIG. 14 may be effectively employed. The overshot of FIG. 14 may be identical in structure and operation to either of the two previously described overshots 52 and 310 except for the toothed construction of release housing 350 (FIG. 14).
Release housing 350 comprises an array of spaced upper teeth 352 and an array spaced lower teeth 354, each upper tooth being located intermediate spaced bottom teeth in ofiset relation, and vice versa. The right surface 360 (as viewed in FIG. 14) of each top tooth 352 extends linearly in a generally vertical direction, as does the right surface 362 of each bottom tooth 354. Thus, the pawl 226 may flatly and forcibly abut such right tooth surfaces 360' and 362 sequentially responsive to the torsional bias of the overshot spring as the release housing 350 is displaced down and up by the wire line.
The left ramp surface 356 of each top tooth 352 extends curvilinearly from the distal end of one top tooth to the proximal attachment of the next left top tooth at the right surface 360 thereof. Similarly, the left ramp surface 358 of each bottom tooth 354 extends curvilin early from the distal end of one bottom tooth to the proximal attachment of the next left bottom tooth at the right surface 362.
Thus, assuming the plunger of the overshot to be retracted and upon dropping the wire line-suspended release housing 350 relative to the remainder of the overshot, the pawl 226 will be relatively displaced by the torsion spring from the right side 362 of one bottom tooth to the right side 360 of the next left adjacent top tooth traversing the opposite ramp surface 356 with a minimum of friction where resistance to such pawl movement is substantial, as when a fluid other than water, having a'relatively heavy viscosity, is used as a cooling fluid and/or where there is an appreciable amount of sand or the like in the fluid near the bottom of the hole. In like manner, subsequent upward displacement of release housing 350 relative to the remainder of the overshot will displace the pawl 226 from biased contiguous relation with the right surface 360 of the top tooth to biased contiguous relation with the right surface 362 of the next left adjacent bottom tooth across the opposed ramp surface 358, where said substantial resistance exists.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore to be embraced therein.
What is claimed and desired to be secured by United States Letters Patent is:
1. In an overshot, means at the leading end of the overshot for latching with spearhead means of a core barrel assembly, plunger means selectively positionable either in a retracted disposition to enable said latching or in an extended disposition to disable said latching, selectively positionable pawl means normally restraining the plunger means in its retracted disposition but selectively accommodating placement of the plunger means in said extended disposition, selectively operable means for serially disposing the powl means in a plurality of enabling positions and thereafter, if desired, in a disabling position.
2. An apparatus as defined in claim 1 further comprising means for selectively returning said pawl means from said disabling to one of said enabling positions.
3. An apparatus as defined in claim 1 wherein said pawl means is carried by the plunger means and wherein a single spring urges (a) said plunger means axially toward said extended position and (b) said pawl means rotationally toward its said disabling position.
4. An apparatus as defined in claim 1 wherein said selectively operable means comprise an axially shiftable housing means having a series of transversely spaced axially extending teeth offset top and bottom, and an axial slot, and bias means for rotationally urging said pawl means toward said axial slot whereby each fore and aft axial displacement of said housing means will serially move said pawl means toward the axial slot from one enabling position to another and a predetermined number of fore and aft axial displacements will dispose the pawl means in the axial slot to render said overshot incapable of retaining or achieving a latching relation with said spearhead means.
5. An apparatus as defined in claim 4 wherein the side of each tooth disposed toward the axial slot comprises a curvalinear ramp surface.
6. An apparatus as defined in claim 1 wherein said leading end means of the overshot comprise a rigid bellshaped housing having an annular tapered shoulder adapted to first cluster and then latch with a plurality of yieldable spearhead means of the core barrel assembly.
7. An apparatus as defined in claim 6 wherein said plunger has a cup-shape leading end adapted to be juxtaposed and to shield the annular tapered shoulder so that when said yieldable spearhead means are disposed within the bell-shaped housing they will cluster within the cupshaped end of the plunger in unlatched relation to the annular tapered shoulder.
8. An apparatus as defined in claim 1 wherein said leading end means comprise a plurality of integral depending, essentially radially yieldable fingers each having a shoulder adapted to latch with spearhead means of the core barrel assembly.
9. An apparatus as defined in claim 8 wherein said plunger has an essentially solid tapered leading end adapted when in the disabling position to wedge the radially yieldable fingers generally radially outward so that the latch shoulders of the fingers will be separated by a distance greater than the overall latching distance of the spearhead means.
References Cited UNITED STATES PATENTS 1,717,497 6/1929 Davis 294-86.17 2,507,127 5/1950 True 294-8617 2,616,749 11/1952 Alford 29486.2 2,908,525 10/1959 Jones 29486.2 2,976,076 3/1961 Farley 29486.2 3,150,718 9/1964 Crowe 294-8617 ANDRES H. NIELSEN, Primary Examiner US. Cl. X.R. 294-862
US778879*A 1966-08-10 1968-08-27 Core drilling system Expired - Lifetime US3537743A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57152166A 1966-08-10 1966-08-10
US77887968A 1968-08-27 1968-08-27

Publications (1)

Publication Number Publication Date
US3537743A true US3537743A (en) 1970-11-03

Family

ID=27075600

Family Applications (1)

Application Number Title Priority Date Filing Date
US778879*A Expired - Lifetime US3537743A (en) 1966-08-10 1968-08-27 Core drilling system

Country Status (1)

Country Link
US (1) US3537743A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147589A (en) * 1974-02-19 1979-04-03 Westinghouse Electric Corp. Control rod for a nuclear reactor
US4431225A (en) * 1980-10-08 1984-02-14 Craelius Ab Releasing device in core barrel grapplers
DE3918132A1 (en) * 1988-06-08 1989-12-14 Diamant Boart Craelius Ab Device for securing a tool inside a pipe sunk in the ground
US20040140126A1 (en) * 2003-01-22 2004-07-22 Hill Bunker M. Coring Bit With Uncoupled Sleeve
US8613330B2 (en) 2011-07-05 2013-12-24 Schlumberger Technology Corporation Coring tools and related methods
EP3390764A4 (en) * 2015-12-14 2019-08-07 Bly IP Inc. Systems and methods for releasing a portion of a drill string from a drilling cable

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1717497A (en) * 1926-06-10 1929-06-18 Lewis F Davis Standing valve inserter and puller
US2507127A (en) * 1948-12-27 1950-05-09 Standard Oil Dev Co Automatic drill pipe elevator
US2616749A (en) * 1947-01-06 1952-11-04 Houston Oil Field Mat Co Inc Releasing washover overshot
US2908525A (en) * 1956-05-31 1959-10-13 Edward N Jones Wire line releasable slip-type fishing tool
US2976076A (en) * 1958-03-14 1961-03-21 Halliburton Co Releasing overshot
US3150718A (en) * 1960-10-13 1964-09-29 Baker Oil Tools Inc Subsurface retrieving apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1717497A (en) * 1926-06-10 1929-06-18 Lewis F Davis Standing valve inserter and puller
US2616749A (en) * 1947-01-06 1952-11-04 Houston Oil Field Mat Co Inc Releasing washover overshot
US2507127A (en) * 1948-12-27 1950-05-09 Standard Oil Dev Co Automatic drill pipe elevator
US2908525A (en) * 1956-05-31 1959-10-13 Edward N Jones Wire line releasable slip-type fishing tool
US2976076A (en) * 1958-03-14 1961-03-21 Halliburton Co Releasing overshot
US3150718A (en) * 1960-10-13 1964-09-29 Baker Oil Tools Inc Subsurface retrieving apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147589A (en) * 1974-02-19 1979-04-03 Westinghouse Electric Corp. Control rod for a nuclear reactor
US4431225A (en) * 1980-10-08 1984-02-14 Craelius Ab Releasing device in core barrel grapplers
DE3918132A1 (en) * 1988-06-08 1989-12-14 Diamant Boart Craelius Ab Device for securing a tool inside a pipe sunk in the ground
US20040140126A1 (en) * 2003-01-22 2004-07-22 Hill Bunker M. Coring Bit With Uncoupled Sleeve
GB2397599A (en) * 2003-01-22 2004-07-28 Schlumberger Holdings A sidewall coring bit
GB2397599B (en) * 2003-01-22 2005-11-02 Schlumberger Holdings Coring bits
US20060054358A1 (en) * 2003-01-22 2006-03-16 Schlumberger Technology Corporation Coring bit with uncoupled sleeve
AU2004200129B2 (en) * 2003-01-22 2006-08-24 Schlumberger Technology B.V. Coring bit with uncoupled sleeve
US7431107B2 (en) 2003-01-22 2008-10-07 Schlumberger Technology Corporation Coring bit with uncoupled sleeve
US8613330B2 (en) 2011-07-05 2013-12-24 Schlumberger Technology Corporation Coring tools and related methods
US9410423B2 (en) 2011-07-05 2016-08-09 Schlumberger Technology Corporation Coring tools and related methods
US10316654B2 (en) 2011-07-05 2019-06-11 Schlumberger Technology Corporation Coring tools and related methods
EP3390764A4 (en) * 2015-12-14 2019-08-07 Bly IP Inc. Systems and methods for releasing a portion of a drill string from a drilling cable
US10689919B2 (en) 2015-12-14 2020-06-23 Bly Ip Inc. Systems and methods for releasing a portion of a drill string from a drilled cable
EP3730733A1 (en) * 2015-12-14 2020-10-28 Bly IP Inc. Systems and methods for releasing a portion of a drill string from a drilling cable

Similar Documents

Publication Publication Date Title
US4651837A (en) Downhole retrievable drill bit
US3603411A (en) Retractable drill bits
US3603413A (en) Retractable drill bits
US5662182A (en) System for in situ replacement of cutting means for a ground drill
US3077933A (en) Tubing anchor and catcher apparatus
US6059053A (en) Retraction system for a latching mechanism of a tool
US6719044B2 (en) Wear bushing running and retrieval tools
US4877085A (en) Manually operated spear apparatus
US3127943A (en) Wire line core barrel
US4901793A (en) No-turn tool for a pumping system
US3024845A (en) Apparatus for setting packers in well bores
US3537743A (en) Core drilling system
US3627067A (en) Core-drilling system
US3019840A (en) Retrieving tool
US3108637A (en) Packer retrieving tool
US4991649A (en) Oil well packer retriever
US3441098A (en) Core drilling system
US3174548A (en) Combination washover tool, pipe cutter and retriever
US2879849A (en) Releasable fishing apparatus
US2551995A (en) Rotary core drill with jar mechanism
US2819879A (en) Suspension drilling device and jar
US2640537A (en) Inside pipe cutter
US3704756A (en) Apparatus for lowering and retrieving a core barrel
US2329939A (en) Well tool
US3420322A (en) Core taking apparatus