US3520133A - Gas turbine control system - Google Patents
Gas turbine control system Download PDFInfo
- Publication number
- US3520133A US3520133A US713107A US3520133DA US3520133A US 3520133 A US3520133 A US 3520133A US 713107 A US713107 A US 713107A US 3520133D A US3520133D A US 3520133DA US 3520133 A US3520133 A US 3520133A
- Authority
- US
- United States
- Prior art keywords
- control
- fuel
- speed
- turbine
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/26—Starting; Ignition
Definitions
- one objects of the present invention is to provide an improved gas turbine control system which integrates the startup and operating functions in an automatic solid state electronic control system.
- Another object of the invention is to provide an improved gas turbine control system which will bring the turbine up to rated speed as rapidly as possible with minimum stress from temperature transients.
- Still another object of the invention is an improved gas turbine control system which controls fuel in accordance with an event-sequenced program together with closed loop control by one or more operating conditions, utilizing the non-controlling operating conditions for protective backup against excessive temperature stress or loss of load.
- the invention is practiced by applying to an electrical gating device a plurality of electrical fuel control signals over a full range of operating conditions of the gas turbine, each of the signals being intended to control over a different operating range.
- the gate allows only the lowest-valued signal to control fuel.
- One fuel control signal is arranged to follow a predetermined program in accordance with selected events. The remainder of the signals are determined by comparison of operating conditions with selected set points.
- FIG. 1 is a simplified functional schematic drawing of the control system applied to a single shaft gas turbine
- FIG. 2 is a graph illustrating a desired startup and operating curve for showing typical speed and fuel con.- trol signal curves
- FIG. 3 is a simplified version of a DC analog control for carrying out the objects of the invention.
- FIG. 1 of the drawing a simplified representation of a single shaft gas turbine, shown generally as 1, includes a compressor 2, combustion chamber 3, and turbine 4 connected to drive a load 5. Air entering the compressor inlet at 6 supports the combustion of fuel injected by nozzle 7. The heated exhaust gases exit from turbine outlet 8 past distributed temperature sensors such as 9 measuring exhaust temperature.
- a shaft-driven variable delivery fuel pump 10 delivers fuel to nozzle 7 at a rate of fuel flow which depends both upon the rotational shaft speed of the gas turbine 1 and the pump stroke set by a fuel control servo 11.
- the details of the fuel control servo 11 are not material to the present invention since it may include any servo-mechanism which positions the stroke-setting control on the pump at a position corresponding to an electrical positioning signal, there being many devices on the market suitable for such use. Also since the gas turbine may utilize gaseous fuel, in which case a gas valve position would control fuel flow to the combustion chamber, the term fuel control signal is used to designate the signal regardless of the type of fuel used.
- the fuel control signal is a single-valued electrical signal applied to fuel control 11 by a low value gate 12 and obtained from one of a number of input signals applied to the gate, each intended to have preference over a certain phase of gas turbine operation.
- a temperature control signal function similar to graph 13 is obtained from the temperature control 14 responsive to the exhaust temperature sensors 9.
- a speed and load control signal function similar to graph 16 is obtained from the speed and load control 15.
- Speed sensing is provided by an inductor alternator 17 on the shaft which produces an electrical signal having frequency directly proportional to turbine speed.
- An acceleration control 18 produces an acceleration signal responsive function similar to graph 19 which is designed to limit turbine acceleration during startup or during loss of load.
- a start-up control 20 produces a programmed fuel control signal as indicated by graph 21.
- the program is determined by events which are sensed from various sources. The arrangement shown uses various speeds as inputs indicated by the tachometer 17 as well as presence of flame in the combustion chamber caused by flame detector 22.
- the output of low value gate 12 is a single-valued function shown in solid line on a graph 23, while the redundant or non-controlling signals are shown in dotted lines. It will be apparent that the solid line represents the lowest rate of fuel fiow during any given phase of operation.
- the low value gate functions so that only one of the four control channels, designated by numerals I, II, III, IV, actually determines the fuel flow at any one time. This may be better understood by reference to FIG. 2, where the events and control modes of a typical start-up and loading of a gas turbine are shown.
- the abscissa is a time scale, with the channel which is in control indicated by numerals I, II, III and IV corresponding with the control units in FIG. 1.
- the ordinate is in terms of percent of rated sped (solid line n) and in terms of percent of full fuel control signal (dot-dash line V).
- the various events are noted with letters A through I.
- FIG. 3 of the drawing shows a very simplified DC analog control schematic for carrying out the functions depicted in FIGS. 1 and 2, it being understood that certain necessary functions which are immaterial to the description of the present invention are omitted for Simplicity and in order not to obscure the invention.
- FIG. 3 certain simplifications have been introduced.
- Adjustable voltage reference sources have been indicated as variable tap potentiometers connected a voltage source and ground. In practice, they could also include suitable combinations of digital switching devices to provide connection to various voltage levels. Also, the switching devices in FIG.
- a temperature control 14, a speed and load control 15, an acceleration control 18 and a start-up control 20 are all connected to a common load 12 which serves as a bus for the low value gate to supply a single-valued function V to the fuel conrtol 11.
- Fuel control 11 is shown simply as an operational amplifier 24 having its output connected to control a hydraulic servo valve 25 supplying fluid to position a piston 26.
- the piston 26 sets the stroke of variable delivery pump 10, symbolically indicated by connection to a handle 27. Also the actual position of piston 26 is sensed by an LVDT (linear variable differential transformer) 28, whose signal is demodulated at 29 to provide a feedback signal proportional to position of the piston. Therefore, the fuel control 11, in its simplest form shown, causes the fuel pump 10 to deliver fuel at a rate related to the DC voltage V on the common lead 12 (assuming constant pump speed). A gas turbine operating on natural gas would substitute a gas valve for pump 10.
- the four control devices 14, 15, 18, 20 are electrically connected to the common lead 12 so that it functions as a low value gate, i.e., such that the fuel control signal can be no higher than the lowest control signal supplied thereto.
- temperature control 14 includes an operational amplifier 30 connected to lead 12 via diode 31, and having a feedback circuit 32.
- the speed and load control 15 includes an operational amplifier 33 connected to lead 12 via diode 34 with a feedback circuit 35.
- Acceleration control 18 includes an operational amplifier 58 connected to lead 12 via diode 58a with feedback 58b.
- the startup control 20 has an operation amplifier 36, diode 37 and feedback circuit 38.
- Amplifier 30, 33, 58, 36 together with the diodes 31, 34, 37 poled as shown with respect to the common bus 12, function in the following manner. Whichever of the amplifiers 30, 33, 58, 36 has the least negative error voltage existing at its input, i.e., the input which would provide the least positive voltage at its output, will be in control, i.e., will establish the output voltage on lead 12 and therefore determine the fuel flow rate of fuel controller 11.
- Temperature control 14 includes an exhaust temperature averaging device 39 which serves to average the various exhaust temperatures sensed by sensors 9 (FIG. 1) and to provide a single exhaust temperature signal to amplifier 40.
- a function of exhaust temperature 40 is obtained in function generator 41 and applied as a variable setpoint to the input of amplifier 30 through impedance 42.
- the function generated by device 41 is a temperature ramp, starting at a suppressed preset exhaust temperature, and going up to a preset final value (see graph 13, FIG. 1).
- the major or steady state feedback path is via a resistor 46, while transient gain is affected by a feedback circuit consisting of resistor 44 and capacitor 45.
- the setpoint for amplifier 30 is adjustable with a knob 43 controlling an adjustable voltage divider.
- a signal having a frequency proportional to turbine speed from inductor alternator 17 is applied to transducer 48 which converts the signal into a current proportional to frequency.
- This is amplified at 49 and applied to an input impedance 50 connected to the input of operational amplifier 33 as a signal representative of actual speed.
- a voltage representative of desired speed selected by external knob 51 is applied to a second input impedance 52.
- the gain of the feedback path 35 is adjustable as indicated at 53 in order to set the droop, i.e., tendency of turbine speed to decrease with increase in load.
- the response characteristics may be altered to provide for isochronous control by means of relay 47 which changes the feedback circuit characteristics.
- the purpose of the speed droop is, as is well known to those skilled in the art, to provide stability and ability of the turbine to share load when it is interconnected with other prime movers.
- a minimum signal by-pass circuit is associated with the speed and load control 15. This is shown schematically as diode 54 connected to a negatively-sourced voltage divider 55. Thus if the voltage on lead 12 drops to a value selectable by potentiometer 55, diode 54 will cease to be back-biased and current will flow from the summing junction of amplifier 33 to maintain the lead 12 voltage at a minimum value.
- the speed signal at the output of amplifier 49 is differentiated with respect to time to give an acceleration signal.
- the manner in which this is done may include a capacitor 56 connected to amplifier 49 on one side and to a reference via a resistor 57 on the other side.
- the voltage between 56, 57 is representative of actual acceleration of the turbine and is applied as one input to amplifier 58.
- An adjustable voltage source representative of desired acceleration selectable by external knob 59 is applied as the other input to amplifier 58.
- the output from amplifier 58 is connected via diode 58a to the common lead 12.
- the input to operational amplifier 36 is an event-sequenced programmed high impedance voltage source.
- This is shown generally as 61 and is connected to the amplifier via input impedance 62.
- Programmed source 61 is indicated schematically by means of relays arranged to connect various levels of negative DC polarity from a voltage divider 63 with adjustable taps 72, 73, 74, to a common lead 64 via diodes 65.
- solid state switching devices are preferably employed. The description in the drawing is merely for illustrating the invention.
- a first relay 66 is actuated at firing speed (about 20% speed and corresponding to B on FIG. 2).
- a second relay 67 is actuated to open upon detection of flame in the combustion chamber by flame detector 22.
- a third relay 68 is timed to open at a specified time, say, one minute, after flame detection.
- a fourth relay 69 is arranged to close at 95% speed.
- relays 66-69 are sequenced by certain events which depend upon the operating condition of the turbine, i.e., the attainment of 20% speed, flame detection, fixed time after flame detection, and 95% speed. Other conditions or events could be selected as well.
- the fuel signal from the start-up control 20 is open loop (or unelfected by the condition of the turbine until the next event occurs). The fuel signal either remains constant or changes in a time-dependent manner.
- Diodes 65 are poled with respect to common lead 64 so that the most negative voltage applied to any one of the diodes is gated, i.e., this most negative voltage is applied to the input impedance 62.
- a maximum signal limiting device is included at 70. This includes an emitter follower circuit to prevent the voltage V on lead 12 from rising any higher than the setting on tap 71.
- signal lights 72a-75a associated with the output leads from amplifiers 30, 33, 58, 36 respectively. These may be located on the control panel and when lighted, they indicate which one of the amplifiers is in control, and thus which of the channels I, II, IH or IV is controlling the turbine.
- the startup control 20 generates an open loop event-sequenced fuel control signal as indicated by graph 21 on FIG. 1, in the following manner. Referring first to the programmed voltage source 61 of the start-up control at the bottom of FIG. 3, and remembering that the most negative voltage applied to the cathodes of diodes 65 controls the voltage on lead 64, the relays 66-69 are so positioned on the drawing that they will be actuated from top to bottom during a normal start.
- relay 66 opens and the voltage drops from ground potential to a negative voltage determined by tap 72.
- the inverted or positive signal appears at the output of amplifier 36 to call for an initial flow of fuel to the combustion chambers (see line portion 66' on graph 21 in FIG. 1).
- relay 67 opens and the voltage on lead 64 is now a less negative voltage as set by tap 73.
- the inversion of the signal by the amplifier 36 causes the fuel control signal to appear as it does in line portion 75 67', graph 21 and corresponds to a fuel flow suitable for warm-up.
- relay 68 opens.
- the RC network of amplifier circuit 68a causes the voltage to increase on a time constant curve toward a final, more negative value set with tap 74. This phase is indicated by line portion 68' in graph 21.
- relay 69 closes to impose a full negative potential on lead 64. This would result in the maximum value of fuel control signal as shown by line portion 69'.
- the event-sequenced start-up control is constrained or limited by closed loop operation of the acceleration control, temperature control and speed/load control at various times during start-up and loading.
- the acceleration control 18 is set to accelerate the turbine at a constant selectable rate determined by the reference setting knob 59.
- the acceleration amplifier 58 receives an input of an actual acceleration signal. When acceleration exceeds a selected value, the fuel control signal is reduced and varied so as to hold acceleration constant. This action is indicated on graph 19 f FIG. 1.
- Reference to FIG. 2 for a typical start shows the acceleration control to be functioning during the event interval E-F.
- a function of actual temperature is generated in the function generator 41 and the voltage is applied to input impedance 42.
- the resulting curve is reflected in graph 13, showing reduction in the fuel signal (line 77), reflecting a sharp rise in temperature as the turbine is ignited.
- the scheduled output then permits a gradual increase of allowable fuel which will not exceed a rate of increase toward a peak temperature set in function generator 41 (line portion 78).
- Line portion 79 then indicates a reduced flow of fuel (at constant speed) as load is increased in such a manner as to maintain a specified turbine exhaust temperature.
- the indicating lights 72a, 73a, 74a, 75a are only lighted when the particular controller associated with the light is in control of the turbine. 'Even though all signals are simultaneously applied to gate 12, only one of the amplifiers 30, 33, 58, 36 is in control at once, but the others are ready to take over in case of failure.
- the invention provides a very flexible control system which allows simultaneous control by an event-sequenced open loop start-up control, along with a number of constraining closed loop controls. The latter prevent occurrence of conditions which might damage the turbine while achieving start-up in the minimum time.
- first start-up control means generating a first programmed open loop event-sequenced fuel control signal, said first control means being sequenced by a plurality of preselected events normally taking place sequentially during turbine startup,
- a plurality of additional closed loop control means each continuously responsive to a different operating condition of the gas turbine and each arranged to supply a respective fuel control signal for controlling the respective operating condition
- gating means connected to be responsive to said first control signal and also to said plurality of operating condition control signals and enabling only the one of said fuel control signals representing the least fuel to control said fuel flow servo means.
- control means and saidgating means comprise a plurality of operational amplifiers connected through diode means to a common gating bus, said bus being also connected to the input of said fuel flow servo means.
- one of said additional control means is arranged to supply a fuel control signal which is dependent upon the rate of change of exhaust tempertaure of the gas turbine during startup.
- one of said additional control means is arranged to supply a fuel control signal which limits acceleration to a selected value.
- said first means includes a plurality of devices responsive to discrete events and arranged to provide reference signals corresponding to proper fuel flow for those events
- said device being connected through diode means to a common gating bus.
- first start-up control means generating a first programmed open loop event-sequenced fuel control signal, said first control means being sequenced by a plurality of preselected events taking place sequentially during normal start-up of the gas turbine,
- second means supplying a second fuel control signal for controlling fuel to obtain a desired turbine speed
- third means supplying a third fuel control signal for controlling fuel to obtain a selected temperature condition in the gas turbine
- fourth means supplying a fourth fuel control signal for controlling fuel to obtain a selected acceleration characteristic of the gas turbine
- gating means connected to be continuously responsive to said first, second, third and fourth means and enabling only the one of said electrical fuel control signals calling for the least fuel to control said fuel flow servo means.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
- Supercharger (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71310768A | 1968-03-14 | 1968-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3520133A true US3520133A (en) | 1970-07-14 |
Family
ID=24864761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US713107A Expired - Lifetime US3520133A (en) | 1968-03-14 | 1968-03-14 | Gas turbine control system |
Country Status (7)
Country | Link |
---|---|
US (1) | US3520133A (xx) |
CH (1) | CH489705A (xx) |
DE (1) | DE1912383C2 (xx) |
FR (1) | FR2003922A1 (xx) |
GB (1) | GB1254595A (xx) |
NL (1) | NL172773C (xx) |
SE (1) | SE345300B (xx) |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3601984A (en) * | 1969-10-27 | 1971-08-31 | Gen Electric | Temperature rate control system |
US3638422A (en) * | 1970-06-26 | 1972-02-01 | Gen Electric | Two-shaft gas turbine control system |
US3639076A (en) * | 1970-05-28 | 1972-02-01 | Gen Electric | Constant power control system for gas turbine |
US3662545A (en) * | 1970-08-24 | 1972-05-16 | Gen Electric | Acceleration control circuit for a gas turbine |
US3667218A (en) * | 1970-03-27 | 1972-06-06 | Gen Electric | Gas turbine temperature adaptive control |
US3688495A (en) * | 1970-04-17 | 1972-09-05 | Adolf Fehler | Control system for metering the fuel flow in gas turbine engines |
US3729928A (en) * | 1971-03-26 | 1973-05-01 | Gen Electric | Torque control system for a gas turbine |
US3739250A (en) * | 1969-09-18 | 1973-06-12 | Rolls Royce | Electronic rate means for a servo driven fuel control |
US3774395A (en) * | 1970-12-29 | 1973-11-27 | Mtu Muenchen Gmbh | Control system for gas turbine engines |
US3782347A (en) * | 1972-02-10 | 1974-01-01 | Bosch Gmbh Robert | Method and apparatus to reduce noxious components in the exhaust gases of internal combustion engines |
US3785145A (en) * | 1971-11-10 | 1974-01-15 | Gen Motors Corp | Gas turbine power plant |
US3790765A (en) * | 1973-02-01 | 1974-02-05 | Chandler Evans Inc | Governor with integrator reset |
US3793826A (en) * | 1972-12-08 | 1974-02-26 | Gen Motors Corp | Electronic start control circuit for gas turbine engine |
US3797233A (en) * | 1973-06-28 | 1974-03-19 | United Aircraft Corp | Integrated control for a turbopropulsion system |
US3844112A (en) * | 1973-06-27 | 1974-10-29 | Curtiss Wright Corp | Gas turbine start-up fuel control system |
US3878400A (en) * | 1973-04-30 | 1975-04-15 | Gen Electric | Excitation control arrangement for diesel-electric propulsion systems |
US3898439A (en) * | 1970-10-20 | 1975-08-05 | Westinghouse Electric Corp | System for operating industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system |
US3902315A (en) * | 1974-06-12 | 1975-09-02 | United Aircraft Corp | Starting fuel control system for gas turbine engines |
US3965674A (en) * | 1974-08-08 | 1976-06-29 | Westinghouse Electric Corporation | Combined cycle electric power plant and a gas turbine having a backup control system with an improved feedforward analog speed/load control |
US3977184A (en) * | 1974-08-08 | 1976-08-31 | Westinghouse Electric Corporation | Electric power plant having a gas turbine with an improved wide range surge protection system |
US3987620A (en) * | 1973-07-31 | 1976-10-26 | Fiat Termomeccanica E Turbogas S.P.A. | Device for controlling gas turbine engines |
US4009567A (en) * | 1975-02-19 | 1977-03-01 | Westinghouse Electric Corporation | Delayed ramping in the primary control system or local maintenance controller of a gas turbine implemented electrical power plant |
DE2715401A1 (de) * | 1976-12-27 | 1978-06-29 | Gen Electric | Einrichtung zur verbrennungsueberwachung |
US4100731A (en) * | 1976-11-26 | 1978-07-18 | Lucas Industries Limited | Fuel control for a multi-engine gas turbine installation |
FR2424414A1 (fr) * | 1978-04-25 | 1979-11-23 | Gen Electric | Circuit de regulation de vitesse non lineaire pour un groupe turbine a gaz/alternateur |
US4218191A (en) * | 1978-11-29 | 1980-08-19 | Phillips Petroleum Company | Multi-constraint control of a compression system |
US4218878A (en) * | 1978-04-28 | 1980-08-26 | Westinghouse Electric Corp. | Acceleration monitoring system for protecting gas turbine against damaging operation at resonant speeds |
FR2456213A1 (fr) * | 1979-05-07 | 1980-12-05 | United Technologies Corp | Commande de demarrage pour un moteur a turbine a gaz |
US4242592A (en) * | 1977-10-11 | 1980-12-30 | Westinghouse Electric Corp. | Gas turbine power plant control apparatus including an ambient temperature responsive control system |
FR2468742A1 (fr) * | 1979-10-26 | 1981-05-08 | Gen Electric | Systeme de commande pour une turbine a gaz |
US4308463A (en) * | 1970-10-20 | 1981-12-29 | Westinghouse Electric Corp. | System and method for operating industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system |
US4321791A (en) * | 1979-12-26 | 1982-03-30 | Eaton Corporation | Electronic fuel control system for a gas turbine engine |
US4322630A (en) * | 1980-03-17 | 1982-03-30 | Gould Inc. | Electrical power generating system |
US4341071A (en) * | 1979-06-01 | 1982-07-27 | Nissan Motor Company, Limited | Fuel control system for a gas turbine |
US4350008A (en) * | 1979-12-26 | 1982-09-21 | United Technologies Corporation | Method of starting turbine engines |
US4378673A (en) * | 1979-06-04 | 1983-04-05 | Nissan Motor Co., Ltd. | Fuel control system for gas turbine engine |
US4380146A (en) * | 1977-01-12 | 1983-04-19 | Westinghouse Electric Corp. | System and method for accelerating and sequencing industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system |
US4406117A (en) * | 1979-10-26 | 1983-09-27 | General Electric Company | Cyclic load duty control for gas turbine |
EP0092424A2 (en) * | 1982-04-19 | 1983-10-26 | Colt Industries Inc | Method and apparatus for damping aircraft rotor drive |
US4464895A (en) * | 1982-05-26 | 1984-08-14 | Chandler Evans Inc. | Gas turbine engine starting technique and control |
US4470257A (en) * | 1982-04-30 | 1984-09-11 | Westinghouse Electric Corp. | Isochronous and droop speed control for a combustion turbine |
US4492874A (en) * | 1982-04-26 | 1985-01-08 | General Electric Company | Synchronization fuel control for gas turbine-driven AC generator by use of maximum and minimum fuel signals |
US4517797A (en) * | 1981-05-25 | 1985-05-21 | Hitachi, Ltd. | Fuel control method for gas turbine |
US4531361A (en) * | 1982-04-19 | 1985-07-30 | Chandler Evans, Inc. | Torsional mode suppressor |
US4543782A (en) * | 1982-05-21 | 1985-10-01 | Lucas Industries | Gas turbine engine fuel control systems |
US4627234A (en) * | 1983-06-15 | 1986-12-09 | Sundstrand Corporation | Gas turbine engine/load compressor power plants |
US4649700A (en) * | 1985-04-29 | 1987-03-17 | Philip Gardiner | Fuel control system |
US4718229A (en) * | 1985-10-30 | 1988-01-12 | Rolls-Royce Plc | Failsafe electronic control systems |
US4809497A (en) * | 1983-06-15 | 1989-03-07 | Sunstrand Corporation | Gas turbine engine/load compressor power plants |
US5042247A (en) * | 1989-01-26 | 1991-08-27 | General Electric Company | Overspeed protection method for a gas turbine/steam turbine combined cycle |
US5042246A (en) * | 1989-11-06 | 1991-08-27 | General Electric Company | Control system for single shaft combined cycle gas and steam turbine unit |
US5058373A (en) * | 1989-01-26 | 1991-10-22 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US5069030A (en) * | 1989-01-26 | 1991-12-03 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US5076048A (en) * | 1989-11-25 | 1991-12-31 | Rolls-Royce Plc | Fuel control system for gas turbine engine |
US5099643A (en) * | 1989-01-26 | 1992-03-31 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US5165223A (en) * | 1990-12-10 | 1992-11-24 | Sundstrand Corporation | Process for starting a gas turbine and gas turbine |
US5199256A (en) * | 1989-01-26 | 1993-04-06 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US5301499A (en) * | 1990-06-28 | 1994-04-12 | General Electric Company | Overspeed anticipation and control system for single shaft combined cycle gas and steam turbine unit |
US5369948A (en) * | 1992-07-03 | 1994-12-06 | Mak System Gesellschaft Mbh | Method of operating a gas turbine and a process and apparatus for starting a gas turbine |
US5469700A (en) * | 1991-10-29 | 1995-11-28 | Rolls-Royce Plc | Turbine engine control system |
US5907949A (en) * | 1997-02-03 | 1999-06-01 | United Technologies Corporation | Starting fuel control method for a turbine engine |
US6062016A (en) * | 1997-04-21 | 2000-05-16 | Capstone Turbine Corporation | Gas turbine engine fixed speed light-off method |
WO2003014551A1 (en) * | 2001-07-27 | 2003-02-20 | Elliott Energy Systems, Inc. | Method for ignition and start up of a turbogenerator |
WO2003062617A1 (en) * | 2002-01-21 | 2003-07-31 | Ebara Corporation | Gas turbine apparatus |
WO2003069144A1 (en) * | 2002-02-15 | 2003-08-21 | Ebara Corporation | Gas turbine apparatus |
US20040008010A1 (en) * | 2002-06-18 | 2004-01-15 | Mohammed Ebrahim | Microturbine engine system |
WO2004025070A2 (en) * | 2002-09-13 | 2004-03-25 | Elliott Energy Systems, Inc. | Turboalternator offload control with combustor blowout prevention |
US20040055273A1 (en) * | 2002-05-20 | 2004-03-25 | Kabushiki Kaisha Toshiba | Gas turbine control system |
US20040139727A1 (en) * | 2002-10-16 | 2004-07-22 | Horswill Michael A. | Control system |
US20040237535A1 (en) * | 2001-04-26 | 2004-12-02 | David Ainsworth | Method of operating a gas turbine |
US20050147490A1 (en) * | 2004-01-05 | 2005-07-07 | Richard Soucy | System and method for controlling the speed of a gas turbine engine |
US20100194111A1 (en) * | 2007-07-09 | 2010-08-05 | Van Den Bossche Alex | combined heat power system |
US20110146291A1 (en) * | 2009-12-23 | 2011-06-23 | General Electric Company | Method for starting a turbomachine |
RU2467192C1 (ru) * | 2010-04-23 | 2012-11-20 | Хамильтон Сандстранд Корпорейшн | Способ запуска газотурбинного двигателя |
RU2472958C2 (ru) * | 2011-04-05 | 2013-01-20 | Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") | Способ запуска авиационного газотурбинного двигателя |
US20130174567A1 (en) * | 2012-01-10 | 2013-07-11 | Hamilton Sundstrand Corporation | Automatic Engine Noise Reduction |
US20150082802A1 (en) * | 2012-04-27 | 2015-03-26 | Snecma | Turbomachine comprising a monitoring system comprising a module for engaging a protection function of the turbomachine and monitoring method |
US20180347475A1 (en) * | 2017-05-31 | 2018-12-06 | Pratt & Whitney Canada Corp. | Reducing an acoustic signature of a gas turbine engine |
US10465613B2 (en) * | 2013-04-23 | 2019-11-05 | Safran Aircraft Engines | Method and a device for generating a command for the flow rate of fuel that is to be injected into a combustion chamber of a turbine engine |
CN111486006A (zh) * | 2020-04-03 | 2020-08-04 | 中国海洋石油集团有限公司 | 一种燃气轮机控制系统的升级方法 |
US11300054B2 (en) * | 2018-11-08 | 2022-04-12 | Pratt & Whitney Canada Corp. | Fuel flow control system and method for engine start |
US20220260001A1 (en) * | 2021-02-18 | 2022-08-18 | Pratt & Whitney Canada Corp. | Instrumented turbine exhaust duct |
US11859503B1 (en) | 2022-06-30 | 2024-01-02 | Pratt & Whitney Canada Corp. | Probe heat shielding |
US11920522B2 (en) | 2022-03-07 | 2024-03-05 | Ge Avio S.R.L. | Method and apparatus for controlling fuel flow into an aircraft engine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0650068B2 (ja) * | 1988-12-09 | 1994-06-29 | 株式会社日立製作所 | ガスタービンの起動方法 |
EP2006496A1 (en) * | 2007-06-22 | 2008-12-24 | Siemens Aktiengesellschaft | Gas turbine engine start up method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2941359A (en) * | 1954-08-25 | 1960-06-21 | Bendix Aviat Corp | Control system controlling one output variable and providing limits for other outputs |
US2971337A (en) * | 1954-01-08 | 1961-02-14 | Bendix Corp | Electronic fuel metering system for gas turbine engines |
US2971338A (en) * | 1954-12-06 | 1961-02-14 | Bendix Corp | Gas turbine acceleration control |
US2974483A (en) * | 1956-09-28 | 1961-03-14 | John C Sanders | Acceleration control for gas turbine engines with compressor surge limiting |
US3097489A (en) * | 1962-11-02 | 1963-07-16 | Speed | |
US3151450A (en) * | 1959-07-17 | 1964-10-06 | Dehavilland Aircraft | Gas turbine cruising and starting fuel control system |
US3340883A (en) * | 1966-04-12 | 1967-09-12 | Gen Electric | Acceleration, speed and load control system with redundant control means |
US3365981A (en) * | 1964-12-28 | 1968-01-30 | Sandstrand Corp | Combined fluid and mechanical drive |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2938338A (en) * | 1956-01-20 | 1960-05-31 | Gen Motors Corp | Gas turbine starting system |
-
1968
- 1968-03-14 US US713107A patent/US3520133A/en not_active Expired - Lifetime
-
1969
- 1969-02-14 GB GB8080/69A patent/GB1254595A/en not_active Expired
- 1969-03-06 CH CH341069A patent/CH489705A/de not_active IP Right Cessation
- 1969-03-12 DE DE1912383A patent/DE1912383C2/de not_active Expired
- 1969-03-13 SE SE3490/69A patent/SE345300B/xx unknown
- 1969-03-13 NL NLAANVRAGE6903896,A patent/NL172773C/xx not_active IP Right Cessation
- 1969-03-14 FR FR6907335A patent/FR2003922A1/fr active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2971337A (en) * | 1954-01-08 | 1961-02-14 | Bendix Corp | Electronic fuel metering system for gas turbine engines |
US2941359A (en) * | 1954-08-25 | 1960-06-21 | Bendix Aviat Corp | Control system controlling one output variable and providing limits for other outputs |
US2971338A (en) * | 1954-12-06 | 1961-02-14 | Bendix Corp | Gas turbine acceleration control |
US2974483A (en) * | 1956-09-28 | 1961-03-14 | John C Sanders | Acceleration control for gas turbine engines with compressor surge limiting |
US3151450A (en) * | 1959-07-17 | 1964-10-06 | Dehavilland Aircraft | Gas turbine cruising and starting fuel control system |
US3295317A (en) * | 1959-07-17 | 1967-01-03 | Hawker Siddeley Dynamics Ltd | Fuel control system for gas turbine engines |
US3097489A (en) * | 1962-11-02 | 1963-07-16 | Speed | |
US3365981A (en) * | 1964-12-28 | 1968-01-30 | Sandstrand Corp | Combined fluid and mechanical drive |
US3340883A (en) * | 1966-04-12 | 1967-09-12 | Gen Electric | Acceleration, speed and load control system with redundant control means |
Cited By (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3739250A (en) * | 1969-09-18 | 1973-06-12 | Rolls Royce | Electronic rate means for a servo driven fuel control |
US3601984A (en) * | 1969-10-27 | 1971-08-31 | Gen Electric | Temperature rate control system |
US3667218A (en) * | 1970-03-27 | 1972-06-06 | Gen Electric | Gas turbine temperature adaptive control |
US3688495A (en) * | 1970-04-17 | 1972-09-05 | Adolf Fehler | Control system for metering the fuel flow in gas turbine engines |
US3639076A (en) * | 1970-05-28 | 1972-02-01 | Gen Electric | Constant power control system for gas turbine |
US3638422A (en) * | 1970-06-26 | 1972-02-01 | Gen Electric | Two-shaft gas turbine control system |
US3662545A (en) * | 1970-08-24 | 1972-05-16 | Gen Electric | Acceleration control circuit for a gas turbine |
US4308463A (en) * | 1970-10-20 | 1981-12-29 | Westinghouse Electric Corp. | System and method for operating industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system |
US3898439A (en) * | 1970-10-20 | 1975-08-05 | Westinghouse Electric Corp | System for operating industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system |
US3774395A (en) * | 1970-12-29 | 1973-11-27 | Mtu Muenchen Gmbh | Control system for gas turbine engines |
US3729928A (en) * | 1971-03-26 | 1973-05-01 | Gen Electric | Torque control system for a gas turbine |
US3785145A (en) * | 1971-11-10 | 1974-01-15 | Gen Motors Corp | Gas turbine power plant |
US3782347A (en) * | 1972-02-10 | 1974-01-01 | Bosch Gmbh Robert | Method and apparatus to reduce noxious components in the exhaust gases of internal combustion engines |
US3793826A (en) * | 1972-12-08 | 1974-02-26 | Gen Motors Corp | Electronic start control circuit for gas turbine engine |
US3790765A (en) * | 1973-02-01 | 1974-02-05 | Chandler Evans Inc | Governor with integrator reset |
US3878400A (en) * | 1973-04-30 | 1975-04-15 | Gen Electric | Excitation control arrangement for diesel-electric propulsion systems |
US3844112A (en) * | 1973-06-27 | 1974-10-29 | Curtiss Wright Corp | Gas turbine start-up fuel control system |
US3797233A (en) * | 1973-06-28 | 1974-03-19 | United Aircraft Corp | Integrated control for a turbopropulsion system |
US3987620A (en) * | 1973-07-31 | 1976-10-26 | Fiat Termomeccanica E Turbogas S.P.A. | Device for controlling gas turbine engines |
US3902315A (en) * | 1974-06-12 | 1975-09-02 | United Aircraft Corp | Starting fuel control system for gas turbine engines |
US3965674A (en) * | 1974-08-08 | 1976-06-29 | Westinghouse Electric Corporation | Combined cycle electric power plant and a gas turbine having a backup control system with an improved feedforward analog speed/load control |
US3977184A (en) * | 1974-08-08 | 1976-08-31 | Westinghouse Electric Corporation | Electric power plant having a gas turbine with an improved wide range surge protection system |
US4009567A (en) * | 1975-02-19 | 1977-03-01 | Westinghouse Electric Corporation | Delayed ramping in the primary control system or local maintenance controller of a gas turbine implemented electrical power plant |
US4100731A (en) * | 1976-11-26 | 1978-07-18 | Lucas Industries Limited | Fuel control for a multi-engine gas turbine installation |
DE2715401A1 (de) * | 1976-12-27 | 1978-06-29 | Gen Electric | Einrichtung zur verbrennungsueberwachung |
US4380146A (en) * | 1977-01-12 | 1983-04-19 | Westinghouse Electric Corp. | System and method for accelerating and sequencing industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system |
US4242592A (en) * | 1977-10-11 | 1980-12-30 | Westinghouse Electric Corp. | Gas turbine power plant control apparatus including an ambient temperature responsive control system |
FR2424414A1 (fr) * | 1978-04-25 | 1979-11-23 | Gen Electric | Circuit de regulation de vitesse non lineaire pour un groupe turbine a gaz/alternateur |
US4188781A (en) * | 1978-04-25 | 1980-02-19 | General Electric Company | Non-linear dual mode regulator circuit |
US4218878A (en) * | 1978-04-28 | 1980-08-26 | Westinghouse Electric Corp. | Acceleration monitoring system for protecting gas turbine against damaging operation at resonant speeds |
US4218191A (en) * | 1978-11-29 | 1980-08-19 | Phillips Petroleum Company | Multi-constraint control of a compression system |
US4274255A (en) * | 1979-05-07 | 1981-06-23 | United Technologies Corporation | Control for start-up of a gas turbine engine |
FR2456213A1 (fr) * | 1979-05-07 | 1980-12-05 | United Technologies Corp | Commande de demarrage pour un moteur a turbine a gaz |
US4341071A (en) * | 1979-06-01 | 1982-07-27 | Nissan Motor Company, Limited | Fuel control system for a gas turbine |
US4378673A (en) * | 1979-06-04 | 1983-04-05 | Nissan Motor Co., Ltd. | Fuel control system for gas turbine engine |
FR2468742A1 (fr) * | 1979-10-26 | 1981-05-08 | Gen Electric | Systeme de commande pour une turbine a gaz |
US4299088A (en) * | 1979-10-26 | 1981-11-10 | General Electric Company | Cyclic load duty control for gas turbine |
US4406117A (en) * | 1979-10-26 | 1983-09-27 | General Electric Company | Cyclic load duty control for gas turbine |
US4321791A (en) * | 1979-12-26 | 1982-03-30 | Eaton Corporation | Electronic fuel control system for a gas turbine engine |
US4350008A (en) * | 1979-12-26 | 1982-09-21 | United Technologies Corporation | Method of starting turbine engines |
US4322630A (en) * | 1980-03-17 | 1982-03-30 | Gould Inc. | Electrical power generating system |
US4517797A (en) * | 1981-05-25 | 1985-05-21 | Hitachi, Ltd. | Fuel control method for gas turbine |
US4453378A (en) * | 1982-04-19 | 1984-06-12 | Chandler Evans, Inc. | Torsional mode suppressor |
EP0092424A3 (en) * | 1982-04-19 | 1985-02-06 | Chandler Evans Inc. | Method and apparatus for damping aircraft rotor drive |
EP0092424A2 (en) * | 1982-04-19 | 1983-10-26 | Colt Industries Inc | Method and apparatus for damping aircraft rotor drive |
US4531361A (en) * | 1982-04-19 | 1985-07-30 | Chandler Evans, Inc. | Torsional mode suppressor |
US4492874A (en) * | 1982-04-26 | 1985-01-08 | General Electric Company | Synchronization fuel control for gas turbine-driven AC generator by use of maximum and minimum fuel signals |
US4470257A (en) * | 1982-04-30 | 1984-09-11 | Westinghouse Electric Corp. | Isochronous and droop speed control for a combustion turbine |
US4543782A (en) * | 1982-05-21 | 1985-10-01 | Lucas Industries | Gas turbine engine fuel control systems |
US4464895A (en) * | 1982-05-26 | 1984-08-14 | Chandler Evans Inc. | Gas turbine engine starting technique and control |
US4627234A (en) * | 1983-06-15 | 1986-12-09 | Sundstrand Corporation | Gas turbine engine/load compressor power plants |
US4809497A (en) * | 1983-06-15 | 1989-03-07 | Sunstrand Corporation | Gas turbine engine/load compressor power plants |
US4649700A (en) * | 1985-04-29 | 1987-03-17 | Philip Gardiner | Fuel control system |
US4718229A (en) * | 1985-10-30 | 1988-01-12 | Rolls-Royce Plc | Failsafe electronic control systems |
US5099643A (en) * | 1989-01-26 | 1992-03-31 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US5199256A (en) * | 1989-01-26 | 1993-04-06 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US5058373A (en) * | 1989-01-26 | 1991-10-22 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US5069030A (en) * | 1989-01-26 | 1991-12-03 | General Electric Company | Overspeed protection for a gas turbine/steam turbine combined cycle |
US5042247A (en) * | 1989-01-26 | 1991-08-27 | General Electric Company | Overspeed protection method for a gas turbine/steam turbine combined cycle |
US5042246A (en) * | 1989-11-06 | 1991-08-27 | General Electric Company | Control system for single shaft combined cycle gas and steam turbine unit |
US5076048A (en) * | 1989-11-25 | 1991-12-31 | Rolls-Royce Plc | Fuel control system for gas turbine engine |
US5301499A (en) * | 1990-06-28 | 1994-04-12 | General Electric Company | Overspeed anticipation and control system for single shaft combined cycle gas and steam turbine unit |
US5165223A (en) * | 1990-12-10 | 1992-11-24 | Sundstrand Corporation | Process for starting a gas turbine and gas turbine |
US5469700A (en) * | 1991-10-29 | 1995-11-28 | Rolls-Royce Plc | Turbine engine control system |
US5369948A (en) * | 1992-07-03 | 1994-12-06 | Mak System Gesellschaft Mbh | Method of operating a gas turbine and a process and apparatus for starting a gas turbine |
US5907949A (en) * | 1997-02-03 | 1999-06-01 | United Technologies Corporation | Starting fuel control method for a turbine engine |
US6062016A (en) * | 1997-04-21 | 2000-05-16 | Capstone Turbine Corporation | Gas turbine engine fixed speed light-off method |
US20040237535A1 (en) * | 2001-04-26 | 2004-12-02 | David Ainsworth | Method of operating a gas turbine |
US6766647B2 (en) | 2001-07-27 | 2004-07-27 | Elliott Energy Systems, Inc. | Method for ignition and start up of a turbogenerator |
EP1444427A1 (en) * | 2001-07-27 | 2004-08-11 | Elliott Energy Systems, Inc. | Method for ignition and start up of a turbogenerator |
WO2003014551A1 (en) * | 2001-07-27 | 2003-02-20 | Elliott Energy Systems, Inc. | Method for ignition and start up of a turbogenerator |
EP1444427A4 (en) * | 2001-07-27 | 2010-04-28 | Elliott Energy Systems Inc | METHOD FOR IGNITING AND STARTING A TURBOGENERATOR |
WO2003062617A1 (en) * | 2002-01-21 | 2003-07-31 | Ebara Corporation | Gas turbine apparatus |
US20040200207A1 (en) * | 2002-01-21 | 2004-10-14 | Mckelvey Terence | Gas turbine apparatus |
US20040237537A1 (en) * | 2002-02-15 | 2004-12-02 | Mckelvey Terence | Gas turbine apparatus |
WO2003069144A1 (en) * | 2002-02-15 | 2003-08-21 | Ebara Corporation | Gas turbine apparatus |
US7143584B2 (en) | 2002-02-15 | 2006-12-05 | Ebara Corporation | Gas turbine apparatus |
CN100427738C (zh) * | 2002-05-20 | 2008-10-22 | 株式会社东芝 | 燃气涡轮机控制装置 |
US7076940B2 (en) * | 2002-05-20 | 2006-07-18 | Kabushiki Kaisha Toshiba | Gas turbine control system |
CN100427737C (zh) * | 2002-05-20 | 2008-10-22 | 株式会社东芝 | 燃气涡轮机控制装置 |
US20040055273A1 (en) * | 2002-05-20 | 2004-03-25 | Kabushiki Kaisha Toshiba | Gas turbine control system |
US7117662B2 (en) | 2002-05-20 | 2006-10-10 | Kabushiki Kaisha Toshiba | Gas turbine control system |
US20060201132A1 (en) * | 2002-05-20 | 2006-09-14 | Kabushiki Kaisha Toshiba | Gas turbine control system |
US6945030B2 (en) * | 2002-05-20 | 2005-09-20 | Kabushiki Kaisha Toshiba | Gas turbine control system |
US20050204745A1 (en) * | 2002-05-20 | 2005-09-22 | Kabushiki Kaisha Toshiba | Gas turbine control system |
DE10322703B4 (de) * | 2002-05-20 | 2012-05-24 | Kabushiki Kaisha Toshiba | Gasturbinenregelungssystem |
US20060066113A1 (en) * | 2002-06-18 | 2006-03-30 | Ingersoll-Rand Energy Systems | Microturbine engine system |
US7045913B2 (en) * | 2002-06-18 | 2006-05-16 | Ingersoll Rand Energy Systems | Microturbine engine system |
US7078825B2 (en) * | 2002-06-18 | 2006-07-18 | Ingersoll-Rand Energy Systems Corp. | Microturbine engine system having stand-alone and grid-parallel operating modes |
US20040008010A1 (en) * | 2002-06-18 | 2004-01-15 | Mohammed Ebrahim | Microturbine engine system |
WO2004025070A2 (en) * | 2002-09-13 | 2004-03-25 | Elliott Energy Systems, Inc. | Turboalternator offload control with combustor blowout prevention |
US6836720B2 (en) | 2002-09-13 | 2004-12-28 | Elliott Energy Systems, Inc. | Offload control of turboalternator with rich burn quick quench lean burn combustor to prevent blowout of combustor |
US20040128053A1 (en) * | 2002-09-13 | 2004-07-01 | Hartzheim Anthony A. | Offload control of turboalternator with rich burn quick quench lean burn combustor to prevent blowout of combustor |
WO2004025070A3 (en) * | 2002-09-13 | 2004-06-24 | Elliott Energy Systems Inc | Turboalternator offload control with combustor blowout prevention |
US20040139727A1 (en) * | 2002-10-16 | 2004-07-22 | Horswill Michael A. | Control system |
US7643928B2 (en) | 2004-01-05 | 2010-01-05 | Bombardier Transportation Gmbh | System and method for controlling the speed of a gas turbine engine |
US20050147490A1 (en) * | 2004-01-05 | 2005-07-07 | Richard Soucy | System and method for controlling the speed of a gas turbine engine |
US20100194111A1 (en) * | 2007-07-09 | 2010-08-05 | Van Den Bossche Alex | combined heat power system |
US8674525B2 (en) * | 2007-07-09 | 2014-03-18 | Universiteit Gent | Combined heat power system |
US20110146291A1 (en) * | 2009-12-23 | 2011-06-23 | General Electric Company | Method for starting a turbomachine |
US8555653B2 (en) * | 2009-12-23 | 2013-10-15 | General Electric Company | Method for starting a turbomachine |
RU2467192C1 (ru) * | 2010-04-23 | 2012-11-20 | Хамильтон Сандстранд Корпорейшн | Способ запуска газотурбинного двигателя |
RU2472958C2 (ru) * | 2011-04-05 | 2013-01-20 | Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") | Способ запуска авиационного газотурбинного двигателя |
US20130174567A1 (en) * | 2012-01-10 | 2013-07-11 | Hamilton Sundstrand Corporation | Automatic Engine Noise Reduction |
US20150082802A1 (en) * | 2012-04-27 | 2015-03-26 | Snecma | Turbomachine comprising a monitoring system comprising a module for engaging a protection function of the turbomachine and monitoring method |
US9790807B2 (en) * | 2012-04-27 | 2017-10-17 | Snecma | Turbomachine comprising a monitoring system comprising a module for engaging a protection function of the turbomachine and monitoring method |
US10465613B2 (en) * | 2013-04-23 | 2019-11-05 | Safran Aircraft Engines | Method and a device for generating a command for the flow rate of fuel that is to be injected into a combustion chamber of a turbine engine |
US20180347475A1 (en) * | 2017-05-31 | 2018-12-06 | Pratt & Whitney Canada Corp. | Reducing an acoustic signature of a gas turbine engine |
US10731570B2 (en) * | 2017-05-31 | 2020-08-04 | Pratt & Whitney Canada Corp. | Reducing an acoustic signature of a gas turbine engine |
US11300054B2 (en) * | 2018-11-08 | 2022-04-12 | Pratt & Whitney Canada Corp. | Fuel flow control system and method for engine start |
CN111486006A (zh) * | 2020-04-03 | 2020-08-04 | 中国海洋石油集团有限公司 | 一种燃气轮机控制系统的升级方法 |
CN111486006B (zh) * | 2020-04-03 | 2021-04-02 | 中国海洋石油集团有限公司 | 一种燃气轮机控制系统的升级方法 |
US20220260001A1 (en) * | 2021-02-18 | 2022-08-18 | Pratt & Whitney Canada Corp. | Instrumented turbine exhaust duct |
US11473480B2 (en) * | 2021-02-18 | 2022-10-18 | Pratt & Whitney Canada Corp. | Instrumented turbine exhaust duct |
US11920522B2 (en) | 2022-03-07 | 2024-03-05 | Ge Avio S.R.L. | Method and apparatus for controlling fuel flow into an aircraft engine |
US11859503B1 (en) | 2022-06-30 | 2024-01-02 | Pratt & Whitney Canada Corp. | Probe heat shielding |
Also Published As
Publication number | Publication date |
---|---|
FR2003922A1 (xx) | 1969-11-14 |
SE345300B (xx) | 1972-05-23 |
GB1254595A (en) | 1971-11-24 |
NL172773B (nl) | 1983-05-16 |
DE1912383C2 (de) | 1981-10-15 |
NL6903896A (xx) | 1969-09-16 |
NL172773C (nl) | 1983-10-17 |
DE1912383A1 (de) | 1969-10-09 |
CH489705A (de) | 1970-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3520133A (en) | Gas turbine control system | |
US3902315A (en) | Starting fuel control system for gas turbine engines | |
US3639076A (en) | Constant power control system for gas turbine | |
US3955359A (en) | Bearing temperature system failure detection apparatus suitable for use in power plants and like apparatus | |
CA1036669A (en) | Gas turbine power plant control apparatus including a temperature reset starting control system and an ignition pressure control system | |
US4437303A (en) | Fuel control system for a gas turbine engine | |
JPH0580578B2 (xx) | ||
US3638422A (en) | Two-shaft gas turbine control system | |
CA1143818A (en) | Gas turbine fuel control system | |
US3295316A (en) | Speed overshoot limiter for fuel controls | |
US3166902A (en) | Fuel control for a regenerative gas turbine engine | |
GB1184369A (en) | Improvements in control systems for axial flow compressors particularly adapted for use in gas turbine engines | |
US2774215A (en) | Tailpipe or afterburning control for turbojet engines | |
US3943373A (en) | Gas turbine power plant control apparatus including a speed/load hold and lock system | |
US2971337A (en) | Electronic fuel metering system for gas turbine engines | |
GB2061567A (en) | Gas turbine control system | |
US3250901A (en) | Time temperature recorder for turbojet engines | |
US5267435A (en) | Thrust droop compensation method and system | |
US4087961A (en) | Fuel control system for gas turbine engine operated on gaseous fuel | |
US3279169A (en) | Arrangement for starting and adjusting the operation of a power generator incorporating a gas turbine | |
US2674843A (en) | Temperature controlled fuel system of gas-turbine engines having reheat combustion equipment | |
US2790303A (en) | Jet engine fuel and nozzle area control apparatus | |
US3800534A (en) | Auxiliary hydraulic power supply | |
US4117670A (en) | Dual slope temperature differential shutdown control for gas turbines | |
US3888078A (en) | Governing device for a gas turbine system exemplified by a vehicular or aircraft engine |