US3524408A - Electrostatic discharge dissipator for a heater bridgewire circuit of an electro-explosive device - Google Patents

Electrostatic discharge dissipator for a heater bridgewire circuit of an electro-explosive device Download PDF

Info

Publication number
US3524408A
US3524408A US699450A US3524408DA US3524408A US 3524408 A US3524408 A US 3524408A US 699450 A US699450 A US 699450A US 3524408D A US3524408D A US 3524408DA US 3524408 A US3524408 A US 3524408A
Authority
US
United States
Prior art keywords
electro
bridgewire
heater
explosive device
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US699450A
Inventor
Edward G Pierson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mission Systems Davenport Inc
Original Assignee
Conax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conax Corp filed Critical Conax Corp
Application granted granted Critical
Publication of US3524408A publication Critical patent/US3524408A/en
Assigned to CONAX BUFFALO CORPORATION reassignment CONAX BUFFALO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: COMAX CORPORATION
Assigned to CONAX CORPORATION, A CORP. OF DE. reassignment CONAX CORPORATION, A CORP. OF DE. MERGER (SEE DOCUMENT FOR DETAILS). NEW YOEK, EFFECTIVE JULY 2, 1973. Assignors: 2300 WALDEN CORP. (CHANGED TO), CONAX CORPORATION (MERGED INTO)
Anticipated expiration legal-status Critical
Assigned to CONAX FLORIDA CORPORATION, A CORP. OF FL reassignment CONAX FLORIDA CORPORATION, A CORP. OF FL ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CONAX BUFFALO CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/18Safety initiators resistant to premature firing by static electricity or stray currents

Definitions

  • the heater bridgewire circuit of an electro-explosive device is rendered safe against unintentional firing resulting from electrostatic discharge by operatively associating with such circuit an electrostatic discharge dissipator of a gaseous electrical conductable type which includes electrodes arranged in a predetermined environment of an ionizable gas so that one electrode is electrically connected to a lead wire for the heater bridgewire and another electrode is electrically grounded.
  • a typical electro-explosive device includes a pair of lead wires connected to a heater bridgewire embedded in a body of explosive material.
  • the initiating phenomenon consists of an are which occurs between one bridgewire circuit and the outer case of the device or between bridgewire circuits when redundant circuitry is employed. Since the heater bridgewire is located in the initiating explosive material, it is presumed that any electrostatic discharge between circuits. or between circuit and case, involves a positive ion bombardment of the ignitable material in the path of the are.
  • the human body is capable of building up a static charge of 810,000 ergs equivalent to a 500 mmf capacitor charged to 18,000 volts.
  • the average electro-explosive device can be inadvertently fired if carried about while holding onto the lead wires or the case and at the same time contacting a grounded conductor such as a pipe or radiator, or contacting even an ungrounded conductive mass of comparatively large size with the case or lead wires not in direct contact with the person's body.
  • a grounded conductor such as a pipe or radiator
  • the fact that the lead wires may be twisted or fastened together does not alter the susceptibility of the device to electrostatic discharge firing.
  • spark gaps of millimeter size either hermetically sealed or open to atmosphere have been used in an attempt to restrict the maximum potential that can be applied and maintained between the bridgewire circuit and the case of an electro-explosive device. But the use of such spark gaps has not been fully satisfactory. This is because in an uncontrolled vacuum or gaseous atmosphere, the gap breakdown voltage value can be very unpredictable unless the gap is built with extreme precision. Moreover, ionizing potentials may change with each discharge even though the gap length remains constant.
  • gaseous electrical conductable means including two or more electrodes arranged in a controlled or predetermined environment of an ionizable gas and operatively associated with circuits to provide one or more preferential alternate electrostatic discharge paths rather than those that would discharge through the explosive material of the electro-explosive device.
  • the gaseous electrical conductable means may be incorporated directly into the structure of the electroexplosive device or may be a separate component directly insertable by in-line series connections between the electrical connector of the device and the electrical connector on the firing circuit cable.
  • Another advantage of the present invention is that it dissipates an electrostatic discharge other than through the explosive material in a simple manner which adds very little increase to the cost of the electro-explosive device.
  • FIG. 1 is a longitudinal central sectional view, partly schematic, through an electro-explosive device equipped with electrostatic discharge dissipator means embodying one form of the present invention.
  • FIG. 2 is a fully schematic view similar to FIG. 1 and showing another form of the present invention.
  • FIG. 3 is another fully schematic view similar to FIG. 2 and showing still another form of the present invention.
  • FIG. 4 is still another fully schematic view of protecting a redundant heater bridgewire circuit against electrostatic discharge and showing yet another form of the present invention.
  • the numeral 10 represents a conductive metal case of any suitable configuration for housing the electro-explosive device. This case is shown as having an enlarged cavity 11 at one end and a smaller cavity 12 at the other end.
  • the wall portion of case 10 between its cavities l1 and 12 is shown as having two holes 13 and I4.
  • a squib or primer 15 containing an explosive material 16 of well known composition and in which a heater bridgewire I7 is embedded.
  • a lead wire 18 is electrically connected to one end of bridgewire I7 and another lead wire 19 is electrically connected to its other end.
  • These lead wires 18 and 19 are shown as extending exteriorly of the device to provide terminals 20 and 21, respectively.
  • Explosive material 16 is intended to be ignited by bridgewire 17 when a low voltage firing signal is applied to terminals 20 and 21 to heat the bridgewire.
  • Insulation between the aforementioned firing circuit and case is provided by a ceramic insulator 22 arranged in the base of case cavity 12 and through which lead wires 18 and 19 extend, and also by glass seals 23 and 24 arranged in case holes 13 and 14, respectively, and through which lead wires 18 and 19, respectively, also extend.
  • gaseous electrical conductable means are shown incorporated in the electro-explosive device to provide an electrostatic discharge path alternate to spark discharge through explosive material 16. While a predetermined environment of any suitable ionizable gas may be employed as the gaseous electrical conductable means, it is preferred to use a confined body of an inert noble gas such as helium, neon, argon, krypton and xenon. An inert noble gas is preferred because of its relatively low ionization potential. Conveniently neon glow lamps are commercially avialable for this purpose. Accordingly, a neon glow lamp 25 is shown operatively associated with the firing circuit including lead wires 18 and 19 and heater bridgewire 17. This lamp and the associated circuitry are embedded in suitable insulative potting represented by the numeral 27. Epoxy insulation is a preferred potting material.
  • Neon glow lamp 25 includes an envelope 28 filled with neon gas and a pair of metal electrodes 29 and 30.
  • a conductor or wire 34 electrically connects electrode 29to lead wire 18.
  • a conductor or wire 37 electrically connects electrode 30 to case 10.
  • conductor or wire 37 includes in series a resistor 38 of a non-inductive type for limiting current flow. Case 10 is shown grounded at 39.
  • a typical commercially available neon glow lamp suitable for use as lamp 25 has a breakdown potential of 70 to volts D.C. depending on ambient temperature and exclusion of light conditions. Such a lamp is rated for current operation of 2 milliamperes using a current limiting resistor at higher currents. sputtering of the'metal electrodes occurs and failure of the lamp can occur in milliseconds. When a 1500 mmf capacitor charged to 9000 volts is discharged into such a glow lamp with a 10 ohm series resistor. a peak current of I50 am peres has been recorded without damage to the lamp. This is probably explained by reason of the extremely low RC time constant of .075 micro s'econd.
  • bleed-offof unwanted high voltage electrostatic charges by gaseous ionization can be reliably depended upon to initiate at 70 to 135 volts.
  • the normal intended firing signal would be in the to 28 volt range. where no bleed-off occurs.
  • Some of the electrostatic energy could be dissipated as heat in the bridgewire 17 if the discharge were applied to a single pin of the circuit and the lamp 25 were connected to ground by a path that included the bridgewire.
  • the use of a ohm nominal non-inductive resistor 38 in the circuit is intended to assure distribution of the applied static energy so that it would be impossible for more than 109? ofthe total discharge energy to be dissipated directly in the heater bridgewire 17.
  • resistor 38 is not essential, it is preferred because it permits much greater total electrostatic discharge dissipation ⁇ vithout ignition.
  • the electrical circuit represented in FIG. 2 is similar to that depicted in FIG. 1 except for omission ol the resistor 38 and inclusion of a second net .i glow lamp 26.
  • This lamp 26 includes an envelope 3
  • the neon glow lamp corresponding to lamp is designated 25' having an envelope 28' and electrodes 29'and 30', and the bridgewire l7'shown embedded in explosive material l6'has lead wires I8'and 19 between which lamps 25'and 26 are arranged.
  • Electrode 29' is electrically connected to lead wire 18 by conductor or wire 34'.
  • Electrode 33 is electrically connected to lead wire 19' by conductor or wire 35.
  • a conductor or wire 36 electrically connects electrodes 30' and 32 together.
  • Ground conductor or wire 37' is shown as electrically connecting conductor or wire 36. externally of envelopes 28' and 31. to ground 39. It is pointed out that conductor or wire 37'has no resistor therein comparable to resistor 38 shown in FIG. l.
  • the electrical circuit represented in FIG. 3 is similar to that dipicted in FIG. 2 except that only a single neon glow lamp 40 having three electrodes 4
  • the electrical circuits depicted in FIG. 4 contemplate the use of neon glow lamp means to protect against electrostatic discharge in a redundant heater bridgewire electro-explosive device.
  • the numeral 47 represents a heater bridgewire having lead wires A and B. and the numeral 48 represents a second heater bridgewire having lead wires C and D. Both bridgewires 47 and 48 are shown embedded in the same body ot'explosivc material 16a.
  • a three-electrode neon glow lamp 54 is shown as having two of its electrodes 55 and 56 electrically connected by conductors or wires 57 and 58. respectively. to lead wires C and A. respectively. lts third electrode 59 is electri cally connected by conductor or wire 60 to ground 61. In this manner. neon glow lamp 54 protects against static discharge between circuit AB and ground. between circuit C-D and ground. and between circuit A-B and circuit C-D.
  • an electro-explosive device having a circuit including a pair of lead wires connected by a heater bridgewire embedded in a body olexplosive material and to which lead wires a firing signal is applied to heat said bridgewire for exploding said material.
  • the im rovement of an electrostatic dischar e dissipator independent of the means which applies sai firing signal which comprises gaseous electrical conduct-able means including electrodes arranged in a predetermined environment of an ionizable gas.
  • first conductor means electrically connecting one of said electrodes to one of said lead wires.
  • second conductor means electrically grounding another of said electrodes.
  • An electro-explosive device which further comprises a third conductor means electrically connecting still another of said electrodes to the other of said leads.
  • said gaseous electrical conductable means includes two separate confined bodies of ionizable gas and a pair of electrodes arranged in each such gas body.
  • said first conductor means electrically connects one electrode in one gas body to one oi said leads.
  • said second conductor means electrically grounds the other electrode in said one gas body and also electrically grounds. one electrode in the other gas body. and further comprises third conductor means electrically connecting the other electrode in said other gas body to the other of said leads.
  • An electro-explosive device according to Claim 12 wherein said second conductor means includes a resistor.
  • an electro-cxplosive device having a first heater bridgewire circuit including a first pair of lead wires con nected to a first heater bridgewire embedded in a body of explosive material and to which first pair of lead wires a firing signal is applied to heat said first bridgewire for exploding said material. and a second heater bridgewire circuit including a second pair of lead wires connected to a second heater bridgewire embedded in said body ofexplosivc material and to which second pair of lead wires a firing signal is applied to heat said second bridgewire for exploding said material.
  • the improvement of an electrostatic discharge dissipator independent of the means which apply said firing signals which comprises gaseous electrical conductable means including electrodes arranged in a predetermined environment of an ionizable gas.
  • first conductor means electrically connecting one of said electrodes to one lead wire of said first circuit.
  • second conductor means electrically connecting another of said electrodes to one lead wire of said second circuit.
  • third conductor means electrically grounding still another one of said electrodes

Description

United States Patent Inventor Edward G. Pierson Grand Island, New York Appl, No. 699,450 Filed Jan. 22, 1968 Patented Aug. 18, 1970 Assignee Conax Corporation New York, New York a Corp. of Delaware by mesne assignments.
ELECTROSTATIC DISCHARGE DISSIPATOR FOR A HEATER BRIDGEWIRE CIRCUIT OF AN ELECTRO-EXPLOSIVE DEVICE 16 Claims, 4 Drawing Figs.
US. Cl 102/28, 102/702 Int. Cl F42b 3/18 Field of Search 102/28, 70.2
[56] References Cited UNITED STATES PATENTS 1,807,708 6/1931 Ruhlemann 102/702 2,818,020 12/1957 Burklund 102/28 2,934,015 4/1960 l-lerdman.... 102/702 2,996,991 8/1961 Menzel 102/702 3,001,477 9/1961 Ruehlemann 102/702 3,293,527 12/1966 Julich 102/702 3,320,889 5/1967 Holtz l02/28X Primary Examiner Verlin R. Pendegrass A ttorney Sommer, Weber and Gastel ABSTRACT: The heater bridgewire circuit of an electro-explosive device is rendered safe against unintentional firing resulting from electrostatic discharge by operatively associating with such circuit an electrostatic discharge dissipator of a gaseous electrical conductable type which includes electrodes arranged in a predetermined environment of an ionizable gas so that one electrode is electrically connected to a lead wire for the heater bridgewire and another electrode is electrically grounded.
Patented Au 18, 1970 3,524,408
II IO 2 ///A//////V/////////\// a 23 v 2 38 25 g8 a 5i 3o 2:1; 2| -37 24 '4 D I a I NVENTOR.
Edward G. Pierson ATTORNEYS ELECTROSTATIC DISCHARGE DISSIPATOR FOR A HEATER BRIDGEWIRE CIRCUIT OF AN ELECTRO- EXPLOSIVE DEVICE BACKGROUND OF THE INVENTION In the field of electro-explosive devices such as are used in commercial blasting, military applications and latterly space exploration, lack of measures to prevent inadvertent electrostatic discharge has resulted in unintentional firings and in some cases even fatalities to personnel.
A typical electro-explosive device includes a pair of lead wires connected to a heater bridgewire embedded in a body of explosive material. With the electrostatic discharge problem, the initiating phenomenon consists of an are which occurs between one bridgewire circuit and the outer case of the device or between bridgewire circuits when redundant circuitry is employed. Since the heater bridgewire is located in the initiating explosive material, it is presumed that any electrostatic discharge between circuits. or between circuit and case, involves a positive ion bombardment of the ignitable material in the path of the are.
If the discharge voltage is sufficiently high to initiate con' duction, only a very small milliampere current of fractional watt second energy'is required to produce ignition of the explosive material. The human body is capable of building up a static charge of 810,000 ergs equivalent to a 500 mmf capacitor charged to 18,000 volts.
The average electro-explosive device can be inadvertently fired if carried about while holding onto the lead wires or the case and at the same time contacting a grounded conductor such as a pipe or radiator, or contacting even an ungrounded conductive mass of comparatively large size with the case or lead wires not in direct contact with the person's body. The fact that the lead wires may be twisted or fastened together does not alter the susceptibility of the device to electrostatic discharge firing.
Spark gaps of millimeter size either hermetically sealed or open to atmosphere have been used in an attempt to restrict the maximum potential that can be applied and maintained between the bridgewire circuit and the case of an electro-explosive device. But the use of such spark gaps has not been fully satisfactory. This is because in an uncontrolled vacuum or gaseous atmosphere, the gap breakdown voltage value can be very unpredictable unless the gap is built with extreme precision. Moreover, ionizing potentials may change with each discharge even though the gap length remains constant.
SUMMARY OF THE INVENTION It is accordingly the primary object ofthe present invention to provide means which are predictable and reliable in performance dissipating an electrostatic discharge in an electroexplosive device and thus protect said device against accidental firing by spark ignition.
This is achieved through the use of gaseous electrical conductable means including two or more electrodes arranged in a controlled or predetermined environment of an ionizable gas and operatively associated with circuits to provide one or more preferential alternate electrostatic discharge paths rather than those that would discharge through the explosive material of the electro-explosive device. The gaseous electrical conductable means may be incorporated directly into the structure of the electroexplosive device or may be a separate component directly insertable by in-line series connections between the electrical connector of the device and the electrical connector on the firing circuit cable.
Another advantage of the present invention is that it dissipates an electrostatic discharge other than through the explosive material in a simple manner which adds very little increase to the cost of the electro-explosive device.
Other advantages of the present invention will be apparent from the ensuing description of preferred embodiments considered in conjunction with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a longitudinal central sectional view, partly schematic, through an electro-explosive device equipped with electrostatic discharge dissipator means embodying one form of the present invention.
FIG. 2 is a fully schematic view similar to FIG. 1 and showing another form of the present invention.
FIG. 3 is another fully schematic view similar to FIG. 2 and showing still another form of the present invention.
FIG. 4 is still another fully schematic view of protecting a redundant heater bridgewire circuit against electrostatic discharge and showing yet another form of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The arrangement shown in FIG. I employing commercially available components provides excellent protection for a heater bridgewire circuit in an electro-explosive device against accidental firing from electrostatic discharge.
As there shown, the numeral 10 represents a conductive metal case of any suitable configuration for housing the electro-explosive device. This case is shown as having an enlarged cavity 11 at one end and a smaller cavity 12 at the other end. The wall portion of case 10 between its cavities l1 and 12 is shown as having two holes 13 and I4.
Shown arranged in cavity 12 is a squib or primer 15 containing an explosive material 16 of well known composition and in which a heater bridgewire I7 is embedded. A lead wire 18 is electrically connected to one end of bridgewire I7 and another lead wire 19 is electrically connected to its other end. These lead wires 18 and 19 are shown as extending exteriorly of the device to provide terminals 20 and 21, respectively. Explosive material 16 is intended to be ignited by bridgewire 17 when a low voltage firing signal is applied to terminals 20 and 21 to heat the bridgewire.
Insulation between the aforementioned firing circuit and case is provided by a ceramic insulator 22 arranged in the base of case cavity 12 and through which lead wires 18 and 19 extend, and also by glass seals 23 and 24 arranged in case holes 13 and 14, respectively, and through which lead wires 18 and 19, respectively, also extend.
In accordance with the present invention, gaseous electrical conductable means are shown incorporated in the electro-explosive device to provide an electrostatic discharge path alternate to spark discharge through explosive material 16. While a predetermined environment of any suitable ionizable gas may be employed as the gaseous electrical conductable means, it is preferred to use a confined body of an inert noble gas such as helium, neon, argon, krypton and xenon. An inert noble gas is preferred because of its relatively low ionization potential. Conveniently neon glow lamps are commercially avialable for this purpose. Accordingly, a neon glow lamp 25 is shown operatively associated with the firing circuit including lead wires 18 and 19 and heater bridgewire 17. This lamp and the associated circuitry are embedded in suitable insulative potting represented by the numeral 27. Epoxy insulation is a preferred potting material.
Neon glow lamp 25 includes an envelope 28 filled with neon gas and a pair of metal electrodes 29 and 30. A conductor or wire 34 electrically connects electrode 29to lead wire 18. A conductor or wire 37 electrically connects electrode 30 to case 10. Preferably as shown in FIG. l, conductor or wire 37 includes in series a resistor 38 of a non-inductive type for limiting current flow. Case 10 is shown grounded at 39.
A typical commercially available neon glow lamp suitable for use as lamp 25 has a breakdown potential of 70 to volts D.C. depending on ambient temperature and exclusion of light conditions. Such a lamp is rated for current operation of 2 milliamperes using a current limiting resistor at higher currents. sputtering of the'metal electrodes occurs and failure of the lamp can occur in milliseconds. When a 1500 mmf capacitor charged to 9000 volts is discharged into such a glow lamp with a 10 ohm series resistor. a peak current of I50 am peres has been recorded without damage to the lamp. This is probably explained by reason of the extremely low RC time constant of .075 micro s'econd. Well spaced repetitive pulses from capacitors with live times this energy can be dissipated in such a small lamp. With voltages below the lamp ionization potential. there is no current How to ground. Measurements of the insulation to ground using voltages up to 50 DC. read in excess of 200 megohms.
Unlike a spark gap, bleed-offof unwanted high voltage electrostatic charges by gaseous ionization can be reliably depended upon to initiate at 70 to 135 volts. The normal intended firing signal would be in the to 28 volt range. where no bleed-off occurs.
Some of the electrostatic energy could be dissipated as heat in the bridgewire 17 if the discharge were applied to a single pin of the circuit and the lamp 25 were connected to ground by a path that included the bridgewire. The use of a ohm nominal non-inductive resistor 38 in the circuit is intended to assure distribution of the applied static energy so that it would be impossible for more than 109? ofthe total discharge energy to be dissipated directly in the heater bridgewire 17. Although resistor 38 is not essential, it is preferred because it permits much greater total electrostatic discharge dissipation \vithout ignition.
The electrical circuit represented in FIG. 2 is similar to that depicted in FIG. 1 except for omission ol the resistor 38 and inclusion of a second net .i glow lamp 26. This lamp 26 includes an envelope 3| filled with neon gas and a pair of metal electrodes 32 and 33. In FIG. 2. the neon glow lamp corresponding to lamp is designated 25' having an envelope 28' and electrodes 29'and 30', and the bridgewire l7'shown embedded in explosive material l6'has lead wires I8'and 19 between which lamps 25'and 26 are arranged. Electrode 29' is electrically connected to lead wire 18 by conductor or wire 34'. Electrode 33 is electrically connected to lead wire 19' by conductor or wire 35. A conductor or wire 36 electrically connects electrodes 30' and 32 together. Ground conductor or wire 37'is shown as electrically connecting conductor or wire 36. externally of envelopes 28' and 31. to ground 39. It is pointed out that conductor or wire 37'has no resistor therein comparable to resistor 38 shown in FIG. l.
The electrical circuit represented in FIG. 3 is similar to that dipicted in FIG. 2 except that only a single neon glow lamp 40 having three electrodes 4|. 42 and 43 is employed A conductor or wire 44 electrically connects electrode 41 to lead wire 18''. and a conductor or wire 45 electrically connects electrode 43 to the other lead wire l9". Heater bridgewire l7 extends between lead wires [8" and I9" and is embedded in explosive material 16''. A conductor or wire 46 electrically connects electrode 42 to ground 39".
The electrical circuits depicted in FIG. 4 contemplate the use of neon glow lamp means to protect against electrostatic discharge in a redundant heater bridgewire electro-explosive device. The numeral 47 represents a heater bridgewire having lead wires A and B. and the numeral 48 represents a second heater bridgewire having lead wires C and D. Both bridgewires 47 and 48 are shown embedded in the same body ot'explosivc material 16a. A three-electrode neon glow lamp 54 is shown as having two of its electrodes 55 and 56 electrically connected by conductors or wires 57 and 58. respectively. to lead wires C and A. respectively. lts third electrode 59 is electri cally connected by conductor or wire 60 to ground 61. In this manner. neon glow lamp 54 protects against static discharge between circuit AB and ground. between circuit C-D and ground. and between circuit A-B and circuit C-D.
lclaim:
I. In an electro-explosive device having a circuit including a pair of lead wires connected by a heater bridgewire embedded in a body olexplosive material and to which lead wires a firing signal is applied to heat said bridgewire for exploding said material. the im rovement of an electrostatic dischar e dissipator independent of the means which applies sai firing signal which comprises gaseous electrical conduct-able means including electrodes arranged in a predetermined environment of an ionizable gas. first conductor means electrically connecting one of said electrodes to one of said lead wires. and second conductor means electrically grounding another of said electrodes.
2. An electro-explosive device according to Claim 1 wherein said second conductor means includes a resistor.
3. An electro-explosive device according to Claim 2 wherein said resistor is non-inductive.
4. An electro-explosive device according to Claim 1 wherein said gas is inert noble gas.
5. An electro-explosive device according to Claim 4 wherein said second conductor means includes a resistor.
6. An electro-explosive device according to Claim 5 wherein said resistor is non-inductive.
7. An electro-explosive device according to Claim 1 which further comprises a third conductor means electrically connecting still another of said electrodes to the other of said leads.
8. An electro-explosive device according to Claim 7 wherein said gas is inert noble gas.
9. An electro-explosive device according to Claim 1 wherein said gaseous electrical conductable means includes two separate confined bodies of ionizable gas and a pair of electrodes arranged in each such gas body. said first conductor means electrically connects one electrode in one gas body to one oi said leads. said second conductor means electrically grounds the other electrode in said one gas body and also electrically grounds. one electrode in the other gas body. and further comprises third conductor means electrically connecting the other electrode in said other gas body to the other of said leads.
10. An electro-explosive device according to Claim 9 wherein said second conductor means includes a resistor.
11. An electro-explosive device according to Claim 10 wherein said resistor is noninductive.
12. An electro-explosive device according to Claim 9 wherein said gas is inert noble gas.
13. An electro-explosive device according to Claim 12 wherein said second conductor means includes a resistor.
14. An electro-explosive device according to Claim 13 wherein said resistor is non-inductive.
15. In an electro-cxplosive device having a first heater bridgewire circuit including a first pair of lead wires con nected to a first heater bridgewire embedded in a body of explosive material and to which first pair of lead wires a firing signal is applied to heat said first bridgewire for exploding said material. and a second heater bridgewire circuit including a second pair of lead wires connected to a second heater bridgewire embedded in said body ofexplosivc material and to which second pair of lead wires a firing signal is applied to heat said second bridgewire for exploding said material. the improvement of an electrostatic discharge dissipator independent of the means which apply said firing signals which comprises gaseous electrical conductable means including electrodes arranged in a predetermined environment of an ionizable gas. first conductor means electrically connecting one of said electrodes to one lead wire of said first circuit. second conductor means electrically connecting another of said electrodes to one lead wire of said second circuit. and third conductor means electrically grounding still another one of said electrodes. I
An electro-explosive device according to Claim I5 wherein said gas is an inert noble gas.
US699450A 1968-01-22 1968-01-22 Electrostatic discharge dissipator for a heater bridgewire circuit of an electro-explosive device Expired - Lifetime US3524408A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US69945068A 1968-01-22 1968-01-22

Publications (1)

Publication Number Publication Date
US3524408A true US3524408A (en) 1970-08-18

Family

ID=24809383

Family Applications (1)

Application Number Title Priority Date Filing Date
US699450A Expired - Lifetime US3524408A (en) 1968-01-22 1968-01-22 Electrostatic discharge dissipator for a heater bridgewire circuit of an electro-explosive device

Country Status (1)

Country Link
US (1) US3524408A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728967A (en) * 1969-06-13 1973-04-24 Us Navy Tri-pri three contact primer
US4261263A (en) * 1979-06-18 1981-04-14 Special Devices, Inc. RF-insensitive squib
EP0266783A1 (en) * 1986-11-07 1988-05-11 DIEHL GMBH & CO. Ignition element
EP0679859A2 (en) * 1994-03-29 1995-11-02 Halliburton Company Electrical detonator
US20070188540A1 (en) * 2006-02-13 2007-08-16 Lexmark International, Inc. Actuator chip for inkjet printhead with electrostatic discharge protection
US10066919B2 (en) 2015-06-09 2018-09-04 Owen Oil Tools Lp Oilfield side initiation block containing booster
EP3686395A3 (en) * 2017-08-09 2020-10-21 GeoDynamics, Inc. Igniter system, downhole tool and method
US10920544B2 (en) 2017-08-09 2021-02-16 Geodynamics, Inc. Setting tool igniter system and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728967A (en) * 1969-06-13 1973-04-24 Us Navy Tri-pri three contact primer
US4261263A (en) * 1979-06-18 1981-04-14 Special Devices, Inc. RF-insensitive squib
EP0266783A1 (en) * 1986-11-07 1988-05-11 DIEHL GMBH & CO. Ignition element
EP0679859A2 (en) * 1994-03-29 1995-11-02 Halliburton Company Electrical detonator
EP0679859A3 (en) * 1994-03-29 1996-07-03 Halliburton Co Electrical detonator.
US20070188540A1 (en) * 2006-02-13 2007-08-16 Lexmark International, Inc. Actuator chip for inkjet printhead with electrostatic discharge protection
US7361966B2 (en) 2006-02-13 2008-04-22 Lexmark International, Inc. Actuator chip for inkjet printhead with electrostatic discharge protection
US10066919B2 (en) 2015-06-09 2018-09-04 Owen Oil Tools Lp Oilfield side initiation block containing booster
EP3686395A3 (en) * 2017-08-09 2020-10-21 GeoDynamics, Inc. Igniter system, downhole tool and method
US10914147B2 (en) 2017-08-09 2021-02-09 Geodynamics, Inc. Setting tool igniter system and method
US10920544B2 (en) 2017-08-09 2021-02-16 Geodynamics, Inc. Setting tool igniter system and method

Similar Documents

Publication Publication Date Title
US4891730A (en) Monolithic microwave integrated circuit terminal protection device
US4708060A (en) Semiconductor bridge (SCB) igniter
US2696191A (en) Electrically operated primer
US4354432A (en) Hot-wire ignition initiator for propellant charges
US3524408A (en) Electrostatic discharge dissipator for a heater bridgewire circuit of an electro-explosive device
US3344744A (en) Safetted ordnace device
US3610153A (en) Self-contained delay squib
US4061088A (en) Electric detonating fuse assembly
GB1486448A (en) Low voltage protection network
US3351012A (en) Explosive bridgewire initiators
US3022446A (en) Detonator device
US4604554A (en) Triggered spark gap discharger
US3117519A (en) Electric initiators for explosives, pyrotechnics and propellants
US2377804A (en) Blasting cap
AU2008226862B2 (en) Detonator ignition protection circuit
US4380958A (en) Electrostatic safe electric match
US2408124A (en) Means for safeguarding electric igniters of blasting detonators against accidental firing
US4616565A (en) Modular detonator device
US3683811A (en) Electric initiators for high energy firing currents
US3320889A (en) Detonation initiator
GB2083174A (en) Electric detonator
US3371607A (en) Arrangement for increasing the safety against unintentional initiation of socalled low energy detonating cord assemblies
US3640223A (en) Electric blasting cap having increased safety against unintentional initiation
RU178965U1 (en) Electric igniter
US3624445A (en) Electric system for firing a gaseous discharge device

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONAX BUFFALO CORPORATION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:COMAX CORPORATION;REEL/FRAME:004489/0469

Effective date: 19831003

Owner name: CONAX CORPORATION, A CORP. OF DE.

Free format text: MERGER;ASSIGNORS:CONAX CORPORATION (MERGED INTO);2300 WALDEN CORP. (CHANGED TO);REEL/FRAME:004489/0471

Effective date: 19730629

AS Assignment

Owner name: CONAX FLORIDA CORPORATION, 2801 75TH STREET, NORTH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CONAX BUFFALO CORPORATION;REEL/FRAME:005108/0722

Effective date: 19881206