US3514691A - Power supply for plural logic cards - Google Patents

Power supply for plural logic cards Download PDF

Info

Publication number
US3514691A
US3514691A US3514691DA US3514691A US 3514691 A US3514691 A US 3514691A US 3514691D A US3514691D A US 3514691DA US 3514691 A US3514691 A US 3514691A
Authority
US
United States
Prior art keywords
power supply
transistor
voltage
direct current
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Morton S Levin
James Q Maloy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Datascan Inc
Original Assignee
Datascan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datascan Inc filed Critical Datascan Inc
Application granted granted Critical
Publication of US3514691A publication Critical patent/US3514691A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/563Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including two stages of regulation at least one of which is output level responsive, e.g. coarse and fine regulation

Definitions

  • the present invention aims to overcome the difliculties and disadvantages of prior power supplies for logic circuitry by providing a power supply in which a main regulated power supply of not exceptionally high quality is provided.
  • An extremely well regulated reference voltage is established from the main power supply and used to regulate the main power supply and also to regulate a small auxiliary power supply for each of the logic cards.
  • the logic card power supply in accordance with the invention is advantageous in that spikes in the power supply are greatly reduced.
  • a sixty cycle alternating current supply of about one hundred and fifteen volts is adapted to be connected to the primary of transformer T1 through a protective fuse F1.
  • the secondary of the transformer T1 is center tapped and grounded.
  • the transformer T1 output is full wave rectified by diodes CR5 and CR6 and filtered by capacitor C6.
  • the output of capacitor C6 feeds pass transistor Q11 through a current limiting resistor R27.
  • This limiting resistor R27 is also used in the short circuit protection system which is comprised of diode CR1, resistors R1, R2, R3, R4 and transistors Q1 and Q10.
  • transistor Q1 When an overcurrent is detected transistor Q1 is turned on by the voltage drop across resistor R27 and turns on transistor Q which pulls the base of transistor Q2 toward ground which in turn pulls the base of the transistor Q11 toward ground reducing the direct current output voltage.
  • Transistor Q2 is normally used as a current amplifier driving pass transistor Q11.
  • the drive for transistor Q2 is controlled by transistor Q4 which is one half of a differential amplifier comprised of transistors Q3 and Q4 and in which transistor Q3 is driven by the power supply reference voltage derived from Zener CR3.
  • Transistor Q4 senses the output voltage in divider string R9, R10 and R23.
  • R23 is a potentiometer used to set a seven volt direct current voltage level.
  • Resistor R7 is a dissipation limiting collector load for transistor Q3.
  • Resistor R25 provides a leakage path for the transistor Q11.
  • Resistor R8 is a common emitter resistor for the transistor Q3Q4 differential amplifier combination.
  • Transistors Q2, Q3 and Q4 form a power supply regulator.
  • Transistors Q1 and Q10 form a current limiting network.
  • Diode CR1 is used as a stand off diode in the current limiting detector network.
  • Capacitor C1 is a filter capacitor which allows heavy transient currents to be pulled through the pass transistor Q11 without the current limiting network coming into operation.
  • Transistor Q5 and silicon controlled rectifier SC-Rl and Zener diode CR2 are part of an overvoltage protection network sensed by Zener CR2.
  • Resistor R12 is the base resistor for transistor Q5.
  • Resistor R11 is a collector load for transistor Q5.
  • the high current power supply need only be a semiregulated economical power supply which is used as the input voltage for a 5.6 volt power supply.
  • Transistors Q6 and Q7 function in exactly the same Way as transistors Q3 and Q4 in the 7 volt power supply, that is they form a differential amplifier in which the reference voltage is fed into the base of transistor Q6 and the power supply output voltage is sensed by the base of transistor Q7 in the output voltage divider R24.
  • Resistor R16 is the common emitter resistor for the differential amplifier.
  • Resistor R17 is the collector load for transistor Q7.
  • Capacitor C4 is a high frequency filter capacitor placed across the sensed voltage.
  • Resistor R20 is used to sense the current in the 5.6 volt power supply and diodes CR4, resistors R19, R21 and R22 and transistor Q8 make up a current sensing network which is used to clamp the output of the 5.6 volt power supply in the same manner as described for the 7 volt supply.
  • Transistor Q9 is the output pass transistor for the plus 5.6 volt power supply and is driven directly from the collector of transistor Q7. The output of the 5.6 volt power supply is further filtered by capacitor C5.
  • Zener diode CR3 is the reference for both power supplies.
  • the output of the 7 volt supply is passed to transistor Q12 connected as a cathode follower.
  • Resistor R30 is for current limiting purposes in the event of circuit breakdown.
  • Resistor R31 and capacitor C10 form an input filter for the 5.6 volt supply.
  • Capacitor C11 is an output filter passing high frequency.
  • Resistors R30, R31, capacitors C10, C11 and transistor Q12 are positioned on a logic card 32 conveniently spaced a distance from the remainder of the power supply system. Across the output of the regulated power supply for the logic card 32 is provided a pair of output terminals 33 and 34 adapted to be connected to logic card circuitry which may be positioned in the area indicated by the numeral 35. A second logic card is identified by the numeral 36. Additional logic cards may be added as desired, the circuitry thereon including the power supply unit R30, R31, capacitors C10, C11 and transistor Q12, each of which has output terminals 33 and 34 for connection to logic card circuitry as indicated at 35.
  • the 5 volt output of the dynamic decoupling circuit has less than 5 millivolt peak to peak noise under the worst operating conditions and for a 100 milliampere change in current the maximum ripple is approximately 5 :millivolt.
  • the 7 volt supply is about 2 percent supply (plus or minus 140 millivolt).
  • the 5.6 volt power supply is about a two tenths percent power supply (plus or minus millivolt).
  • the power supply in accord ance with the invention permits the use of a relatively noisy basic power supply and still have a quiet power supply for the logic cards.
  • a power supply system for a plurality of logic cards comprising a power supply unit including means providing a source of direct current energy, means providing a low quality regulated power supply fed by said direct current source, means providing a well-regulated reference voltage supply fed by said low quality regulated supply, a plurality of logic cards, said power supply unit feeding out to each of said logic cards a low quality direct current supply and a high quality direct current regulated supply, a logic card voltage regulator carried by each logic card, each of said logic card voltage regualtors supplied by said low quality regulated power supply and controll 'by said well-regulated reference voltage, a regulator output carried by each logic card, the regulator outputs adapted to be connected to logic card circuitry, and a filter also positioned on each logic card and connected to its high quality regulated supply, whereby the output of each logic card voltage regulator is a, highly regulated low ripple supply substantially unaffected by possible noise.
  • a direct current power supply system in which said means providing a low quality regulated power supply is a pass transistor.
  • a direct current power supply system according to claim 1 in which said logic card regulator is a cathode follower.
  • a direct current power supply system in which short circuit protection means is included comprising potential dropping means connected in series with said means providing a low quality power supply, and control means for said power supply responsive to greater than normal potential drop across said potential dropping means.
  • a direct current power supply system according to claim 4 in which capacitor means is included to supply heavy transients drawn by said low quality power supply.
  • a direct current power supply system in which overvoltage means is included including a silicon controlled rectifier connected across said source of direct current outwardly of said potential dropping means, and control means is provided for said silicon controlled rectifier.
  • a direct current power supply system in which said low quality regulated power supply is a pass transistor, and in which said means providing a well regulated reference voltage is a Zener diode controlling a differential amplifier in which one half of said amplifier is driven by the Zener diode and the other half of said amplifier is driven by a voltage derived from the output voltage.
  • a direct current power supply system in which said means providing a well regulated reference voltage is a Zener diode controlling a differential amplifier in which one half of said amplifier is driven by the Zener diode and the other half of said amplifier is driven by a voltage derived from the output voltage, and in which said logic card voltage regulator is a cathode follower.
  • a direct current power supply system in which said low quality regulated power supply is a pass transistor, said means providing a well regulated reference voltage is a Zener diode controlling a differential amplifier in which one half of said amplifier is driven by the Zener diode and the other half of said amplifier is driven by a voltage derived from the output voltage, said logic card voltage regulator is a cathode follower, in which short circuit protection means is included comprising potential dropping means connected in series with said power supply and control means for said power supply responsive to greater than normal potential drop across said potential dropping means, in which capacitor means is included to supply heavy transients drawn by said power supply, and in which overvoltage means is included including a silicon controlled rectifier connected across said source of direct current outwardly of said potential dropping means, and control means is provided for said silicon controlled rectifier.
  • a direct current power supply system in which a current limiting resistor is provided positioned on said logic card and connected between said low quality regulated power supply and said regulator.
  • a direct current power supply system in which said filter includes a resistance connected in series between said high quality regulated power supply and said regulator and a capacitor is provided connected between the junction of said resistor and said regulator and ground.
  • a direct current power supply system in which said regulator is a transistor connected as a cathode follower, a filter capacitor is provided and connected between the transistor emitter and ground, and a pair of terminals are provided connected across said filter capacitor thereby providing said regulator output adapted to be connected to logic card circuitry.

Description

May 26, 1970 s, LEVIN ETAL POWER SUPPLY FOR PLURAL LOGIC CARDS Filed Nov. 22, 1967 NORTON s LEV/N 400 o. muoy BY R0 (2, ,4 A/
INVENTORS xwisuosu QQSQ QBQ ATTO R N EY United States Patent 3,514,691 POWER SUPPLY FOR PLURAL LOGIC CARDS Morton S. Levin, Woodclilf Lake, and James Q. Maloy, Wayne, N.J., assignors to Datascan Incorporated, Clifton, N.J., a corporation of New Jersey Filed Nov. 22, 1967, Ser. No. 685,159 Int. Cl. Gf 1/58, 1/64 U.S. Cl. 3239 '12 Claims ABSTRACT OF THE DISCLOSURE The present invention relates to electrical circuits and more particularly to a power supply for integrated circuit logic cards.
It is extremely important that the power supply for a logic circuitry box of the type used for automatic test systems, digital control, computer interlays and the like, be free from transients, spikes, and variations in voltage.
Heretofore power supplies have been provided in which a master regulator is incorporated, the regulated voltage being supplied to individual logic cards through distribution busses. Difiiculty has been had with such systems because of interaction noise transmitted through the distribution busses. Attempts have been made to overcome this problem by the use of filter networks. However, such circuits have not been wholly satisfactory because of the high distribution bus impedance.
The present invention aims to overcome the difliculties and disadvantages of prior power supplies for logic circuitry by providing a power supply in which a main regulated power supply of not exceptionally high quality is provided. An extremely well regulated reference voltage is established from the main power supply and used to regulate the main power supply and also to regulate a small auxiliary power supply for each of the logic cards.
The logic card power supply in accordance with the invention is advantageous in that spikes in the power supply are greatly reduced.
Objects and advantages of the invention will be appar ent from the following description and from the accompanying drawing which shows, by way of example, an embodiment of the invention.
Referring to the drawing a sixty cycle alternating current supply of about one hundred and fifteen volts is adapted to be connected to the primary of transformer T1 through a protective fuse F1. The secondary of the transformer T1 is center tapped and grounded.
The transformer T1 output is full wave rectified by diodes CR5 and CR6 and filtered by capacitor C6. The output of capacitor C6 feeds pass transistor Q11 through a current limiting resistor R27. This limiting resistor R27 is also used in the short circuit protection system which is comprised of diode CR1, resistors R1, R2, R3, R4 and transistors Q1 and Q10. When an overcurrent is detected transistor Q1 is turned on by the voltage drop across resistor R27 and turns on transistor Q which pulls the base of transistor Q2 toward ground which in turn pulls the base of the transistor Q11 toward ground reducing the direct current output voltage. Transistor Q2 is normally used as a current amplifier driving pass transistor Q11. The drive for transistor Q2 is controlled by transistor Q4 which is one half of a differential amplifier comprised of transistors Q3 and Q4 and in which transistor Q3 is driven by the power supply reference voltage derived from Zener CR3. Transistor Q4 senses the output voltage in divider string R9, R10 and R23. R23 is a potentiometer used to set a seven volt direct current voltage level. Resistor R7 is a dissipation limiting collector load for transistor Q3. Resistor R25 provides a leakage path for the transistor Q11. Resistor R8 is a common emitter resistor for the transistor Q3Q4 differential amplifier combination. Transistors Q2, Q3 and Q4 form a power supply regulator. Transistors Q1 and Q10 form a current limiting network. Diode CR1 is used as a stand off diode in the current limiting detector network. Capacitor C1 is a filter capacitor which allows heavy transient currents to be pulled through the pass transistor Q11 without the current limiting network coming into operation. Transistor Q5 and silicon controlled rectifier SC-Rl and Zener diode CR2 are part of an overvoltage protection network sensed by Zener CR2. Resistor R12 is the base resistor for transistor Q5. Resistor R11 is a collector load for transistor Q5. When Zener CR2 passes a potential transistor Q5 is turned on, turning on the silicon controlled rectifier SCRl which clamps the plus seven volt feed.
Thus it may be seen that the high current power supply need only be a semiregulated economical power supply which is used as the input voltage for a 5.6 volt power supply.
Transistors Q6 and Q7 function in exactly the same Way as transistors Q3 and Q4 in the 7 volt power supply, that is they form a differential amplifier in which the reference voltage is fed into the base of transistor Q6 and the power supply output voltage is sensed by the base of transistor Q7 in the output voltage divider R24. Resistor R16 is the common emitter resistor for the differential amplifier. Resistor R17 is the collector load for transistor Q7. Capacitor C4 is a high frequency filter capacitor placed across the sensed voltage. Resistor R20 is used to sense the current in the 5.6 volt power supply and diodes CR4, resistors R19, R21 and R22 and transistor Q8 make up a current sensing network which is used to clamp the output of the 5.6 volt power supply in the same manner as described for the 7 volt supply. Transistor Q9 is the output pass transistor for the plus 5.6 volt power supply and is driven directly from the collector of transistor Q7. The output of the 5.6 volt power supply is further filtered by capacitor C5.
Since the 5.6 volt highly regulated power supply need only furnish a small amount of current (one twentieth of the output current of the 7 volt power supply) it may be made a highly regulated power supply at relatively low cost. Zener diode CR3 is the reference for both power supplies.
The output of the 7 volt supply is passed to transistor Q12 connected as a cathode follower. Resistor R30 is for current limiting purposes in the event of circuit breakdown. Resistor R31 and capacitor C10 form an input filter for the 5.6 volt supply. Capacitor C11 is an output filter passing high frequency.
Resistors R30, R31, capacitors C10, C11 and transistor Q12 are positioned on a logic card 32 conveniently spaced a distance from the remainder of the power supply system. Across the output of the regulated power supply for the logic card 32 is provided a pair of output terminals 33 and 34 adapted to be connected to logic card circuitry which may be positioned in the area indicated by the numeral 35. A second logic card is identified by the numeral 36. Additional logic cards may be added as desired, the circuitry thereon including the power supply unit R30, R31, capacitors C10, C11 and transistor Q12, each of which has output terminals 33 and 34 for connection to logic card circuitry as indicated at 35.
The 5 volt output of the dynamic decoupling circuit has less than 5 millivolt peak to peak noise under the worst operating conditions and for a 100 milliampere change in current the maximum ripple is approximately 5 :millivolt. The 7 volt supply is about 2 percent supply (plus or minus 140 millivolt). The 5.6 volt power supply is about a two tenths percent power supply (plus or minus millivolt).
Thus it will be seen that the power supply in accord ance with the invention permits the use of a relatively noisy basic power supply and still have a quiet power supply for the logic cards.
While the invention has been described and illustrated with reference to a specific embodiment thereof, it will be understood that other embodiments may be resorted to without departing from the invention. Therefore, the form of the invention set out above should be considered as illustrative and not as limiting the scope of the following claims.
We claim:
1. A power supply system for a plurality of logic cards, the system comprising a power supply unit including means providing a source of direct current energy, means providing a low quality regulated power supply fed by said direct current source, means providing a well-regulated reference voltage supply fed by said low quality regulated supply, a plurality of logic cards, said power supply unit feeding out to each of said logic cards a low quality direct current supply and a high quality direct current regulated supply, a logic card voltage regulator carried by each logic card, each of said logic card voltage regualtors supplied by said low quality regulated power supply and controll 'by said well-regulated reference voltage, a regulator output carried by each logic card, the regulator outputs adapted to be connected to logic card circuitry, and a filter also positioned on each logic card and connected to its high quality regulated supply, whereby the output of each logic card voltage regulator is a, highly regulated low ripple supply substantially unaffected by possible noise.
2. A direct current power supply system according to claim 1 in which said means providing a low quality regulated power supply is a pass transistor.
3. A direct current power supply system according to claim 1 in which said logic card regulator is a cathode follower.
4. A direct current power supply system according to claim 1 in which short circuit protection means is included comprising potential dropping means connected in series with said means providing a low quality power supply, and control means for said power supply responsive to greater than normal potential drop across said potential dropping means.
5. A direct current power supply system according to claim 4 in which capacitor means is included to supply heavy transients drawn by said low quality power supply.
6. A direct current power supply system according to claim 4 in which overvoltage means is included including a silicon controlled rectifier connected across said source of direct current outwardly of said potential dropping means, and control means is provided for said silicon controlled rectifier.
7. A direct current power supply system according to claim 1 in which said low quality regulated power supply is a pass transistor, and in which said means providing a well regulated reference voltage is a Zener diode controlling a differential amplifier in which one half of said amplifier is driven by the Zener diode and the other half of said amplifier is driven by a voltage derived from the output voltage.
8. A direct current power supply system according to claim 1 in which said means providing a well regulated reference voltage is a Zener diode controlling a differential amplifier in which one half of said amplifier is driven by the Zener diode and the other half of said amplifier is driven by a voltage derived from the output voltage, and in which said logic card voltage regulator is a cathode follower.
9. A direct current power supply system according to claim 1 in which said low quality regulated power supply is a pass transistor, said means providing a well regulated reference voltage is a Zener diode controlling a differential amplifier in which one half of said amplifier is driven by the Zener diode and the other half of said amplifier is driven by a voltage derived from the output voltage, said logic card voltage regulator is a cathode follower, in which short circuit protection means is included comprising potential dropping means connected in series with said power supply and control means for said power supply responsive to greater than normal potential drop across said potential dropping means, in which capacitor means is included to supply heavy transients drawn by said power supply, and in which overvoltage means is included including a silicon controlled rectifier connected across said source of direct current outwardly of said potential dropping means, and control means is provided for said silicon controlled rectifier.
10. A direct current power supply system according to claim 1 in which a current limiting resistor is provided positioned on said logic card and connected between said low quality regulated power supply and said regulator.
11. A direct current power supply system according to claim 1 in which said filter includes a resistance connected in series between said high quality regulated power supply and said regulator and a capacitor is provided connected between the junction of said resistor and said regulator and ground.
12. A direct current power supply system according to claim 1 in which said regulator is a transistor connected as a cathode follower, a filter capacitor is provided and connected between the transistor emitter and ground, and a pair of terminals are provided connected across said filter capacitor thereby providing said regulator output adapted to be connected to logic card circuitry.
References Cited UNITED STATES PATENTS 3,049,632v 8/ 1962 Staples. 3,068,392 12/1962 Santelmann 32118 3,163,814 12/1964 Todd. 3,260,920 7/ 1966 Shoemaker 32l-18 3,359,434 12/ 1967 Galluzzi. 3,391,330 7/ 1968 Grossoehme 323--9 J. D. MILLER, Primary Examiner A. D. PELLINEN, Assistant Examiner US. 01. X.R.
US3514691D 1967-11-22 1967-11-22 Power supply for plural logic cards Expired - Lifetime US3514691A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US68515967A 1967-11-22 1967-11-22

Publications (1)

Publication Number Publication Date
US3514691A true US3514691A (en) 1970-05-26

Family

ID=24751010

Family Applications (1)

Application Number Title Priority Date Filing Date
US3514691D Expired - Lifetime US3514691A (en) 1967-11-22 1967-11-22 Power supply for plural logic cards

Country Status (1)

Country Link
US (1) US3514691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697768A (en) * 1971-02-10 1972-10-10 Rosemount Eng Co Ltd Control systems
US4611126A (en) * 1984-10-04 1986-09-09 Werkzeugmaschinenfabrik Oerlikon-Buehrle Ag Power on/off reset generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049632A (en) * 1959-12-29 1962-08-14 John P Staples Overload protection circuit
US3068392A (en) * 1958-05-22 1962-12-11 Krohn Hite Lab Inc Power supply
US3163814A (en) * 1961-01-11 1964-12-29 Trygon Electronics Inc Voltage regulator power supply
US3260920A (en) * 1962-09-27 1966-07-12 Beckman Instruments Inc Low dissipation power supply
US3359434A (en) * 1965-04-06 1967-12-19 Control Data Corp Silicon controlled rectifier arrangement for improved shortcircuit protection
US3391330A (en) * 1965-10-19 1968-07-02 Gen Electric Direct current power supplies with overload protection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068392A (en) * 1958-05-22 1962-12-11 Krohn Hite Lab Inc Power supply
US3049632A (en) * 1959-12-29 1962-08-14 John P Staples Overload protection circuit
US3163814A (en) * 1961-01-11 1964-12-29 Trygon Electronics Inc Voltage regulator power supply
US3260920A (en) * 1962-09-27 1966-07-12 Beckman Instruments Inc Low dissipation power supply
US3359434A (en) * 1965-04-06 1967-12-19 Control Data Corp Silicon controlled rectifier arrangement for improved shortcircuit protection
US3391330A (en) * 1965-10-19 1968-07-02 Gen Electric Direct current power supplies with overload protection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697768A (en) * 1971-02-10 1972-10-10 Rosemount Eng Co Ltd Control systems
US4611126A (en) * 1984-10-04 1986-09-09 Werkzeugmaschinenfabrik Oerlikon-Buehrle Ag Power on/off reset generator

Similar Documents

Publication Publication Date Title
US4428020A (en) Power supply sensing circuitry
US2896149A (en) Electrical generator control apparatus
US3068392A (en) Power supply
US3124698A (en) Source
EP0147840B1 (en) Transformer power supply with a modulated pulse width voltage input
US3748569A (en) Regulated short circuit protected power supply
US2914720A (en) Voltage and current regulator
US3305764A (en) Current and voltage regulated power supply
US3395317A (en) Transistor filter protection circuit
US3551746A (en) Voltage acceptor circuit and overvoltage undervoltage detector for use therein
US3373344A (en) Voltage regulator circuit including a storage capacitor and a switching means responsive to a voltage difference for charging the capacitor
US5189587A (en) Dual shunt current regulator
US3514691A (en) Power supply for plural logic cards
US3391330A (en) Direct current power supplies with overload protection
US3809996A (en) Load balancing voltage regulator
US3356855A (en) Parallel operating voltage stabilized power supply arrangement
US3597655A (en) Overvoltage protective circuit for constant voltage-current crossover network
US3090905A (en) Power supply overload protector
US3535589A (en) Unbalanced load protection circuit for ac generator
US5554924A (en) High speed shunt regulator
US2979653A (en) Regulated transistor power supply
GB1216928A (en) Real load unbalance protection circuit for alternating current power sources connected for parallel operation
US3388317A (en) Voltage limiting circuit for regulated power supply
US3210637A (en) Direct current power supply circuit
US3229185A (en) Voltage regulation circuit